Pub Date : 2024-11-07DOI: 10.1038/s41561-024-01565-4
Liang Zhang, David I. Groves
Gold has both economic and cultural significance to human societies but, as Liang Zhang and David Groves explain, we owe its presence in the Earth’s crust to repeating cycles of plate tectonics.
{"title":"Tectonics’ bounty of gold","authors":"Liang Zhang, David I. Groves","doi":"10.1038/s41561-024-01565-4","DOIUrl":"10.1038/s41561-024-01565-4","url":null,"abstract":"Gold has both economic and cultural significance to human societies but, as Liang Zhang and David Groves explain, we owe its presence in the Earth’s crust to repeating cycles of plate tectonics.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1074-1074"},"PeriodicalIF":15.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s41561-024-01591-2
Geologists are seeking new critical mineral resources that are needed to support the world’s transition to net-zero carbon emissions.
地质学家们正在寻找新的关键矿产资源,以支持世界向碳净零排放过渡。
{"title":"Minerals power the green transition","authors":"","doi":"10.1038/s41561-024-01591-2","DOIUrl":"10.1038/s41561-024-01591-2","url":null,"abstract":"Geologists are seeking new critical mineral resources that are needed to support the world’s transition to net-zero carbon emissions.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1067-1067"},"PeriodicalIF":15.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01591-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1038/s41561-024-01573-4
Jeppe Å. Kristensen, Laura Barbero-Palacios, Isabel C. Barrio, Ida B. D. Jacobsen, Jeffrey T. Kerby, Efrén López-Blanco, Yadvinder Malhi, Mathilde Le Moullec, Carsten W. Mueller, Eric Post, Katrine Raundrup, Marc Macias-Fauria
Planting trees has become a popular solution for climate change mitigation, owing to the ability of trees to accumulate carbon in biomass and thereby reduce anthropogenic atmospheric CO2 enrichment. As conditions for tree growth expand with global warming, tree-planting projects have been introduced in regions of the highest northern latitudes. However, several lines of evidence suggest that high-latitude tree planting is counterproductive to climate change mitigation. In northern boreal and Arctic regions, tree planting results in net warming due to increased surface darkness (decreased albedo), which counteracts potential mitigation effects from carbon storage in areas where biomass is limited and of low resilience. Furthermore, tree planting disturbs pools of soil carbon, which store most of the carbon in cold ecosystems, and has negative effects on native Arctic biota and livelihoods. Despite the immediate economic prospects that northern tree planting may represent, this approach does not constitute a valid climate-warming-mitigation strategy in either the Arctic or most of the boreal forest region. This has been known for decades, but as policies that incentivize tree planting are increasingly adopted across the high-latitude region, we warn against a narrow focus on biomass carbon storage. Instead, we call for a systems-oriented consideration of climate solutions that are rooted in an understanding of the whole suite of relevant Earth system processes that affect the radiative balance. This is crucial to avoid the implementation of ineffective or even counterproductive climate-warming mitigation strategies in the Arctic and boreal regions. Planting trees in high-latitude regions can be counterproductive to climate change mitigation, according to a synthesis of the biophysical and ecological impacts of planting trees.
