Pub Date : 2024-08-05DOI: 10.1016/j.nano.2024.102777
Danka Cholujova PhD , Zdenka Lukacova Bujnakova PhD , Erika Dutkova PhD , Zuzana Valuskova , Nikoleta Csicsatkova PhD , Katarina Suroviakova , Maria Elisabeth Marinkovicova , Linda Zbellova , Lenka Koklesova , Jan Sedlak PhD , Teru Hideshima MD, PhD , Kenneth C. Anderson MD, PhD , Jana Jakubikova PhD
Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As4S4/Fe3O4 (4:1) and As4S4/Fe3O4 (1:1) demonstrated effective anti-MM activity in in vitro, ex vivo, and in vivo in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G2/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As4S4/Fe3O4 (4:1) observed synergism with dexamethasone and melphalan, while As4S4/Fe3O4 (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.
{"title":"Exploring the anti-myeloma potential of composite nanoparticles As4S4/Fe3O4: Insights from in vitro, ex vivo and in vivo studies","authors":"Danka Cholujova PhD , Zdenka Lukacova Bujnakova PhD , Erika Dutkova PhD , Zuzana Valuskova , Nikoleta Csicsatkova PhD , Katarina Suroviakova , Maria Elisabeth Marinkovicova , Linda Zbellova , Lenka Koklesova , Jan Sedlak PhD , Teru Hideshima MD, PhD , Kenneth C. Anderson MD, PhD , Jana Jakubikova PhD","doi":"10.1016/j.nano.2024.102777","DOIUrl":"10.1016/j.nano.2024.102777","url":null,"abstract":"<div><p>Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As<sub>4</sub>S<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub> (4:1) and As<sub>4</sub>S<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub> (1:1) demonstrated effective anti-MM activity in <em>in vitro</em>, <em>ex vivo</em>, and <em>in vivo</em> in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G<sub>2</sub>/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As<sub>4</sub>S<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub> (4:1) observed synergism with dexamethasone and melphalan, while As<sub>4</sub>S<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub> (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102777"},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000467/pdfft?md5=b83c7b1c404c8c4762085cf98d2dfb2d&pid=1-s2.0-S1549963424000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.nano.2024.102775
Jie Zhou PhD, Min Guan MD, Huili Ma MD, Xiaomeng Dong MD, Junfen Feng MD, Tong Zhang MD, Yuxin Wei MD
The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (>24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.
炎症因子的过度表达与急性肾损伤(AKI)的发病机制密切相关。此外,活性氧(ROS)的过度产生进一步加剧了炎症反应。有鉴于此,仅针对炎症的单一疗法已被证明是不理想的。因此,本研究成功开发了一种具有抗炎和抗氧化特性的纳米粒子(SC@Se/GA)。SC@Se/GA具有更小的尺寸、更好的稳定性和肾脏靶向性。体内实验表明,SC@Se/GA的GPx酶活性比单独的SC@Se提高了近50%,表明其具有高效清除ROS的能力。同时,与游离药物 GA 相比,SC@Se/GA 在肾脏的滞留时间更长(>24 h),可显著降低炎症因子 TNF-α 和 IL-6 的水平。总之,SC@Se/GA通过其协同抗炎和抗氧化作用,可明显缓解CDDP诱导的肾损伤并恢复肾功能,为治疗AKI提供了一种新的有效策略。
{"title":"Gallic acid-selenium nanoparticles with dual anti-inflammatory and antioxidant functions for synergistic treatment of acute kidney injury","authors":"Jie Zhou PhD, Min Guan MD, Huili Ma MD, Xiaomeng Dong MD, Junfen Feng MD, Tong Zhang MD, Yuxin Wei MD","doi":"10.1016/j.nano.2024.102775","DOIUrl":"10.1016/j.nano.2024.102775","url":null,"abstract":"<div><p>The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (>24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102775"},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.nano.2024.102776
Nikitha Kota B.S. , Daniel Davila Gonzalez MD, PhD , Hsuan-Chen Liu PhD , Dixita Viswanath MD, PhD , Robin Vander Pol BS , Anthony Wood BS , Nicola Di Trani PhD , Corrine Ying Xuan Chua PhD , Alessandro Grattoni PhD
Selective in vivo immune cell manipulation offers a promising strategy for cancer vaccines. In this context, spatiotemporal control over recruitment of specific cells, and their direct exposure to appropriate immunoadjuvants and antigens are key to effective cancer vaccines. We present an implantable 3D-printed cancer vaccine platform called the ‘NanoLymph’ that enables spatiotemporally-controlled recruitment and manipulation of immune cells in a subcutaneous site. Leveraging two reservoirs each for continuous immunoadjuvant release or antigen presentation, the NanoLymph attracts dendritic cells (DCs) on site and exposes them to tumor-associated antigens. Upon local antigen-specific activation, DCs are mobilized to initiate a systemic immune response. NanoLymph releasing granulocyte-macrophage colony-stimulating factor and CpG-oligodeoxynucleotides with irradiated whole cell tumor lysate inhibited tumor growth of B16F10 murine melanoma in a prophylactic and therapeutic vaccine setting. Overall, this study presents the NanoLymph as a versatile cancer vaccine development platform with replenishable and controlled local release of antigens and immunoadjuvants.
