首页 > 最新文献

Nature Materials最新文献

英文 中文
Tunable spin–orbit physics in van der Waals heterostructures 范德华异质结构中的可调谐自旋轨道物理学
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1038/s41563-024-02018-4
Mikhail I. Katsnelson
Twist-angle control of spin–charge interconversion in a graphene/WSe2 heterostructure is demonstrated.
演示了石墨烯/WSe2 异质结构中自旋电荷互转的扭角控制。
{"title":"Tunable spin–orbit physics in van der Waals heterostructures","authors":"Mikhail I. Katsnelson","doi":"10.1038/s41563-024-02018-4","DOIUrl":"10.1038/s41563-024-02018-4","url":null,"abstract":"Twist-angle control of spin–charge interconversion in a graphene/WSe2 heterostructure is demonstrated.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1463-1464"},"PeriodicalIF":37.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses 发育中的小鼠肾脏中肾小球形成龛位的干扰会产生周期性机械应力
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1038/s41563-024-02019-3
Louis S. Prahl, Jiageng Liu, John M. Viola, Aria Zheyuan Huang, Trevor J. Chan, Gabriela Hayward-Lara, Catherine M. Porter, Chenjun Shi, Jitao Zhang, Alex J. Hughes
Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These ‘tip domain’ niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain ‘ages’ relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues. Geometric packing of tubules in the developing kidney urinary collecting system leads to tissue stiffening and rhythmic mechanical stresses local to nephron-forming niches that synchronize with tubule branching.
肾脏胚胎发育过程中,输尿管芽上皮细胞分支形成集尿小管。每个输尿管芽的分支顶端都有一个由肾脏祖细胞组成的游动间质龛。随着发育时间的推移,这些 "顶端域 "壁龛会更紧密地聚集在一起,它们的数量与出生时肾小球的禀赋有关。然而,拥挤的组织环境如何影响壁龛数量和细胞决策仍不清楚。在这里,通过实验和数学建模,我们证明了肾小球龛包装符合肾脏曲率所施加的物理限制。我们将包装几何形状与刚度理论联系起来,预测了小鼠胚胎第 15 天开始的僵化转变,并通过微机械分析进行了验证。我们使用一种方法来估算顶端结构域相对于其最近分支事件的 "年龄",结果发现新的壁龛在分支并取代邻近壁龛时会克服机械阻力。这就在龛中产生了有节奏的机械应力。这些发现拓展了我们对肾脏发育的理解,并为合成再生组织的工程策略提供了信息。
{"title":"Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses","authors":"Louis S. Prahl, Jiageng Liu, John M. Viola, Aria Zheyuan Huang, Trevor J. Chan, Gabriela Hayward-Lara, Catherine M. Porter, Chenjun Shi, Jitao Zhang, Alex J. Hughes","doi":"10.1038/s41563-024-02019-3","DOIUrl":"10.1038/s41563-024-02019-3","url":null,"abstract":"Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These ‘tip domain’ niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain ‘ages’ relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues. Geometric packing of tubules in the developing kidney urinary collecting system leads to tissue stiffening and rhythmic mechanical stresses local to nephron-forming niches that synchronize with tubule branching.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1582-1591"},"PeriodicalIF":37.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Helical peptide structure improves conductivity and stability of solid electrolytes 出版商更正:螺旋肽结构提高了固体电解质的导电性和稳定性
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-07 DOI: 10.1038/s41563-024-02040-6
Yingying Chen, Tianrui Xue, Chen Chen, Seongon Jang, Paul V. Braun, Jianjun Cheng, Christopher M. Evans

Correction to: Nature Materials https://doi.org/10.1038/s41563-024-01966-1, published online 6 August 2024.