{"title":"Tree planting is no climate solution at northern high latitudes","authors":"Jeppe Å. Kristensen, Laura Barbero-Palacios, Isabel C. Barrio, Ida B. D. Jacobsen, Jeffrey T. Kerby, Efrén López-Blanco, Yadvinder Malhi, Mathilde Le Moullec, Carsten W. Mueller, Eric Post, Katrine Raundrup, Marc Macias-Fauria","doi":"10.1038/s41561-024-01573-4","DOIUrl":"10.1038/s41561-024-01573-4","url":null,"abstract":"Planting trees has become a popular solution for climate change mitigation, owing to the ability of trees to accumulate carbon in biomass and thereby reduce anthropogenic atmospheric CO2 enrichment. As conditions for tree growth expand with global warming, tree-planting projects have been introduced in regions of the highest northern latitudes. However, several lines of evidence suggest that high-latitude tree planting is counterproductive to climate change mitigation. In northern boreal and Arctic regions, tree planting results in net warming due to increased surface darkness (decreased albedo), which counteracts potential mitigation effects from carbon storage in areas where biomass is limited and of low resilience. Furthermore, tree planting disturbs pools of soil carbon, which store most of the carbon in cold ecosystems, and has negative effects on native Arctic biota and livelihoods. Despite the immediate economic prospects that northern tree planting may represent, this approach does not constitute a valid climate-warming-mitigation strategy in either the Arctic or most of the boreal forest region. This has been known for decades, but as policies that incentivize tree planting are increasingly adopted across the high-latitude region, we warn against a narrow focus on biomass carbon storage. Instead, we call for a systems-oriented consideration of climate solutions that are rooted in an understanding of the whole suite of relevant Earth system processes that affect the radiative balance. This is crucial to avoid the implementation of ineffective or even counterproductive climate-warming mitigation strategies in the Arctic and boreal regions. Planting trees in high-latitude regions can be counterproductive to climate change mitigation, according to a synthesis of the biophysical and ecological impacts of planting trees.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1087-1092"},"PeriodicalIF":15.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41561-024-01589-w
Field measurements and computer simulations show how fishing methods that drag weighted nets along the seabed counteract the seafloor sediments’ role as a carbon sink. The effect is ambiguous in weakly trawled areas but becomes clear in intensely trawled grounds.
{"title":"Chronic intense bottom trawling reduces marine carbon sequestration","authors":"","doi":"10.1038/s41561-024-01589-w","DOIUrl":"10.1038/s41561-024-01589-w","url":null,"abstract":"Field measurements and computer simulations show how fishing methods that drag weighted nets along the seabed counteract the seafloor sediments’ role as a carbon sink. The effect is ambiguous in weakly trawled areas but becomes clear in intensely trawled grounds.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 12","pages":"1200-1201"},"PeriodicalIF":15.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1038/s41561-024-01583-2
Kaihang Zhang, Weilei Lei, Huixin Zhang, Chenchao Xu, Jing Xiao, Shuyao Li, Maojun Liang, Junpan He, Yancen Lai, Ruiyang Li, Jiahua Dong, Mingkai Jiang, Jianguo Zhu, Shuijin Hu, Roger T. Koide, Mary K. Firestone, Lei Cheng
Autotrophic nitrifiers, by catalysing the oxidation of ammonia to nitrate, play a vital role in the global nitrogen cycle. They convert carbon dioxide (CO2) into biomass and, therefore, are expected to respond positively to increasing atmospheric CO2 concentrations. However, in a long-term free-air CO2 enrichment experiment, we demonstrated that elevated atmospheric CO2 inhibited the growth of autotrophic nitrifiers, resulting in a reduction in nitrification in a rice ecosystem. By coupling stable-isotope probing with metagenomics, we found that the CO2 inhibition of nitrifiers was mainly a consequence of CO2-induced functional loss (genomes not recovered from metagenomes) of dominant but previously uncharacterized autotrophic nitrifying species. These species belonged mainly to ammonia-oxidizing archaea and nitrite-oxidizing bacteria and comprised 63% of total dominant members identified from the active nitrifying communities. We further showed that the functional loss of these novel nitrifying species under elevated CO2 was due largely to the CO2-induced aggravation of anoxic stress in the paddy soil. Our results provide insight into the fate of inorganic nitrogen pools in global lowland soil and water systems under climate change. The growth and function of autotrophic nitrifiers are suppressed under elevated CO2 due to the intensification of anoxic stress, according to a long-term free-air CO2 enrichment experiment in nitrogen-rich paddy soil.
