Pub Date : 2025-12-12DOI: 10.1038/s41561-025-01855-5
Cornelia Mertens, Sarah Paradis, Jordon D. Hemingway
Pyrite (iron sulfide) formation and burial in sediments decreases atmospheric CO2 and increases O2 levels. However, the environmental and sedimentological conditions that regulate pyrite burial remain poorly constrained. Here we investigate such controlling mechanisms using a non-dimensional diagenetic model that extracts the natural variables governing pyrite formation rate and sulfur isotopic composition (δ34S). Both properties are controlled by the local ratios of organic carbon content to sulfate concentration and organic carbon reactivity to sedimentation rate; formation rate is additionally sensitive to reactive iron delivery. Using only globally interpolated boundary conditions, our model accurately predicts signals in 216 sediment cores distributed across the modern ocean. Extrapolating this, we estimate a global pyrite burial flux of 7.0 × 1012 mol S yr−1 (sensitivity test range: 2.5 × 1012 to 19.0 × 1012 mol S yr−1) with a weighted-average δ34S value of −4‰ (range: −8 to +3‰). This flux is substantially larger than terrestrial pyrite oxidation, indicating that the sulfur cycle is currently not in steady state but is instead described by net pyrite burial and thus atmospheric O2 accumulation. Finally, we interpret the geologic pyrite δ34S record within this model framework and identify flooded shelf area as the main control on pyrite burial throughout the Phanerozoic Eon. Modern pyrite burial in seafloor sediments exceeds pyrite oxidation on land, indicating that the sulfur cycle is out of balance, and acts to increase atmospheric oxygen levels, according to a diagenetic model validated by sediment cores.
沉积物中黄铁矿(硫化铁)的形成和埋藏减少了大气中的二氧化碳,增加了氧气水平。然而,控制黄铁矿埋藏的环境和沉积条件仍然知之甚少。本文采用无量纲成岩模型,提取控制黄铁矿形成速率和硫同位素组成(δ34S)的自然变量,研究这种控制机制。这两种性质均受局部有机碳含量与硫酸盐浓度之比和有机碳反应性与沉降速率之比的控制;形成速率对活性铁的输送也很敏感。仅使用全球插值的边界条件,我们的模型准确地预测了分布在现代海洋中的216个沉积物岩心的信号。据此推断,我们估计全球黄铁矿埋藏通量为7.0 × 1012 mol S yr - 1(灵敏度测试范围:2.5 × 1012 ~ 19.0 × 1012 mol S yr - 1),加权平均δ34S值为−4‰(范围:−8 ~ +3‰)。这一通量大大大于陆地黄铁矿氧化,表明硫循环目前不是处于稳定状态,而是由净黄铁矿埋藏和大气O2积累来描述。最后,在此模式框架内对黄铁矿δ34S的地质记录进行了解释,确定了显生宙黄铁矿埋藏的主要控制因素为水淹陆架。
{"title":"Sedimentary conditions drive modern pyrite burial flux to exceed oxidation","authors":"Cornelia Mertens, Sarah Paradis, Jordon D. Hemingway","doi":"10.1038/s41561-025-01855-5","DOIUrl":"10.1038/s41561-025-01855-5","url":null,"abstract":"Pyrite (iron sulfide) formation and burial in sediments decreases atmospheric CO2 and increases O2 levels. However, the environmental and sedimentological conditions that regulate pyrite burial remain poorly constrained. Here we investigate such controlling mechanisms using a non-dimensional diagenetic model that extracts the natural variables governing pyrite formation rate and sulfur isotopic composition (δ34S). Both properties are controlled by the local ratios of organic carbon content to sulfate concentration and organic carbon reactivity to sedimentation rate; formation rate is additionally sensitive to reactive iron delivery. Using only globally interpolated boundary conditions, our model accurately predicts signals in 216 sediment cores distributed across the modern ocean. Extrapolating this, we estimate a global pyrite burial flux of 7.0 × 1012 mol S yr−1 (sensitivity test range: 2.5 × 1012 to 19.0 × 1012 mol S yr−1) with a weighted-average δ34S value of −4‰ (range: −8 to +3‰). This flux is substantially larger than terrestrial pyrite oxidation, indicating that the sulfur cycle is currently not in steady state but is instead described by net pyrite burial and thus atmospheric O2 accumulation. Finally, we interpret the geologic pyrite δ34S record within this model framework and identify flooded shelf area as the main control on pyrite burial throughout the Phanerozoic Eon. Modern pyrite burial in seafloor sediments exceeds pyrite oxidation on land, indicating that the sulfur cycle is out of balance, and acts to increase atmospheric oxygen levels, according to a diagenetic model validated by sediment cores.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"19 1","pages":"99-105"},"PeriodicalIF":16.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41561-025-01855-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1038/s41561-025-01862-6
Casey M. S. Schine, Jens-Erik Lund Snee, Alex Lyford, Gert van Dijken, Kevin R. Arrigo