更正为自然材料 https://doi.org/10.1038/s41563-024-01966-1,2024 年 8 月 6 日在线发表。
{"title":"Publisher Correction: Helical peptide structure improves conductivity and stability of solid electrolytes","authors":"Yingying Chen, Tianrui Xue, Chen Chen, Seongon Jang, Paul V. Braun, Jianjun Cheng, Christopher M. Evans","doi":"10.1038/s41563-024-02040-6","DOIUrl":"https://doi.org/10.1038/s41563-024-02040-6","url":null,"abstract":"<p>Correction to: <i>Nature Materials</i> https://doi.org/10.1038/s41563-024-01966-1, published online 6 August 2024.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"12 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction-driven restructuring of defective PtSe2 into ultrastable catalyst for the oxygen reduction reaction 反应驱动缺陷硒化铂重组为超稳定氧还原反应催化剂
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-07 DOI: 10.1038/s41563-024-02020-w
Wenhan Niu, Srimanta Pakhira, Guangming Cheng, Fang Zhao, Nan Yao, Jose L. Mendoza-Cortes, Bruce E. Koel

PtM (M = S, Se, Te) dichalcogenides are promising two-dimensional materials for electronics, optoelectronics and gas sensors due to their high air stability, tunable bandgap and high carrier mobility. However, their potential as electrocatalysts for the oxygen reduction reaction (ORR) is often underestimated due to their semiconducting properties and limited surface area from van der Waals stacking. Here we show an approach for synthesizing a highly efficient and stable ORR catalyst by restructuring defective platinum diselenide (DEF-PtSe2) through electrochemical cycling in an O2-saturated electrolyte. After 42,000 cycles, DEF-PtSe2 exhibited 1.3 times higher specific activity and 2.6 times higher mass activity compared with a commercial Pt/C electrocatalyst. Even after 126,000 cycles, it maintained superior ORR performance with minimal decay. Quantum mechanical calculations using hybrid density functional theory reveal that the improved performance is due to the synergistic contributions from Pt nanoparticles and the apical active sites on the DEF-PtSe2 surface. This work highlights the potential of DEF-PtSe2 as a durable electrocatalyst for ORR, offering insights into PtM dichalcogenide electrochemistry and the design of advanced catalysts.

PtM(M = S、Se、Te)二卤化物具有高空气稳定性、可调带隙和高载流子迁移率,是电子、光电和气体传感器领域前景广阔的二维材料。然而,由于其半导体特性和范德华堆叠产生的有限表面积,它们作为氧还原反应(ORR)电催化剂的潜力往往被低估。在这里,我们展示了一种通过在氧气饱和的电解质中进行电化学循环,重组有缺陷的二硒化铂(DEF-PtSe2),从而合成高效稳定的 ORR 催化剂的方法。与商用 Pt/C 电催化剂相比,经过 42,000 次循环后,DEF-PtSe2 的比活性提高了 1.3 倍,质量活性提高了 2.6 倍。即使在 126,000 次循环后,DEF-PtSe2 仍能保持卓越的 ORR 性能,且衰减极小。利用混合密度泛函理论进行的量子力学计算表明,性能的提高是由于铂纳米颗粒和 DEF-PtSe2 表面顶端活性位点的协同作用。这项工作凸显了 DEF-PtSe2 作为 ORR 持久电催化剂的潜力,为 PtM 二卤化物电化学和先进催化剂的设计提供了启示。
{"title":"Reaction-driven restructuring of defective PtSe2 into ultrastable catalyst for the oxygen reduction reaction","authors":"Wenhan Niu, Srimanta Pakhira, Guangming Cheng, Fang Zhao, Nan Yao, Jose L. Mendoza-Cortes, Bruce E. Koel","doi":"10.1038/s41563-024-02020-w","DOIUrl":"https://doi.org/10.1038/s41563-024-02020-w","url":null,"abstract":"<p>PtM (M = S, Se, Te) dichalcogenides are promising two-dimensional materials for electronics, optoelectronics and gas sensors due to their high air stability, tunable bandgap and high carrier mobility. However, their potential as electrocatalysts for the oxygen reduction reaction (ORR) is often underestimated due to their semiconducting properties and limited surface area from van der Waals stacking. Here we show an approach for synthesizing a highly efficient and stable ORR catalyst by restructuring defective platinum diselenide (DEF-PtSe<sub>2</sub>) through electrochemical cycling in an O<sub>2</sub>-saturated electrolyte. After 42,000 cycles, DEF-PtSe<sub>2</sub> exhibited 1.3 times higher specific activity and 2.6 times higher mass activity compared with a commercial Pt/C electrocatalyst. Even after 126,000 cycles, it maintained superior ORR performance with minimal decay. Quantum mechanical calculations using hybrid density functional theory reveal that the improved performance is due to the synergistic contributions from Pt nanoparticles and the apical active sites on the DEF-PtSe<sub>2</sub> surface. This work highlights the potential of DEF-PtSe<sub>2</sub> as a durable electrocatalyst for ORR, offering insights into PtM dichalcogenide electrochemistry and the design of advanced catalysts.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-steerable locomotion using zero-elastic-energy modes 利用零弹性能量模式的轻型稳定运动
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-04 DOI: 10.1038/s41563-024-02026-4
Zixuan Deng, Kai Li, Arri Priimagi, Hao Zeng