{"title":"Prophylactic and therapeutic cancer vaccine with continuous localized immunomodulation","authors":"Nikitha Kota B.S. , Daniel Davila Gonzalez MD, PhD , Hsuan-Chen Liu PhD , Dixita Viswanath MD, PhD , Robin Vander Pol BS , Anthony Wood BS , Nicola Di Trani PhD , Corrine Ying Xuan Chua PhD , Alessandro Grattoni PhD","doi":"10.1016/j.nano.2024.102776","DOIUrl":"10.1016/j.nano.2024.102776","url":null,"abstract":"<div><p>Selective in vivo immune cell manipulation offers a promising strategy for cancer vaccines. In this context, spatiotemporal control over recruitment of specific cells, and their direct exposure to appropriate immunoadjuvants and antigens are key to effective cancer vaccines. We present an implantable 3D-printed cancer vaccine platform called the ‘NanoLymph’ that enables spatiotemporally-controlled recruitment and manipulation of immune cells in a subcutaneous site. Leveraging two reservoirs each for continuous immunoadjuvant release or antigen presentation, the NanoLymph attracts dendritic cells (DCs) on site and exposes them to tumor-associated antigens. Upon local antigen-specific activation, DCs are mobilized to initiate a systemic immune response. NanoLymph releasing granulocyte-macrophage colony-stimulating factor and CpG-oligodeoxynucleotides with irradiated whole cell tumor lysate inhibited tumor growth of B16F10 murine melanoma in a prophylactic and therapeutic vaccine setting. Overall, this study presents the NanoLymph as a versatile cancer vaccine development platform with replenishable and controlled local release of antigens and immunoadjuvants.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102776"},"PeriodicalIF":4.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000455/pdfft?md5=a2b72962ebd4da121e46efb0f291f0dc&pid=1-s2.0-S1549963424000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.nano.2024.102774
Oskar Axelsson PhD, Nooshin Yousefpour BSc, Olof Björnberg PhD, Erik Ekengard PhD, Sujinna Lekmeechai PhD
The pharmacokinetics in patients dosed with the nanoparticle-based MRI contrast agent SN132D is explained by a size dependent clearance mechanism and this behavior was modeled numerically. Blood samples from 14 patients were analyzed for silicon (a component of the nanoparticle) by ICP-OES. The pharmacokinetic model has only one free parameter and relies on a measured size distribution of the contrast agent and well-established properties of the renal and cardiovascular systems. The model fits well (R2 = 0.9910) with experimental data from samples taken from ten minutes to two weeks after start of infusion. These results support that the cut-off diameter for human renal filtration is 5.5 nm. The agreement between experiment and model implies that there is little or no plasma protein binding to the nanoparticles.
