Pub Date : 2024-09-24DOI: 10.1038/s41563-024-01981-2
Vladimir A. Stoica, Tiannan Yang, Sujit Das, Yue Cao, Huaiyu (Hugo) Wang, Yuya Kubota, Cheng Dai, Hari Padma, Yusuke Sato, Anudeep Mangu, Quynh L. Nguyen, Zhan Zhang, Disha Talreja, Marc E. Zajac, Donald A. Walko, Anthony D. DiChiara, Shigeki Owada, Kohei Miyanishi, Kenji Tamasaku, Takahiro Sato, James M. Glownia, Vincent Esposito, Silke Nelson, Matthias C. Hoffmann, Richard D. Schaller, Aaron M. Lindenberg, Lane W. Martin, Ramamoorthy Ramesh, Iwao Matsuda, Diling Zhu, Long-Q. Chen, Haidan Wen, Venkatraman Gopalan, John W. Freeland
Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump–X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond–nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability. Understanding transformations of non-equilibrium materials is a key open scientific question. Here the pathway by which different polar supertextures undergo dynamical correlations and collectively transform into a metastable supercrystal state is revealed experimentally and theoretically over seven orders of magnitude timescale.
{"title":"Non-equilibrium pathways to emergent polar supertextures","authors":"Vladimir A. Stoica, Tiannan Yang, Sujit Das, Yue Cao, Huaiyu (Hugo) Wang, Yuya Kubota, Cheng Dai, Hari Padma, Yusuke Sato, Anudeep Mangu, Quynh L. Nguyen, Zhan Zhang, Disha Talreja, Marc E. Zajac, Donald A. Walko, Anthony D. DiChiara, Shigeki Owada, Kohei Miyanishi, Kenji Tamasaku, Takahiro Sato, James M. Glownia, Vincent Esposito, Silke Nelson, Matthias C. Hoffmann, Richard D. Schaller, Aaron M. Lindenberg, Lane W. Martin, Ramamoorthy Ramesh, Iwao Matsuda, Diling Zhu, Long-Q. Chen, Haidan Wen, Venkatraman Gopalan, John W. Freeland","doi":"10.1038/s41563-024-01981-2","DOIUrl":"10.1038/s41563-024-01981-2","url":null,"abstract":"Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump–X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond–nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability. Understanding transformations of non-equilibrium materials is a key open scientific question. Here the pathway by which different polar supertextures undergo dynamical correlations and collectively transform into a metastable supercrystal state is revealed experimentally and theoretically over seven orders of magnitude timescale.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1394-1401"},"PeriodicalIF":37.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1038/s41563-024-02006-8
Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek
‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.
{"title":"Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction","authors":"Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek","doi":"10.1038/s41563-024-02006-8","DOIUrl":"https://doi.org/10.1038/s41563-024-02006-8","url":null,"abstract":"<p>‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li<sub>6.5</sub>Ta<sub>0.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>O<sub>12</sub>, steel|Li<sub>6</sub>PS<sub>5</sub>Cl and Al|Na<sub>3.4</sub>Zr<sub>2</sub>Si<sub>2.4</sub>P<sub>0.6</sub>O<sub>12</sub> interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1038/s41563-024-02002-y
Jun Cai, Liyang Wei, Jian Liu, Chaowu Xue, Zhaoxi Chen, Yuxiong Hu, Yijing Zang, Meixiao Wang, Wujun Shi, Tian Qin, Hui Zhang, Liwei Chen, Xi Liu, Marc-Georg Willinger, Peijun Hu, Kaihui Liu, Bo Yang, Zhongkai Liu, Zhi Liu, Zhu-Jun Wang
Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO2, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.