Driving synthetic materials out of equilibrium via dissipative mechanisms paves the way towards autonomous, self-sustained robotic motions. However, obtaining agile movement in diverse environments with dynamic steerability remains a challenge. Here we report a light-fuelled soft liquid crystal elastomer torus with self-sustained out-of-equilibrium movement. Under constant light excitation, the torus undergoes spontaneous rotation arising from the formation of zero-elastic-energy modes. By exploiting dynamic friction or drag, the zero-elastic-energy-mode-based locomotion direction can be optically controlled in various dry and fluid environments. We demonstrate the ability of the liquid crystal elastomer torus to laterally and vertically swim in the Stokes regime. The torus navigation can be extended to three-dimensional space with full steerability of the swimming direction. These results demonstrate the possibilities enabled by prestrained topological structures towards robotic functions of out-of-equilibrium soft matter.

通过耗散机制使合成材料失去平衡,为实现自主、自持的机器人运动铺平了道路。然而,要在不同环境中实现具有动态转向能力的灵活运动仍然是一项挑战。在此,我们报告了一种以光为动力、能自我维持失衡运动的软液晶弹性体环。在恒定的光激励下,环形物会因零弹性能量模式的形成而发生自发旋转。通过利用动态摩擦或阻力,基于零弹性能量模式的运动方向可以在各种干燥和流体环境中进行光学控制。我们展示了液晶弹性体环在斯托克斯状态下横向和纵向游动的能力。环体导航可扩展到三维空间,游动方向完全可控。这些结果表明了预约束拓扑结构在实现非平衡软物质机器人功能方面的可能性。
{"title":"Light-steerable locomotion using zero-elastic-energy modes","authors":"Zixuan Deng, Kai Li, Arri Priimagi, Hao Zeng","doi":"10.1038/s41563-024-02026-4","DOIUrl":"https://doi.org/10.1038/s41563-024-02026-4","url":null,"abstract":"<p>Driving synthetic materials out of equilibrium via dissipative mechanisms paves the way towards autonomous, self-sustained robotic motions. However, obtaining agile movement in diverse environments with dynamic steerability remains a challenge. Here we report a light-fuelled soft liquid crystal elastomer torus with self-sustained out-of-equilibrium movement. Under constant light excitation, the torus undergoes spontaneous rotation arising from the formation of zero-elastic-energy modes. By exploiting dynamic friction or drag, the zero-elastic-energy-mode-based locomotion direction can be optically controlled in various dry and fluid environments. We demonstrate the ability of the liquid crystal elastomer torus to laterally and vertically swim in the Stokes regime. The torus navigation can be extended to three-dimensional space with full steerability of the swimming direction. These results demonstrate the possibilities enabled by prestrained topological structures towards robotic functions of out-of-equilibrium soft matter.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"70 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-morphing of metastructures empowering locomotion 赋予运动能力的转移结构的形状变形
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-02 DOI: 10.1038/s41563-024-02010-y
Mingchao Zhang, Metin Sitti
A microscale kirigami metasheet shows electronically programmable shape morphing with a high degree of freedom and intricate locomotion.
微尺度叽里格米元片展示了电子可编程形状变形,具有高自由度和复杂的运动能力。
{"title":"Shape-morphing of metastructures empowering locomotion","authors":"Mingchao Zhang, Metin Sitti","doi":"10.1038/s41563-024-02010-y","DOIUrl":"https://doi.org/10.1038/s41563-024-02010-y","url":null,"abstract":"A microscale kirigami metasheet shows electronically programmable shape morphing with a high degree of freedom and intricate locomotion.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"42 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries 用于全固态钠离子电池的双阴离子基钠超离子导体系列
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-01 DOI: 10.1038/s41563-024-02011-x
Xiaoting Lin, Shumin Zhang, Menghao Yang, Biwei Xiao, Yang Zhao, Jing Luo, Jiamin Fu, Changhong Wang, Xiaona Li, Weihan Li, Feipeng Yang, Hui Duan, Jianwen Liang, Bolin Fu, Hamidreza Abdolvand, Jinghua Guo, Graham King, Xueliang Sun