{"title":"Inhibition of autotrophic nitrifiers in a nitrogen-rich paddy soil by elevated CO2","authors":"Kaihang Zhang, Weilei Lei, Huixin Zhang, Chenchao Xu, Jing Xiao, Shuyao Li, Maojun Liang, Junpan He, Yancen Lai, Ruiyang Li, Jiahua Dong, Mingkai Jiang, Jianguo Zhu, Shuijin Hu, Roger T. Koide, Mary K. Firestone, Lei Cheng","doi":"10.1038/s41561-024-01583-2","DOIUrl":"10.1038/s41561-024-01583-2","url":null,"abstract":"Autotrophic nitrifiers, by catalysing the oxidation of ammonia to nitrate, play a vital role in the global nitrogen cycle. They convert carbon dioxide (CO2) into biomass and, therefore, are expected to respond positively to increasing atmospheric CO2 concentrations. However, in a long-term free-air CO2 enrichment experiment, we demonstrated that elevated atmospheric CO2 inhibited the growth of autotrophic nitrifiers, resulting in a reduction in nitrification in a rice ecosystem. By coupling stable-isotope probing with metagenomics, we found that the CO2 inhibition of nitrifiers was mainly a consequence of CO2-induced functional loss (genomes not recovered from metagenomes) of dominant but previously uncharacterized autotrophic nitrifying species. These species belonged mainly to ammonia-oxidizing archaea and nitrite-oxidizing bacteria and comprised 63% of total dominant members identified from the active nitrifying communities. We further showed that the functional loss of these novel nitrifying species under elevated CO2 was due largely to the CO2-induced aggravation of anoxic stress in the paddy soil. Our results provide insight into the fate of inorganic nitrogen pools in global lowland soil and water systems under climate change. The growth and function of autotrophic nitrifiers are suppressed under elevated CO2 due to the intensification of anoxic stress, according to a long-term free-air CO2 enrichment experiment in nitrogen-rich paddy soil.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 12","pages":"1254-1260"},"PeriodicalIF":15.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1038/s41561-024-01575-2
Thomas N. Lamont, Matthew A. Loader, Nick M. W. Roberts, Frances J. Cooper, Jamie J. Wilkinson, Dan Bevan, Adam Gorecki, Anthony Kemp, Tim Elliott, Nicholas J. Gardiner, Simon Tapster
The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.
关于汇聚板块边界沿线斑岩型铜矿床的形成,普遍的看法是,从俯冲带上方的地幔楔中提取的含金属的幼生岩浆在地壳深部分异。然而,许多主要斑岩区都是在地幔楔减弱或消失的平板俯冲时期形成的,因此成矿岩浆的来源并不清楚。亚利桑那州晚白垩世-古新世拉里酰胺斑岩区形成于北美洲下方法拉隆板块的平底俯冲时期,我们在这里利用地质年代学和热压测量法研究了该斑岩区形成过程中的地壳深部过程。我们的研究表明,拉拉尼花岗岩的同位素特征与新生代地壳源一致,该地壳源可能富含铜。这一来源在 73-60 Ma 之间经历了水流熔融,与花岗岩岩浆活动(78-50 Ma)、斑岩成因(73-56 Ma)和平板俯冲(70-40 Ma)的高峰期相吻合。为了解释拉里酰胺斑岩省的形成,我们提出,来自法拉隆平板块前缘的挥发物促进了黑云母和长英质预富集下地壳的熔融,而不需要来自地幔楔的大量岩浆或金属输入。其他具有平板制度的汇聚板块边界也可能经历类似的挥发物介导的下地壳熔化机制。
{"title":"Porphyry copper formation driven by water-fluxed crustal melting during flat-slab subduction","authors":"Thomas N. Lamont, Matthew A. Loader, Nick M. W. Roberts, Frances J. Cooper, Jamie J. Wilkinson, Dan Bevan, Adam Gorecki, Anthony Kemp, Tim Elliott, Nicholas J. Gardiner, Simon Tapster","doi":"10.1038/s41561-024-01575-2","DOIUrl":"10.1038/s41561-024-01575-2","url":null,"abstract":"The prevailing view of the formation of porphyry copper deposits along convergent plate boundaries involves deep crustal differentiation of metal-bearing juvenile magmas derived from the mantle wedge above a subduction zone. However, many major porphyry districts formed during periods of flat-slab subduction when the mantle wedge would have been reduced or absent, leaving the source of the ore-forming magmas unclear. Here we use geochronology and thermobarometry to investigate deep crustal processes during the genesis of the Late Cretaceous–Palaeocene Laramide Porphyry Province in Arizona, which formed during flat-slab subduction of the Farallon Plate beneath North America. We show that the isotopic signatures of Laramide