{"title":"Two-dimensional crystalline platinum oxide","authors":"Jun Cai, Liyang Wei, Jian Liu, Chaowu Xue, Zhaoxi Chen, Yuxiong Hu, Yijing Zang, Meixiao Wang, Wujun Shi, Tian Qin, Hui Zhang, Liwei Chen, Xi Liu, Marc-Georg Willinger, Peijun Hu, Kaihui Liu, Bo Yang, Zhongkai Liu, Zhi Liu, Zhu-Jun Wang","doi":"10.1038/s41563-024-02002-y","DOIUrl":"https://doi.org/10.1038/s41563-024-02002-y","url":null,"abstract":"<p>Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO<sub>2</sub>, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"14 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s41563-024-02001-z
Salvador Gallegos-Martinez, Yu Shrike Zhang
An electrochemical biosensor capable of detecting low levels of cancer biomarkers is reusable over 200 regeneration cycles without compromising device sensitivity and accuracy.
{"title":"A refresh-in-sensing reusable biosensor","authors":"Salvador Gallegos-Martinez, Yu Shrike Zhang","doi":"10.1038/s41563-024-02001-z","DOIUrl":"10.1038/s41563-024-02001-z","url":null,"abstract":"An electrochemical biosensor capable of detecting low levels of cancer biomarkers is reusable over 200 regeneration cycles without compromising device sensitivity and accuracy.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1465-1467"},"PeriodicalIF":37.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1038/s41563-024-01975-0
Hannes Witt, Janni Harju, Emma M. J. Chameau, Charlotte M. A. Bruinsma, Tinka V. M. Clement, Christian F. Nielsen, Ian D. Hickson, Erwin J. G. Peterman, Chase P. Broedersz, Gijs J. L. Wuite
During mitosis in eukaryotic cells, mechanical forces generated by the mitotic spindle pull the sister chromatids into the nascent daughter cells. How do mitotic chromosomes achieve the necessary mechanical stiffness and stability to maintain their integrity under these forces? Here we use optical tweezers to show that ions involved in physiological chromosome condensation are crucial for chromosomal stability, stiffness and viscous dissipation. We combine these experiments with high-salt histone depletion and theory to show that chromosomal elasticity originates from the chromatin fibre behaving as a flexible polymer, whereas energy dissipation can be explained by modelling chromatin loops as an entangled polymer solution. Taken together, we show how collective properties of mitotic chromosomes, a biomaterial of incredible complexity, emerge from molecular properties, and how they are controlled by the physico-chemical environment. The physical mechanisms that govern chromosomal viscoelasticity remain elusive. Here the authors combine single-chromosome manipulation and computational methods to show that their collective properties are controlled by the physico-chemical environment.
{"title":"Ion-mediated condensation controls the mechanics of mitotic chromosomes","authors":"Hannes Witt, Janni Harju, Emma M. J. Chameau, Charlotte M. A. Bruinsma, Tinka V. M. Clement, Christian F. Nielsen, Ian D. Hickson, Erwin J. G. Peterman, Chase P. Broedersz, Gijs J. L. Wuite","doi":"10.1038/s41563-024-01975-0","DOIUrl":"10.1038/s41563-024-01975-0","url":null,"abstract":"During mitosis in eukaryotic cells, mechanical forces generated by the mitotic spindle pull the sister chromatids into the nascent daughter cells. How do mitotic chromosomes achieve the necessary mechanical stiffness and stability to maintain their integrity under these forces? Here we use optical tweezers to show that ions involved in physiological chromosome condensation are crucial for chromosomal stability, stiffness and viscous dissipation. We combine these experiments with high-salt histone depletion and theory to show that chromosomal elasticity originates from the chromatin fibre behaving as a flexible polymer, whereas energy dissipation can be explained by modelling chromatin loops as an entangled polymer solution. Taken together, we show how collective properties of mitotic chromosomes, a biomaterial of incredible complexity, emerge from molecular properties, and how they are controlled by the physico-chemical environment. The physical mechanisms that govern chromosomal viscoelasticity remain elusive. Here the authors combine single-chromosome manipulation and computational methods to show that their collective properties are controlled by the physico-chemical environment.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1556-1562"},"PeriodicalIF":37.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-01975-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1038/s41563-024-02003-x
Honglie Ning, Nuh Gedik
Second-order superlattices emerge from the interference between moiré superlattices of comparable periodicities. Direct real-space visualization reveals their rich structural diversity and extreme sensitivity to external parameters such as strain and twist angle.