Iron is the primary limiting nutrient for phytoplankton growth, and consequently CO2 drawdown, in the Southern Ocean. A recurring phytoplankton bloom above the Australian Antarctic Ridge was recently attributed to hydrothermally sourced iron. Here we examine satellite remote-sensing estimates of net primary production, earthquake location catalogues and Lagrangian plume modelling of particle trajectories in surface ocean currents to show that interannual variability in net primary production is related to seismicity and the advective spread of downstream surface waters. By spatially decomposing the relationship between seismicity, advective spread and net primary production, we demonstrate that net primary production at the surface, above the hydrothermal vents, can be predicted by elevated seismicity in the months before the growing season. Farther from the vents, greater advective spread reduces net primary production. We hypothesize that the connection between earthquakes and net primary production is mediated by the link between seismicity and hydrothermal emissions while advective spread controls the dilution of entrained iron; however, the physical mechanism behind the rapid surfacing of hydrothermal iron is still unknown. These findings challenge prevailing views on how geophysical processes influence ocean primary production. Earthquakes influence the amount of hydrothermal iron entering the ocean over the Australian Antarctic Ridge, which can support phytoplankton blooms by relieving surface iron limitation, according to observations combined with surface particle tracking.
{"title":"Southern Ocean net primary production influenced by seismically modulated hydrothermal iron","authors":"Casey M. S. Schine, Jens-Erik Lund Snee, Alex Lyford, Gert van Dijken, Kevin R. Arrigo","doi":"10.1038/s41561-025-01862-6","DOIUrl":"10.1038/s41561-025-01862-6","url":null,"abstract":"Iron is the primary limiting nutrient for phytoplankton growth, and consequently CO2 drawdown, in the Southern Ocean. A recurring phytoplankton bloom above the Australian Antarctic Ridge was recently attributed to hydrothermally sourced iron. Here we examine satellite remote-sensing estimates of net primary production, earthquake location catalogues and Lagrangian plume modelling of particle trajectories in surface ocean currents to show that interannual variability in net primary production is related to seismicity and the advective spread of downstream surface waters. By spatially decomposing the relationship between seismicity, advective spread and net primary production, we demonstrate that net primary production at the surface, above the hydrothermal vents, can be predicted by elevated seismicity in the months before the growing season. Farther from the vents, greater advective spread reduces net primary production. We hypothesize that the connection between earthquakes and net primary production is mediated by the link between seismicity and hydrothermal emissions while advective spread controls the dilution of entrained iron; however, the physical mechanism behind the rapid surfacing of hydrothermal iron is still unknown. These findings challenge prevailing views on how geophysical processes influence ocean primary production. Earthquakes influence the amount of hydrothermal iron entering the ocean over the Australian Antarctic Ridge, which can support phytoplankton blooms by relieving surface iron limitation, according to observations combined with surface particle tracking.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"19 1","pages":"106-112"},"PeriodicalIF":16.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1038/s41561-025-01885-z
Christina M. Patricola-DiRosario, Ping Chang, R. Saravanan
{"title":"Author Correction: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño","authors":"Christina M. Patricola-DiRosario, Ping Chang, R. Saravanan","doi":"10.1038/s41561-025-01885-z","DOIUrl":"10.1038/s41561-025-01885-z","url":null,"abstract":"","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"19 1","pages":"128-128"},"PeriodicalIF":16.1,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41561-025-01885-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1038/s41561-025-01865-3
Simon L. Harley
Heat-producing elements like uranium and thorium are depleted in the lower crust. The geochemistry of crustal rocks suggests ultrahigh melting temperatures are needed to produce this depletion and may also help stabilize the crust.
{"title":"Refining the crust","authors":"Simon L. Harley","doi":"10.1038/s41561-025-01865-3","DOIUrl":"10.1038/s41561-025-01865-3","url":null,"abstract":"Heat-producing elements like uranium and thorium are depleted in the lower crust. The geochemistry of crustal rocks suggests ultrahigh melting temperatures are needed to produce this depletion and may also help stabilize the crust.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1189-1190"},"PeriodicalIF":16.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1038/s41561-025-01886-y
A belt of seaweed has formed across the tropical Atlantic nearly every year since 2011, despite reduction in its extent elsewhere. The causes of this growth are now coming into clearer focus.