The sodium (Na) superionic conductor is a key component that could revolutionize the energy density and safety of conventional Na-ion batteries. However, existing Na superionic conductors are primarily based on a single-anion framework, each presenting inherent advantages and disadvantages. Here we introduce a family of amorphous Na-ion conductors (Na2O2–MCly, M = Hf, Zr and Ta) based on the dual-anion framework of oxychloride. Benefiting from a dual-anion chemistry and with the resulting distinctive structures, Na2O2–MCly electrolytes exhibit room-temperature ionic conductivities up to 2.0 mS cm−1, wide electrochemical stability windows and desirable mechanical properties. All-solid-state Na-ion batteries incorporating amorphous Na2O2–HfCl4 electrolyte and a Na0.85Mn0.5Ni0.4Fe0.1O2 cathode exhibit a superior rate capability and long-term cycle stability, with 78% capacity retention after 700 cycles under 0.2 C (1C = 120 mA g−1) at room temperature. The discoveries in this work could trigger a new wave of enthusiasm for exploring new superionic conductors beyond those based on a single-anion framework.

钠(Na)超离子导体是一种关键元件,可彻底改变传统钠离子电池的能量密度和安全性。然而,现有的钠超离子导体主要基于单阴离子框架,各有其固有的优缺点。在此,我们介绍一系列基于氧氯化双阴离子框架的非晶态 Na 离子导体(Na2O2-MCly,M = Hf、Zr 和 Ta)。得益于双阴离子化学和由此产生的独特结构,Na2O2-MCly 电解质具有高达 2.0 mS cm-1 的室温离子电导率、宽广的电化学稳定性窗口和理想的机械性能。含有非晶态 Na2O2-HfCl4 电解质和 Na0.85Mn0.5Ni0.4Fe0.1O2 阴极的全固态氖离子电池表现出卓越的速率能力和长期循环稳定性,在室温 0.2 C(1C = 120 mA g-1)条件下循环 700 次后,容量保持率为 78%。这项工作中的发现可能会引发新一轮探索基于单阴离子框架的新型超离子导体的热情。
{"title":"A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries","authors":"Xiaoting Lin, Shumin Zhang, Menghao Yang, Biwei Xiao, Yang Zhao, Jing Luo, Jiamin Fu, Changhong Wang, Xiaona Li, Weihan Li, Feipeng Yang, Hui Duan, Jianwen Liang, Bolin Fu, Hamidreza Abdolvand, Jinghua Guo, Graham King, Xueliang Sun","doi":"10.1038/s41563-024-02011-x","DOIUrl":"https://doi.org/10.1038/s41563-024-02011-x","url":null,"abstract":"<p>The sodium (Na) superionic conductor is a key component that could revolutionize the energy density and safety of conventional Na-ion batteries. However, existing Na superionic conductors are primarily based on a single-anion framework, each presenting inherent advantages and disadvantages. Here we introduce a family of amorphous Na-ion conductors (Na<sub>2</sub>O<sub>2</sub>–MCl<sub><i>y</i></sub>, M = Hf, Zr and Ta) based on the dual-anion framework of oxychloride. Benefiting from a dual-anion chemistry and with the resulting distinctive structures, Na<sub>2</sub>O<sub>2</sub>–MCl<sub><i>y</i></sub> electrolytes exhibit room-temperature ionic conductivities up to 2.0 mS cm<sup>−1</sup>, wide electrochemical stability windows and desirable mechanical properties. All-solid-state Na-ion batteries incorporating amorphous Na<sub>2</sub>O<sub>2</sub>–HfCl<sub>4</sub> electrolyte and a Na<sub>0.85</sub>Mn<sub>0.5</sub>Ni<sub>0.4</sub>Fe<sub>0.1</sub>O<sub>2</sub> cathode exhibit a superior rate capability and long-term cycle stability, with 78% capacity retention after 700 cycles under 0.2 C (1C = 120 mA g<sup>−1</sup>) at room temperature. The discoveries in this work could trigger a new wave of enthusiasm for exploring new superionic conductors beyond those based on a single-anion framework.