granitic rocks are consistent with a Proterozoic crustal source that was potentially pre-enriched in copper. This source underwent water-fluxed melting between 73 and 60 Ma, coincident with the peak of granitic magmatism (78–50 Ma), porphyry genesis (73–56 Ma) and flat-slab subduction (70–40 Ma). To explain the formation of the Laramide Porphyry Province, we propose that volatiles derived from the leading edge of the Farallon flat slab promoted melting of both mafic and felsic pre-enriched lower crust, without requiring extensive magmatic or metallogenic input from the mantle wedge. Other convergent plate boundaries with flat-slab regimes may undergo a similar mechanism of volatile-mediated lower-crustal melting. Laramide flat-slab subduction releases fluids into the overlying crust that mediate water-fluxed melting of precursor arc lower crust, ultimately forming porphyry copper deposits, according to a geochronology and thermobarometry study.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 12","pages":"1306-1315"},"PeriodicalIF":15.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01575-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41561-024-01566-3
Shan Ye, Jiuyuan Wang, Quanyou Liu, Lidya G. Tarhan
Quantitative bibliometric analysis of articles published in Nature Index journals over the past two decades reveals that there is less international collaboration in geoscience than in other natural science disciplines.
{"title":"International collaboration in geoscience lags behind other scientific disciplines","authors":"Shan Ye, Jiuyuan Wang, Quanyou Liu, Lidya G. Tarhan","doi":"10.1038/s41561-024-01566-3","DOIUrl":"10.1038/s41561-024-01566-3","url":null,"abstract":"Quantitative bibliometric analysis of articles published in Nature Index journals over the past two decades reveals that there is less international collaboration in geoscience than in other natural science disciplines.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1068-1071"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1038/s41561-024-01578-z
T. K. Akabane, C. M. Chiessi, M. Hirota, I. Bouimetarhan, M. Prange, S. Mulitza, D. J. Bertassoli Jr, C. Häggi, A. Staal, G. Lohmann, N. Boers, A. L. Daniau, R. S. Oliveira, M. C. Campos, X. Shi, P. E. De Oliveira
The Atlantic meridional overturning circulation (AMOC) and the Amazon forest are viewed as connected tipping elements in a warming climate system. If global warming exceeds a critical threshold, the AMOC may slow down substantially, changing atmospheric circulation and leading to Amazonia becoming drier in the north and wetter in the south. Yet, the impact of an AMOC slowdown on Amazon vegetation is still not well constrained. Here we use pollen and microcharcoal data from a marine sediment core to assess changes in Amazon vegetation from 25,000 to 12,500 years ago. Additionally, we model vegetation responses to an AMOC slowdown under both glacial and pre-industrial conditions. During a past AMOC slowdown (Heinrich Stadial 1–18,000 to 14,800 years ago), pollen data evidence a decline in cold- and moist-affinity elements, coupled with a rise in seasonal tropical vegetation. This pattern is consistent with the decline in suitability of northern Amazon moist forests in a model with an imposed 50% AMOC weakening under glacial conditions. Our modelling results suggest similar changes for a comparable AMOC slowdown under pre-industrial conditions. Combined with current disturbances such as deforestation and wildfires elsewhere in the basin, an AMOC slowdown may exert a systemic impact on the Amazon forest. A slower Atlantic meridional overturning circulation during Heinrich Stadial 1 led to the spread of seasonal tropical vegetation in northern Amazonia, a pattern that may repeat in a warming climate, according to proxy records combined with modelling.