{"title":"Tightening the Sargassum belt","authors":"","doi":"10.1038/s41561-025-01886-y","DOIUrl":"10.1038/s41561-025-01886-y","url":null,"abstract":"A belt of seaweed has formed across the tropical Atlantic nearly every year since 2011, despite reduction in its extent elsewhere. The causes of this growth are now coming into clearer focus.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1181-1181"},"PeriodicalIF":16.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41561-025-01886-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1038/s41561-025-01852-8
Mayra D. Manrique-Ortega, Henri N. Bernard, José Luis Ruvalcaba Sil
Jadeite is a green jade mineral that forms in unique geological environments. Mayra Manrique-Ortega and colleagues explain its archaeological importance for pre-Columbian Mesoamerican civilizations.
{"title":"Mesoamerican beliefs sculpted in jadeite","authors":"Mayra D. Manrique-Ortega, Henri N. Bernard, José Luis Ruvalcaba Sil","doi":"10.1038/s41561-025-01852-8","DOIUrl":"10.1038/s41561-025-01852-8","url":null,"abstract":"Jadeite is a green jade mineral that forms in unique geological environments. Mayra Manrique-Ortega and colleagues explain its archaeological importance for pre-Columbian Mesoamerican civilizations.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1193-1193"},"PeriodicalIF":16.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1038/s41561-025-01871-5
David M. Baker, Mengqiu Wang
Our oceans are changing rapidly, with climate-driven shifts in circulation and nutrient cycles reshaping marine ecosystems in profound ways. One of the most visible and disruptive outcomes is the explosive growth of Sargassum — a floating brown alga that has, since 2011, formed vast rafts stretching thousands of kilometres across the Atlantic Ocean. Once largely confined to the Sargasso Sea, where it provides habitat for fish, turtles, and eels, Sargassum now inundates coastlines from West Africa to the Caribbean Islands and Florida. In a new report in Nature Geoscience, Jung et al.1 have identified the source of nutrients fueling Sargassum blooms, which are increasing as a result of climate change.
{"title":"Climate change fuels the Great Atlantic Sargassum Belt","authors":"David M. Baker, Mengqiu Wang","doi":"10.1038/s41561-025-01871-5","DOIUrl":"10.1038/s41561-025-01871-5","url":null,"abstract":"Our oceans are changing rapidly, with climate-driven shifts in circulation and nutrient cycles reshaping marine ecosystems in profound ways. One of the most visible and disruptive outcomes is the explosive growth of Sargassum — a floating brown alga that has, since 2011, formed vast rafts stretching thousands of kilometres across the Atlantic Ocean. Once largely confined to the Sargasso Sea, where it provides habitat for fish, turtles, and eels, Sargassum now inundates coastlines from West Africa to the Caribbean Islands and Florida. In a new report in Nature Geoscience, Jung et al.1 have identified the source of nutrients fueling Sargassum blooms, which are increasing as a result of climate change.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1185-1186"},"PeriodicalIF":16.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1038/s41561-025-01846-6
Ronald Amundson, Jonathan Sanderman, Kyungsoo Yoo, Maedeh Chitsaz, Anna Abramova, Katerina Georgiou
The radiocarbon content of soil organic carbon (C) is assumed to reflect the carbon’s biological reactivity. Large soil radiocarbon ages are interpreted to mean that the C will have a slow response to environmental perturbations such as the effects of warming on the soil microbial C decomposition rate. Here we show that downward advective transport of soil C is an important process affecting soil C ages, leading to an inevitable increase in radiocarbon age with depth even if the decomposition rates remain constant. Thus, the increasing radiocarbon ages of C with depth do not directly imply a corresponding decrease in C reactivity as a function of depth. On the basis of theory and an independent assessment of soil C decomposition rates, the radiocarbon profiles (and content for a given depth) were calculated for over 3,000 soils in the USA and were compared to observational results based on measured soil radiocarbon. The first-order coherence between the two entirely differing approaches suggests the fundamental importance of transport and the implication that the soil C decomposition rate constant may be relatively invariant with depth. These insights may serve to reduce biases in Earth system models that presently do not match the observed depth patterns in soil C or its radiocarbon content. A reassessment of soil radiocarbon profiles, which shows a strong influence of vertical transport processes, suggests that soil organic carbon is similarly responsive to environmental changes regardless of depth.
