Pub Date : 2024-05-16DOI: 10.1016/j.nano.2024.102755
Hongying Zhao , Jiaxin Song , Tian Wang, Xiaodan Fan
Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.
{"title":"Selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme protects against 6-OHDA-induced neurotoxicity in PC12 cells and rat model of Parkinson's disease","authors":"Hongying Zhao , Jiaxin Song , Tian Wang, Xiaodan Fan","doi":"10.1016/j.nano.2024.102755","DOIUrl":"10.1016/j.nano.2024.102755","url":null,"abstract":"<div><p>Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from <em>Sargassum fusiforme</em> (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102755"},"PeriodicalIF":5.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.nano.2024.102752
Sagar Mahawar , Debarati Rakshit , Inklisan Patel , Swati Kailas Gore , Srijita Sen , Om Prakash Ranjan , Awanish Mishra
Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP.
Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated.
The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.
{"title":"Fisetin-loaded chitosan nanoparticles ameliorate pilocarpine-induced temporal lobe epilepsy and associated neurobehavioral alterations in mice: Role of ROS/TNF-α-NLRP3 inflammasomes pathway","authors":"Sagar Mahawar , Debarati Rakshit , Inklisan Patel , Swati Kailas Gore , Srijita Sen , Om Prakash Ranjan , Awanish Mishra","doi":"10.1016/j.nano.2024.102752","DOIUrl":"10.1016/j.nano.2024.102752","url":null,"abstract":"<div><p>Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP.</p><p>Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated.</p><p>The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102752"},"PeriodicalIF":5.4,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1016/j.nano.2024.102753
Alisa S. Postovalova M.Sc , Yulia A. Tishchenko B.Sc , Maria S. Istomina M.Sc , Timofey E. Karpov M.Sc , Sergei A. Shipilovskikh Ph.D , Daria Akhmetova M.Sc , Anna Rogova M.Sc , Nina V. Gavrilova M.Sc , Alexander S. Timin Ph.D
In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO3), and silica (SiO2) with similar sizes (TEM: 50–110 nm and DLS: 110–140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO3 and SiO2 NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, ex vivo fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.
{"title":"Comparison of passive targeted delivery of inorganic and organic nanocarriers among different types of tumors","authors":"Alisa S. Postovalova M.Sc , Yulia A. Tishchenko B.Sc , Maria S. Istomina M.Sc , Timofey E. Karpov M.Sc , Sergei A. Shipilovskikh Ph.D , Daria Akhmetova M.Sc , Anna Rogova M.Sc , Nina V. Gavrilova M.Sc , Alexander S. Timin Ph.D","doi":"10.1016/j.nano.2024.102753","DOIUrl":"10.1016/j.nano.2024.102753","url":null,"abstract":"<div><p>In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO<sub>3</sub>), and silica (SiO<sub>2</sub>) with similar sizes (TEM: 50–110 nm and DLS: 110–140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO<sub>3</sub> and SiO<sub>2</sub> NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, <em>ex vivo</em> fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102753"},"PeriodicalIF":5.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1016/j.nano.2024.102750
Sarmiza Elena Stanca , Selene Mogavero , Wolfgang Fritzsche , Christoph Krafft , Bernhard Hube , Jürgen Popp
The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100–2200 cm−1 attributed to carbon‑deuterium bending and at 477 cm−1, attributed to the nitrogen‑deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.
{"title":"Isotope labeled 3D-Raman confocal imaging and atomic force microscopy study on epithelial cells interacting with the fungus Candida albicans","authors":"Sarmiza Elena Stanca , Selene Mogavero , Wolfgang Fritzsche , Christoph Krafft , Bernhard Hube , Jürgen Popp","doi":"10.1016/j.nano.2024.102750","DOIUrl":"10.1016/j.nano.2024.102750","url":null,"abstract":"<div><p>The human pathogenic fungus <em>Candida albicans</em> damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of <em>C. albicans</em> wild type cells, the secreted <em>C. albicans</em> peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100–2200 cm<sup>−1</sup> attributed to carbon‑deuterium bending and at 477 cm<sup>−1</sup>, attributed to the nitrogen‑deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during <em>C. albicans</em> infection.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102750"},"PeriodicalIF":5.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1016/j.nano.2024.102749
Constanza Marin PhD , Federico N. Ruiz Moreno Pharmacist , María F. Sánchez Vallecillo PhD , María M. Pascual PhD , Nicolas D. Dho Biochemist , Daniel A. Allemandi PhD , Santiago D. Palma PhD , María C. Pistoresi-Palencia PhD , María I. Crespo PhD , Cesar G. Gomez PhD , Gabriel Morón PhD , Belkys A. Maletto PhD
New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.