{"title":"Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests","authors":"T. K. Akabane, C. M. Chiessi, M. Hirota, I. Bouimetarhan, M. Prange, S. Mulitza, D. J. Bertassoli Jr, C. Häggi, A. Staal, G. Lohmann, N. Boers, A. L. Daniau, R. S. Oliveira, M. C. Campos, X. Shi, P. E. De Oliveira","doi":"10.1038/s41561-024-01578-z","DOIUrl":"10.1038/s41561-024-01578-z","url":null,"abstract":"The Atlantic meridional overturning circulation (AMOC) and the Amazon forest are viewed as connected tipping elements in a warming climate system. If global warming exceeds a critical threshold, the AMOC may slow down substantially, changing atmospheric circulation and leading to Amazonia becoming drier in the north and wetter in the south. Yet, the impact of an AMOC slowdown on Amazon vegetation is still not well constrained. Here we use pollen and microcharcoal data from a marine sediment core to assess changes in Amazon vegetation from 25,000 to 12,500 years ago. Additionally, we model vegetation responses to an AMOC slowdown under both glacial and pre-industrial conditions. During a past AMOC slowdown (Heinrich Stadial 1–18,000 to 14,800 years ago), pollen data evidence a decline in cold- and moist-affinity elements, coupled with a rise in seasonal tropical vegetation. This pattern is consistent with the decline in suitability of northern Amazon moist forests in a model with an imposed 50% AMOC weakening under glacial conditions. Our modelling results suggest similar changes for a comparable AMOC slowdown under pre-industrial conditions. Combined with current disturbances such as deforestation and wildfires elsewhere in the basin, an AMOC slowdown may exert a systemic impact on the Amazon forest. A slower Atlantic meridional overturning circulation during Heinrich Stadial 1 led to the spread of seasonal tropical vegetation in northern Amazonia, a pattern that may repeat in a warming climate, according to proxy records combined with modelling.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 12","pages":"1284-1290"},"PeriodicalIF":15.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s41561-024-01569-0
Zhanmang Liao, Chao Yue, Binbin He, Kaiguang Zhao, Philippe Ciais, Ramdane Alkama, Giacomo Grassi, Stephen Sitch, Rui Chen, Xingwen Quan, Mengyang Xu, Mengyu Wang
The Paris Agreement mandates that signatory countries enhance the transparency of their national greenhouse gas inventories. China’s inventories have reported substantial forest carbon gains using ground-based forest plot measurements, but independent satellite-based support for such inventories is lacking and the contributions from human management and anthropogenic environmental changes (atmospheric CO2 growth, climate change and nitrogen deposition) are unknown. Here we use remote sensing and vegetation modelling to investigate the changes in woody biomass carbon and their drivers across China from 2001 to 2020. Our results show a forest cover increase of 6.2% (59.2 Mha) over this period and a woody biomass carbon sink of 208.6 ± 51.8 TgC yr−1, consistent with the national inventories. The conservation of forest and woodland areas made an unexpectedly large contribution (59.2%) to the observed sink, with an additional 29.4% from anthropogenic expansion. Of these management-driven sinks, 53.7% (99.2 TgC yr−1) is attributed to a direct management effect and the remaining 46.3% to the effects of environmental changes. China’s ecological restoration projects contributed 73.5% of the direct management effect. Our study provides satellite-based evidence to support China’s inventories and underscores the crucial role of human management in the nation’s woody carbon balance. Growing biomass carbon stock in China between 2001 and 2020 is driven by conservation and anthropogenic expansion of woodland.