{"title":"Neglecting vertical transport leads to underestimated soil carbon dynamics","authors":"Ronald Amundson, Jonathan Sanderman, Kyungsoo Yoo, Maedeh Chitsaz, Anna Abramova, Katerina Georgiou","doi":"10.1038/s41561-025-01846-6","DOIUrl":"10.1038/s41561-025-01846-6","url":null,"abstract":"The radiocarbon content of soil organic carbon (C) is assumed to reflect the carbon’s biological reactivity. Large soil radiocarbon ages are interpreted to mean that the C will have a slow response to environmental perturbations such as the effects of warming on the soil microbial C decomposition rate. Here we show that downward advective transport of soil C is an important process affecting soil C ages, leading to an inevitable increase in radiocarbon age with depth even if the decomposition rates remain constant. Thus, the increasing radiocarbon ages of C with depth do not directly imply a corresponding decrease in C reactivity as a function of depth. On the basis of theory and an independent assessment of soil C decomposition rates, the radiocarbon profiles (and content for a given depth) were calculated for over 3,000 soils in the USA and were compared to observational results based on measured soil radiocarbon. The first-order coherence between the two entirely differing approaches suggests the fundamental importance of transport and the implication that the soil C decomposition rate constant may be relatively invariant with depth. These insights may serve to reduce biases in Earth system models that presently do not match the observed depth patterns in soil C or its radiocarbon content. A reassessment of soil radiocarbon profiles, which shows a strong influence of vertical transport processes, suggests that soil organic carbon is similarly responsive to environmental changes regardless of depth.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1239-1244"},"PeriodicalIF":16.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-05DOI: 10.1038/s41561-025-01895-x
Naomi Ochwat, Ted Scambos, Robert S. Anderson, J. Paul Winberry, Adrian Luckman, Etienne Berthier, Maud Bernat, Yulia K. Antropova
{"title":"Publisher Correction: Record grounded glacier retreat caused by an ice plain calving process","authors":"Naomi Ochwat, Ted Scambos, Robert S. Anderson, J. Paul Winberry, Adrian Luckman, Etienne Berthier, Maud Bernat, Yulia K. Antropova","doi":"10.1038/s41561-025-01895-x","DOIUrl":"10.1038/s41561-025-01895-x","url":null,"abstract":"","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"19 1","pages":"128-128"},"PeriodicalIF":16.1,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41561-025-01895-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-04DOI: 10.1038/s41561-025-01867-1
Joanne S. Boden, Chadlin M. Ostrander, Eva E. Stüeken
The Great Oxidation Event across the Archaean–Proterozoic transition was one of the most transformative environmental changes in Earth history. However, uncertainties remain about when and where it began. Here we synthesize the phylogenetic record of cyanobacteria and geochemical records of nitrogen and thallium isotopes and find converging evidence for oxygenated bottom waters on marine shelves in the Neoarchaean about 200 million years before the Great Oxidation Event. The O2 was produced by benthic microbial mats, the dominant morphotypes of cyanobacteria at that time. Conditions were sufficiently oxidizing to stabilize nitrate and manganese oxides in sediments. Box modelling shows that micromolar levels of dissolved O2 were attainable in this scenario under plausible Archaean conditions. The rise of O2 was initiated on marine mud according to our synthesis. Productive Neoarchaean shelves may have been more oxidizing at the bottom than the top, consistent with the ‘upside down’ Archaean biosphere hypothesis. The oxygenation of Earth’s atmosphere ~2.45–2.30 billion years ago may have initiated in the oxidized bottom waters of marine shelves, according to a synthesis of thallium and nitrogen isotopes and cyanobacteria phylogenetic records.
{"title":"The rise of free oxygen may have initiated on marine mud","authors":"Joanne S. Boden, Chadlin M. Ostrander, Eva E. Stüeken","doi":"10.1038/s41561-025-01867-1","DOIUrl":"10.1038/s41561-025-01867-1","url":null,"abstract":"The Great Oxidation Event across the Archaean–Proterozoic transition was one of the most transformative environmental changes in Earth history. However, uncertainties remain about when and where it began. Here we synthesize the phylogenetic record of cyanobacteria and geochemical records of nitrogen and thallium isotopes and find converging evidence for oxygenated bottom waters on marine shelves in the Neoarchaean about 200 million years before the Great Oxidation Event. The O2 was produced by benthic microbial mats, the dominant morphotypes of cyanobacteria at that time. Conditions were sufficiently oxidizing to stabilize nitrate and manganese oxides in sediments. Box modelling shows that micromolar levels of dissolved O2 were attainable in this scenario under plausible Archaean conditions. The rise of O2 was initiated on marine mud according to our synthesis. Productive Neoarchaean shelves may have been more oxidizing at the bottom than the top, consistent with the ‘upside down’ Archaean biosphere hypothesis. The oxygenation of Earth’s atmosphere ~2.45–2.30 billion years ago may have initiated in the oxidized bottom waters of marine shelves, according to a synthesis of thallium and nitrogen isotopes and cyanobacteria phylogenetic records.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 12","pages":"1202-1208"},"PeriodicalIF":16.1,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}