{"title":"Improved biodistribution and enhanced immune response of subunit vaccine using a nanostructure formed by self-assembly of ascorbyl palmitate","authors":"Constanza Marin PhD , Federico N. Ruiz Moreno Pharmacist , María F. Sánchez Vallecillo PhD , María M. Pascual PhD , Nicolas D. Dho Biochemist , Daniel A. Allemandi PhD , Santiago D. Palma PhD , María C. Pistoresi-Palencia PhD , María I. Crespo PhD , Cesar G. Gomez PhD , Gabriel Morón PhD , Belkys A. Maletto PhD","doi":"10.1016/j.nano.2024.102749","DOIUrl":"10.1016/j.nano.2024.102749","url":null,"abstract":"<div><p>New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6C<sup>hi</sup>CD11b<sup>hi</sup>CD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102749"},"PeriodicalIF":5.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.nano.2024.102751
Milita Darguzyte PhD , Elena Rama MSc , Anne Rix MSc , Jasmin Baier MSc , Juliane Hermann PhD , Sima Rezvantalab PhD , Mohammad Khedri MSc , Joachim Jankowski PhD , Fabian Kiessling MD
Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.
{"title":"Riboflavin-targeted polymers improve tolerance of paclitaxel while maintaining therapeutic efficacy","authors":"Milita Darguzyte PhD , Elena Rama MSc , Anne Rix MSc , Jasmin Baier MSc , Juliane Hermann PhD , Sima Rezvantalab PhD , Mohammad Khedri MSc , Joachim Jankowski PhD , Fabian Kiessling MD","doi":"10.1016/j.nano.2024.102751","DOIUrl":"10.1016/j.nano.2024.102751","url":null,"abstract":"<div><p>Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102751"},"PeriodicalIF":5.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000200/pdfft?md5=bd3a1eeb2d202df7a842d2fbba464392&pid=1-s2.0-S1549963424000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.nano.2024.102748
Juncheng Guo PhD , Yijun Yang PhD , Yang Xiang PhD , Xueyi Guo PhD , Shufang Zhang PhD
Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.
{"title":"Pluronic F127 hydrogel-loaded extracellular vesicles from adipose-derived mesenchymal stem cells promote tracheal cartilage regeneration via SCNN1B delivery","authors":"Juncheng Guo PhD , Yijun Yang PhD , Yang Xiang PhD , Xueyi Guo PhD , Shufang Zhang PhD","doi":"10.1016/j.nano.2024.102748","DOIUrl":"10.1016/j.nano.2024.102748","url":null,"abstract":"<div><p>Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the <em>in vivo</em> experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102748"},"PeriodicalIF":5.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140790733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1016/j.nano.2024.102747
Yanguo Su MD , Chunjing Guo PhD , Qiang Chen MD , Huimin Guo MD , Jinqiu Wang BD , Mu Kaihang BD , Daquan Chen PhD
{"title":"Corrigendum to “construction of bionanoparticles based on Angelica polysaccharides for the treatment of stroke” [nanomedicine: Nanotechnology, biology and medicine 44 (2022) 102570]","authors":"Yanguo Su MD , Chunjing Guo PhD , Qiang Chen MD , Huimin Guo MD , Jinqiu Wang BD , Mu Kaihang BD , Daquan Chen PhD","doi":"10.1016/j.nano.2024.102747","DOIUrl":"https://doi.org/10.1016/j.nano.2024.102747","url":null,"abstract":"","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102747"},"PeriodicalIF":5.4,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000169/pdfft?md5=e37e1042616e1954a7a6cdf7a78dd15b&pid=1-s2.0-S1549963424000169-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140621833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1016/j.nano.2024.102746
Osama K. Zahid PhD , Felipe Rivas MS , Fanny Wang PhD , Komal Sethi PhD , Katherine Reiss , Samuel Bearden PhD , Adam R. Hall PhD