{"title":"Visualizing the moiré of moiré","authors":"Honglie Ning, Nuh Gedik","doi":"10.1038/s41563-024-02003-x","DOIUrl":"https://doi.org/10.1038/s41563-024-02003-x","url":null,"abstract":"Second-order superlattices emerge from the interference between moiré superlattices of comparable periodicities. Direct real-space visualization reveals their rich structural diversity and extreme sensitivity to external parameters such as strain and twist angle.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"9 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1038/s41563-024-02000-0
Dong-Jun Kim, Kyoung-Whan Kim, Kyusup Lee, Jung Hyun Oh, Xinhou Chen, Shuhan Yang, Yuchen Pu, Yakun Liu, Fanrui Hu, Phuoc Cao Van, Jong-Ryul Jeong, Kyung-Jin Lee, Hyunsoo Yang
Magnetoresistance is a fundamental transport phenomenon that is essential for reading the magnetic states for various information storage, innovative computing and sensor devices. Recent studies have expanded the scope of magnetoresistances to the nonlinear regime, such as a bilinear magnetoelectric resistance (BMER), which is proportional to both electric field and magnetic field. Here we demonstrate that the BMER is a general phenomenon that arises even in three-dimensional systems without explicit momentum-space spin textures. Our theory suggests that the spin Hall effect enables the BMER provided that the magnitudes of spin accumulation at the top and bottom interfaces are not identical. The sign of the BMER follows the sign of the spin Hall effect of heavy metals, thereby evidencing that the BMER originates from the bulk spin Hall effect. Our observation suggests that the BMER serves as a general nonlinear transport characteristic in three-dimensional systems, especially playing a crucial role in antiferromagnetic spintronics. The spin Hall-induced bilinear magnetoelectric resistance is a general phenomenon that arises in three-dimensional systems, particularly playing a crucial role in antiferromagnetic spintronics.
{"title":"Spin Hall-induced bilinear magnetoelectric resistance","authors":"Dong-Jun Kim, Kyoung-Whan Kim, Kyusup Lee, Jung Hyun Oh, Xinhou Chen, Shuhan Yang, Yuchen Pu, Yakun Liu, Fanrui Hu, Phuoc Cao Van, Jong-Ryul Jeong, Kyung-Jin Lee, Hyunsoo Yang","doi":"10.1038/s41563-024-02000-0","DOIUrl":"10.1038/s41563-024-02000-0","url":null,"abstract":"Magnetoresistance is a fundamental transport phenomenon that is essential for reading the magnetic states for various information storage, innovative computing and sensor devices. Recent studies have expanded the scope of magnetoresistances to the nonlinear regime, such as a bilinear magnetoelectric resistance (BMER), which is proportional to both electric field and magnetic field. Here we demonstrate that the BMER is a general phenomenon that arises even in three-dimensional systems without explicit momentum-space spin textures. Our theory suggests that the spin Hall effect enables the BMER provided that the magnitudes of spin accumulation at the top and bottom interfaces are not identical. The sign of the BMER follows the sign of the spin Hall effect of heavy metals, thereby evidencing that the BMER originates from the bulk spin Hall effect. Our observation suggests that the BMER serves as a general nonlinear transport characteristic in three-dimensional systems, especially playing a crucial role in antiferromagnetic spintronics. The spin Hall-induced bilinear magnetoelectric resistance is a general phenomenon that arises in three-dimensional systems, particularly playing a crucial role in antiferromagnetic spintronics.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1509-1514"},"PeriodicalIF":37.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1038/s41563-024-02004-w
Tianyu Huang, Qi Wang, Hai Zhang, Yangyang Xin, Yuewei Zhang, Xiankai Chen, Dongdong Zhang, Lian Duan
Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.