{"title":"Growing biomass carbon stock in China driven by expansion and conservation of woody areas","authors":"Zhanmang Liao, Chao Yue, Binbin He, Kaiguang Zhao, Philippe Ciais, Ramdane Alkama, Giacomo Grassi, Stephen Sitch, Rui Chen, Xingwen Quan, Mengyang Xu, Mengyu Wang","doi":"10.1038/s41561-024-01569-0","DOIUrl":"10.1038/s41561-024-01569-0","url":null,"abstract":"The Paris Agreement mandates that signatory countries enhance the transparency of their national greenhouse gas inventories. China’s inventories have reported substantial forest carbon gains using ground-based forest plot measurements, but independent satellite-based support for such inventories is lacking and the contributions from human management and anthropogenic environmental changes (atmospheric CO2 growth, climate change and nitrogen deposition) are unknown. Here we use remote sensing and vegetation modelling to investigate the changes in woody biomass carbon and their drivers across China from 2001 to 2020. Our results show a forest cover increase of 6.2% (59.2 Mha) over this period and a woody biomass carbon sink of 208.6 ± 51.8 TgC yr−1, consistent with the national inventories. The conservation of forest and woodland areas made an unexpectedly large contribution (59.2%) to the observed sink, with an additional 29.4% from anthropogenic expansion. Of these management-driven sinks, 53.7% (99.2 TgC yr−1) is attributed to a direct management effect and the remaining 46.3% to the effects of environmental changes. China’s ecological restoration projects contributed 73.5% of the direct management effect. Our study provides satellite-based evidence to support China’s inventories and underscores the crucial role of human management in the nation’s woody carbon balance. Growing biomass carbon stock in China between 2001 and 2020 is driven by conservation and anthropogenic expansion of woodland.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1127-1134"},"PeriodicalIF":15.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s41561-024-01574-3
Benjamin A. Black, Leif Karlstrom, Benjamin J. W. Mills, Tamsin A. Mather, Maxwell L. Rudolph, Jack Longman, Andrew Merdith
Large igneous provinces erupt highly reactive, predominantly basaltic lavas onto Earth’s surface, which should boost the weathering flux leading to long-term CO2 drawdown and cooling following cessation of volcanism. However, throughout Earth’s geological history, the aftermaths of multiple Phanerozoic large igneous provinces are marked by unexpectedly protracted climatic warming and delayed biotic recovery lasting millions of years beyond the most voluminous phases of extrusive volcanism. Here we conduct geodynamic modelling of mantle melting and thermomechanical modelling of magma transport to show that rheologic feedbacks in the crust can throttle eruption rates despite continued melt generation and CO2 supply. Our results demonstrate how the mantle-derived flux of CO2 to the atmosphere during large igneous provinces can decouple from rates of surface volcanism, representing an important flux driving long-term climate. Climate–biogeochemical modelling spanning intervals with temporally calibrated palaeoclimate data further shows how accounting for this non-eruptive cryptic CO2 can help reconcile the life cycle of large igneous provinces with climate disruption and recovery during the Permian–Triassic, Mid-Miocene and other critical moments in Earth’s climate history. These findings underscore the key role that outgassing from intrusive magmas plays in modulating our planet’s surface environment. Cryptic degassing, whereby mantle-derived CO2 fluxes continue after surface eruptions slow, can explain prolonged warming that followed some large igneous province events, according to geodynamic and climate modelling.
{"title":"Cryptic degassing and protracted greenhouse climates after flood basalt events","authors":"Benjamin A. Black, Leif Karlstrom, Benjamin J. W. Mills, Tamsin A. Mather, Maxwell L. Rudolph, Jack Longman, Andrew Merdith","doi":"10.1038/s41561-024-01574-3","DOIUrl":"10.1038/s41561-024-01574-3","url":null,"abstract":"Large igneous provinces erupt highly reactive, predominantly basaltic lavas onto Earth’s surface, which should boost the weathering flux leading to long-term CO2 drawdown and cooling following cessation of volcanism. However, throughout Earth’s geological history, the aftermaths of multiple Phanerozoic large igneous provinces are marked by unexpectedly protracted climatic warming and delayed biotic recovery lasting millions of years beyond the most voluminous phases of extrusive volcanism. Here we conduct geodynamic modelling of mantle melting and thermomechanical modelling of magma transport to show that rheologic feedbacks in the crust can throttle eruption rates despite continued melt generation and CO2 supply. Our results demonstrate how the mantle-derived flux of CO2 to the atmosphere during large igneous provinces can decouple from rates of surface volcanism, representing an important flux driving long-term climate. Climate–biogeochemical modelling spanning intervals with temporally calibrated palaeoclimate data further shows how accounting for this non-eruptive cryptic CO2 can help reconcile the life cycle of large igneous provinces with climate disruption and recovery during the Permian–Triassic, Mid-Miocene and other critical moments in Earth’s climate history. These findings underscore the key role that outgassing from intrusive magmas plays in modulating our planet’s surface environment. Cryptic degassing, whereby mantle-derived CO2 fluxes continue after surface eruptions slow, can explain prolonged warming that followed some large igneous province events, according to geodynamic and climate modelling.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 11","pages":"1162-1168"},"PeriodicalIF":15.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01574-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}