{"title":"Corrigendum to “Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer” [Nanomed. Nanotechnol. Biol. Med. 35(2021)102407]","authors":"Osama K. Zahid PhD , Felipe Rivas MS , Fanny Wang PhD , Komal Sethi PhD , Katherine Reiss , Samuel Bearden PhD , Adam R. Hall PhD","doi":"10.1016/j.nano.2024.102746","DOIUrl":"https://doi.org/10.1016/j.nano.2024.102746","url":null,"abstract":"","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102746"},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963424000157/pdfft?md5=1ee4bb73eb3cc9b9221fe993e64e54a4&pid=1-s2.0-S1549963424000157-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1016/j.nano.2024.102745
Brian Liau PhD , Li Zhang PhD , Melgious Jin Yan Ang PhD , Jian Yao Ng PhD , Suresh Babu C.V. PhD , Sonja Schneider PhD , Ravindra Gudihal PhD , Ki Hyun Bae PhD , Yi Yan Yang PhD
Understanding the stability of mRNA loaded lipid nanoparticles (mRNA-LNPs) is imperative for their clinical development. Herein, we propose the use of size-exclusion chromatography coupled with dual-angle light scattering (SEC-MALS) as a new approach to assessing mRNA-LNP stability in pure human serum and plasma. By applying a dual-column configuration to attenuate interference from plasma components, SEC-MALS was able to elucidate the degradation kinetics and physical property changes of mRNA-LNPs, which have not been observed accurately by conventional dynamic light scattering techniques. Interestingly, both serum and plasma had significantly different impacts on the molecular weight and radius of gyration of mRNA-LNPs, suggesting the involvement of clotting factors in desorption of lipids from mRNA-LNPs. We also discovered that a trace impurity (~1 %) in ALC-0315, identified as its O-tert-butyloxycarbonyl-protected form, greatly diminished mRNA-LNP stability in serum. These results demonstrated the potential utility of SEC-MALS for optimization and quality control of LNP formulations.
{"title":"Quantitative analysis of mRNA-lipid nanoparticle stability in human plasma and serum by size-exclusion chromatography coupled with dual-angle light scattering","authors":"Brian Liau PhD , Li Zhang PhD , Melgious Jin Yan Ang PhD , Jian Yao Ng PhD , Suresh Babu C.V. PhD , Sonja Schneider PhD , Ravindra Gudihal PhD , Ki Hyun Bae PhD , Yi Yan Yang PhD","doi":"10.1016/j.nano.2024.102745","DOIUrl":"10.1016/j.nano.2024.102745","url":null,"abstract":"<div><p>Understanding the stability of mRNA loaded lipid nanoparticles (mRNA-LNPs) is imperative for their clinical development. Herein, we propose the use of size-exclusion chromatography coupled with dual-angle light scattering (SEC-MALS) as a new approach to assessing mRNA-LNP stability in pure human serum and plasma. By applying a dual-column configuration to attenuate interference from plasma components, SEC-MALS was able to elucidate the degradation kinetics and physical property changes of mRNA-LNPs, which have not been observed accurately by conventional dynamic light scattering techniques. Interestingly, both serum and plasma had significantly different impacts on the molecular weight and radius of gyration of mRNA-LNPs, suggesting the involvement of clotting factors in desorption of lipids from mRNA-LNPs. We also discovered that a trace impurity (~1 %) in ALC-0315, identified as its O-<em>tert</em>-butyloxycarbonyl-protected form, greatly diminished mRNA-LNP stability in serum. These results demonstrated the potential utility of SEC-MALS for optimization and quality control of LNP formulations.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"58 ","pages":"Article 102745"},"PeriodicalIF":5.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}