{"title":"Size-dependent renal filtration model explains human pharmacokinetics of a functional nanoparticle: The SPAGOPIX-01 clinical trial","authors":"Oskar Axelsson PhD, Nooshin Yousefpour BSc, Olof Björnberg PhD, Erik Ekengard PhD, Sujinna Lekmeechai PhD","doi":"10.1016/j.nano.2024.102774","DOIUrl":"10.1016/j.nano.2024.102774","url":null,"abstract":"<div><p>The pharmacokinetics in patients dosed with the nanoparticle-based MRI contrast agent SN132D is explained by a size dependent clearance mechanism and this behavior was modeled numerically. Blood samples from 14 patients were analyzed for silicon (a component of the nanoparticle) by ICP-OES. The pharmacokinetic model has only one free parameter and relies on a measured size distribution of the contrast agent and well-established properties of the renal and cardiovascular systems. The model fits well (R<sup>2</sup> = 0.9910) with experimental data from samples taken from ten minutes to two weeks after start of infusion. These results support that the cut-off diameter for human renal filtration is 5.5 nm. The agreement between experiment and model implies that there is little or no plasma protein binding to the nanoparticles.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102774"},"PeriodicalIF":4.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000431/pdfft?md5=8601ad682c68920fc5432c9e86ab6def&pid=1-s2.0-S1549963424000431-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.nano.2024.102772
Yuxiang Dai MD , Yuanping Min MSc , Lu Zhou MM , Longyang Cheng MM , Hongbin Ni MD , Yang Yang PhD , Wendi Zhou MSc
Glioblastoma (GBM) is a central nervous system cancer with high incidence and poor survival rates. Enhancing drug penetration of the blood-brain barrier (BBB) and targeting efficacy is crucial for improving treatment outcomes. In this study, we developed a redox-sensitive targeted nano-delivery system (HCA-A2) for temozolomide (TMZ) and β-lapachone (β-Lapa). This system used hyaluronic acid (HA) as the hydrophilic group, arachidonic acid (CA) as the hydrophobic group, and angiopep-2 (A2) as the targeting group. Control systems included non-redox sensitive (HDA-A2) and non-targeting (HCA) versions. In vitro, HCA-TMZ-Lapa micelles released 100 % of their payload in a simulated tumor microenvironment within 24 h, compared to 43.97 % under normal conditions. HCA-A2 micelles, internalized via clathrin-mediated endocytosis, showed stronger cytotoxicity and better BBB penetration and cellular uptake than controls. In vivo studies demonstrated superior tumor growth inhibition with HCA-A2 micelles, indicating their potential for GBM treatment.
{"title":"Brain-targeting redox-sensitive micelles for codelivery of TMZ and β-lapachone for glioblastoma therapy","authors":"Yuxiang Dai MD , Yuanping Min MSc , Lu Zhou MM , Longyang Cheng MM , Hongbin Ni MD , Yang Yang PhD , Wendi Zhou MSc","doi":"10.1016/j.nano.2024.102772","DOIUrl":"10.1016/j.nano.2024.102772","url":null,"abstract":"<div><p>Glioblastoma (GBM) is a central nervous system cancer with high incidence and poor survival rates. Enhancing drug penetration of the blood-brain barrier (BBB) and targeting efficacy is crucial for improving treatment outcomes. In this study, we developed a redox-sensitive targeted nano-delivery system (HCA-A2) for temozolomide (TMZ) and β-lapachone (β-Lapa). This system used hyaluronic acid (HA) as the hydrophilic group, arachidonic acid (CA) as the hydrophobic group, and angiopep-2 (A2) as the targeting group. Control systems included non-redox sensitive (HDA-A2) and non-targeting (HCA) versions. In vitro, HCA-TMZ-Lapa micelles released 100 % of their payload in a simulated tumor microenvironment within 24 h, compared to 43.97 % under normal conditions. HCA-A2 micelles, internalized via clathrin-mediated endocytosis, showed stronger cytotoxicity and better BBB penetration and cellular uptake than controls. In vivo studies demonstrated superior tumor growth inhibition with HCA-A2 micelles, indicating their potential for GBM treatment.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102772"},"PeriodicalIF":4.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.nano.2024.102770
Gadolinium-based contrast agents (GBCAs) are used in around 40 % of MRI procedures. Despite initial perceptions of minimal risk, their long-term use has emphasized the need to reduce toxicity and develop more efficient GBCAs with extended blood retention. Advancements in nanomaterials have led to improved GBCAs, enhancing MRI diagnostics. This study synthesizes and characterizes nanostructured gadolinium(III) micelles as superior MRI contrast agents. The complexes, [Gd(L)2], where L is a ligand of the N-alkyl-N-methylglucamine surfactant series (L8, L10 or L12, L10), form nanostructured micelles in aqueous solution. Gd(L8)2 and Gd(L10)2 relaxivities remained stable across concentrations. Compared to Gd-DTPA, Gd(III) micelles showed enhanced T1-weighted MRI contrast. Gd(L12)2 micelles exhibited cytotoxicity against B16F10 melanoma cells (IC50 42.5 ± 2.2 μM) and L292L929 fibroblasts (IC50 52.0 ± 2.5 μM), with a selectivity index of 1.2. In vivo application in mice brain T2-weighted images suggests nanostructured Gd(III) micelles are promising MRI contrast agents for targeting healthy organs or tumors.