{"title":"Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence","authors":"Tianyu Huang, Qi Wang, Hai Zhang, Yangyang Xin, Yuewei Zhang, Xiankai Chen, Dongdong Zhang, Lian Duan","doi":"10.1038/s41563-024-02004-w","DOIUrl":"10.1038/s41563-024-02004-w","url":null,"abstract":"Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1523-1530"},"PeriodicalIF":37.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1038/s41563-024-02007-7
Qingkun Liu, Wei Wang, Himani Sinhmar, Itay Griniasty, Jason Z. Kim, Jacob T. Pelster, Paragkumar Chaudhari, Michael F. Reynolds, Michael C. Cao, David A. Muller, Alyssa B. Apsel, Nicholas L. Abbott, Hadas Kress-Gazit, Paul L. McEuen, Itai Cohen
Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.
{"title":"Electronically configurable microscopic metasheet robots","authors":"Qingkun Liu, Wei Wang, Himani Sinhmar, Itay Griniasty, Jason Z. Kim, Jacob T. Pelster, Paragkumar Chaudhari, Michael F. Reynolds, Michael C. Cao, David A. Muller, Alyssa B. Apsel, Nicholas L. Abbott, Hadas Kress-Gazit, Paul L. McEuen, Itai Cohen","doi":"10.1038/s41563-024-02007-7","DOIUrl":"https://doi.org/10.1038/s41563-024-02007-7","url":null,"abstract":"<p>Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s41563-024-01993-y
Niels C. H. Hesp, Sergi Batlle-Porro, Roshan Krishna Kumar, Hitesh Agarwal, David Barcons Ruiz, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Petr Stepanov, Frank H. L. Koppens
Second-order superlattices form when moiré superlattices with similar periodicities interfere with each other, leading to larger superlattice periodicities. These crystalline structures are engineered using two-dimensional materials such as graphene and hexagonal boron nitride, and the specific alignment plays a crucial role in facilitating correlation-driven topological phases. Signatures of second-order superlattices have been identified in magnetotransport experiments; however, real-space visualization is still lacking. Here we reveal the second-order superlattice in magic-angle twisted bilayer graphene closely aligned with hexagonal boron nitride through electronic transport measurements and cryogenic nanoscale photovoltage measurements and evidenced by long-range periodic photovoltage modulations. Our results show that even minuscule strain and twist-angle variations as small as 0.01° can lead to drastic changes in the second-order superlattice structure. Our real-space observations, therefore, serve as a ‘magnifying glass’ for strain and twist angle and can elucidate the mechanisms responsible for the breaking of spatial symmetries in twisted bilayer graphene.
{"title":"Cryogenic nano-imaging of second-order moiré superlattices","authors":"Niels C. H. Hesp, Sergi Batlle-Porro, Roshan Krishna Kumar, Hitesh Agarwal, David Barcons Ruiz, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Petr Stepanov, Frank H. L. Koppens","doi":"10.1038/s41563-024-01993-y","DOIUrl":"https://doi.org/10.1038/s41563-024-01993-y","url":null,"abstract":"<p>Second-order superlattices form when moiré superlattices with similar periodicities interfere with each other, leading to larger superlattice periodicities. These crystalline structures are engineered using two-dimensional materials such as graphene and hexagonal boron nitride, and the specific alignment plays a crucial role in facilitating correlation-driven topological phases. Signatures of second-order superlattices have been identified in magnetotransport experiments; however, real-space visualization is still lacking. Here we reveal the second-order superlattice in magic-angle twisted bilayer graphene closely aligned with hexagonal boron nitride through electronic transport measurements and cryogenic nanoscale photovoltage measurements and evidenced by long-range periodic photovoltage modulations. Our results show that even minuscule strain and twist-angle variations as small as 0.01° can lead to drastic changes in the second-order superlattice structure. Our real-space observations, therefore, serve as a ‘magnifying glass’ for strain and twist angle and can elucidate the mechanisms responsible for the breaking of spatial symmetries in twisted bilayer graphene.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"47 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}