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"18 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squirting-cucumber-inspired miniature explosive hydrogel launcher 受黄瓜启发的微型水凝胶爆炸物发射器
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-30 DOI: 10.1038/s41563-024-02005-9
Haitao Qing, Fangjie Qi, Jie Yin
A miniature hydrogel launcher inspired by the squirting cucumber achieves record-high jumping height through water evaporation and fracture-driven power amplification.
受喷水黄瓜启发的微型水凝胶发射器通过水蒸发和断裂驱动的功率放大实现了创纪录的跳跃高度。
{"title":"Squirting-cucumber-inspired miniature explosive hydrogel launcher","authors":"Haitao Qing,&nbsp;Fangjie Qi,&nbsp;Jie Yin","doi":"10.1038/s41563-024-02005-9","DOIUrl":"10.1038/s41563-024-02005-9","url":null,"abstract":"A miniature hydrogel launcher inspired by the squirting cucumber achieves record-high jumping height through water evaporation and fracture-driven power amplification.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1315-1317"},"PeriodicalIF":37.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase landscapes in low-dimensional structures 低维结构中的相景观
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-30 DOI: 10.1038/s41563-024-02017-5
By precisely controlling the phases in materials with reduced dimensionality, the material properties can be tailored, leading to enhanced performance and multifunctionality.
通过精确控制材料中各相的尺寸,可以定制材料的性能,从而提高材料的性能和多功能性。
{"title":"Phase landscapes in low-dimensional structures","authors":"","doi":"10.1038/s41563-024-02017-5","DOIUrl":"10.1038/s41563-024-02017-5","url":null,"abstract":"By precisely controlling the phases in materials with reduced dimensionality, the material properties can be tailored, leading to enhanced performance and multifunctionality.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1301-1301"},"PeriodicalIF":37.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-02017-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pentagonal two-dimensional lattices 五边形二维网格
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-30 DOI: 10.1038/s41563-024-01996-9
Thomas Heine
Metastable pentagonal two-dimensional PtTe2 is grown and stabilized on a Pt(100) surface through lattice-symmetry-driven epitaxy.
通过晶格对称驱动外延技术,在铂(100)表面生长并稳定了可迁移的五边形二维铂碲化物。
{"title":"Pentagonal two-dimensional lattices","authors":"Thomas Heine","doi":"10.1038/s41563-024-01996-9","DOIUrl":"10.1038/s41563-024-01996-9","url":null,"abstract":"Metastable pentagonal two-dimensional PtTe2 is grown and stabilized on a Pt(100) surface through lattice-symmetry-driven epitaxy.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1305-1306"},"PeriodicalIF":37.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1