{"title":"Nanostructured gadolinium(III) micelles: Synthesis, characterization, cytotoxic activities, and MRI applications in vivo","authors":"","doi":"10.1016/j.nano.2024.102770","DOIUrl":"10.1016/j.nano.2024.102770","url":null,"abstract":"<div><p>Gadolinium-based contrast agents (GBCAs) are used in around 40 % of MRI procedures. Despite initial perceptions of minimal risk, their long-term use has emphasized the need to reduce toxicity and develop more efficient GBCAs with extended blood retention. Advancements in nanomaterials have led to improved GBCAs, enhancing MRI diagnostics. This study synthesizes and characterizes nanostructured gadolinium(III) micelles as superior MRI contrast agents. The complexes, [Gd(L)2], where L is a ligand of the N-alkyl-<em>N</em>-methylglucamine surfactant series (L8, L10 or L12, L10), form nanostructured micelles in aqueous solution. Gd(L8)2 and Gd(L10)2 relaxivities remained stable across concentrations. Compared to Gd-DTPA, Gd(III) micelles showed enhanced T1-weighted MRI contrast. Gd(L12)2 micelles exhibited cytotoxicity against B16F10 melanoma cells (IC<sub>50</sub> 42.5 ± 2.2 μM) and L292L929 fibroblasts (IC<sub>50</sub> 52.0 ± 2.5 μM), with a selectivity index of 1.2. <em>In vivo</em> application in mice brain T2-weighted images suggests nanostructured Gd(III) micelles are promising MRI contrast agents for targeting healthy organs or tumors.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102770"},"PeriodicalIF":4.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.nano.2024.102773
To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.
{"title":"Neuroprotective macromolecular methylprednisolone prodrug nanomedicine prevents glucocorticoid-induced muscle atrophy and osteoporosis in a rat model of spinal cord injury","authors":"","doi":"10.1016/j.nano.2024.102773","DOIUrl":"10.1016/j.nano.2024.102773","url":null,"abstract":"<div><p>To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a <em>N</em>-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102773"},"PeriodicalIF":4.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.nano.2024.102771
Elisa Erice PhD , Oihane Mitxelena-Iribarren PhD , Sergio Arana PhD , Charles H. Lawrie PhD , Maite Mujika PhD
Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the EGFR gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 μM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.
{"title":"Efficient enrichment of free target sequences in an integrated microfluidic device for point-of-care detection systems","authors":"Elisa Erice PhD , Oihane Mitxelena-Iribarren PhD , Sergio Arana PhD , Charles H. Lawrie PhD , Maite Mujika PhD","doi":"10.1016/j.nano.2024.102771","DOIUrl":"10.1016/j.nano.2024.102771","url":null,"abstract":"<div><p>Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the <em>EGFR</em> gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 μM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102771"},"PeriodicalIF":4.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.nano.2024.102768
Olga A. Bezborodova MD , Andrey A. Pankratov PhD , Boris Y. Kogan PhD , Elena R. Nemtsova MD , Julia B. Venediktova MSc , Tatyana A. Karmakova MD , Alexander V. Butenin PhD , Raisa K.-G. Feizulova PhD , Varvara A. Khokhlova MSc , Ekaterina A. Obraztsova PhD , Andrey D. Kaprin MD
Nanophotothermolysis (NPhT) effect is considered to be an approach for the development of highly selective modalities for anticancer treatment. Herein, we evaluated an antitumor efficacy of NPhT with intravenously injected zinc phthalocyanine particles (ZnPcPs) in murine subcutaneous syngeneic tumor models. In S37 sarcoma-bearing mice a biodistribution of ZnPcPs was studied and the high antitumor efficacy of ZnPcPs-mediated NPhT was shown, including a response of metastatic lesions. The morphological investigation showed the main role of a local NPhT-induced vascular damage in the tumor growth and tumor spread inhibition. Murine tumors of different histological origin were not equally sensitive to the treatment. The results demonstrate a potential of ZnPcPs-mediated NPhT for treatment of surface tumors.
{"title":"Antitumor effect of nanophotothermolysis mediated by zinc phthalocyanine particles","authors":"Olga A. Bezborodova MD , Andrey A. Pankratov PhD , Boris Y. Kogan PhD , Elena R. Nemtsova MD , Julia B. Venediktova MSc , Tatyana A. Karmakova MD , Alexander V. Butenin PhD , Raisa K.-G. Feizulova PhD , Varvara A. Khokhlova MSc , Ekaterina A. Obraztsova PhD , Andrey D. Kaprin MD","doi":"10.1016/j.nano.2024.102768","DOIUrl":"10.1016/j.nano.2024.102768","url":null,"abstract":"<div><p>Nanophotothermolysis (NPhT) effect is considered to be an approach for the development of highly selective modalities for anticancer treatment. Herein, we evaluated an antitumor efficacy of NPhT with intravenously injected zinc phthalocyanine particles (ZnPcPs) in murine subcutaneous syngeneic tumor models. In S37 sarcoma-bearing mice a biodistribution of ZnPcPs was studied and the high antitumor efficacy of ZnPcPs-mediated NPhT was shown, including a response of metastatic lesions. The morphological investigation showed the main role of a local NPhT-induced vascular damage in the tumor growth and tumor spread inhibition. Murine tumors of different histological origin were not equally sensitive to the treatment. The results demonstrate a potential of ZnPcPs-mediated NPhT for treatment of surface tumors.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102768"},"PeriodicalIF":4.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.nano.2024.102765
Katarzyna Skierbiszewska DVM , Urszula Szałaj PhD Eng. , Bernard Turek DVM PhD DSc , Olena Sych PhD Eng. , Tomasz Jasiński DVM PhD , Witold Łojkowski Professor , Małgorzata Domino DVM MSc PhD DSc
In equine medicine, assisted bone regeneration, including use of biomaterial substitutes like hydroxyapatite (HAP), is crucial for addressing bone defects. To follow-up on the outcome of HAP-based bone defect treatment, the advancement in quantified diagnostic imaging protocols is needed. This study aimed to quantify and compare the radiological properties of the HAP graft and natural equine bone using Magnetic Resonance (MR) and Computed Tomography (CT), both Single (SECT) and Dual Energy (DECT). SECT and DECT, allow for the differentiation of three HAP grain sizes, by progressive increase in relative density (RD). SECT, DECT, and MR enable the differentiation between natural cortical bone and synthetic HAP graft by augmentation in Effective Z and material density (MD) in HAP/Water, Calcium/Water, and Water/Calcium reconstructions, alongside the reduction in T2 relaxation time. The proposed quantification provided valuable radiological insights into the composition of HAP grafts, which may be useful in follow-up bone defect treatment.
{"title":"Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR","authors":"Katarzyna Skierbiszewska DVM , Urszula Szałaj PhD Eng. , Bernard Turek DVM PhD DSc , Olena Sych PhD Eng. , Tomasz Jasiński DVM PhD , Witold Łojkowski Professor , Małgorzata Domino DVM MSc PhD DSc","doi":"10.1016/j.nano.2024.102765","DOIUrl":"10.1016/j.nano.2024.102765","url":null,"abstract":"<div><p>In equine medicine, assisted bone regeneration, including use of biomaterial substitutes like hydroxyapatite (HAP), is crucial for addressing bone defects. To follow-up on the outcome of HAP-based bone defect treatment, the advancement in quantified diagnostic imaging protocols is needed. This study aimed to quantify and compare the radiological properties of the HAP graft and natural equine bone using Magnetic Resonance (MR) and Computed Tomography (CT), both Single (SECT) and Dual Energy (DECT). SECT and DECT, allow for the differentiation of three HAP grain sizes, by progressive increase in relative density (RD). SECT, DECT, and MR enable the differentiation between natural cortical bone and synthetic HAP graft by augmentation in Effective Z and material density (MD) in HAP/Water, Calcium/Water, and Water/Calcium reconstructions, alongside the reduction in T2 relaxation time. The proposed quantification provided valuable radiological insights into the composition of HAP grafts, which may be useful in follow-up bone defect treatment.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102765"},"PeriodicalIF":4.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000340/pdfft?md5=33a6f4eeddd77a85bbe49e328545d946&pid=1-s2.0-S1549963424000340-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}