首页 > 最新文献

Nature Materials最新文献

英文 中文
Non-equilibrium pathways to emergent polar supertextures 通向新兴极地超纹理的非平衡途径
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-24 DOI: 10.1038/s41563-024-01981-2
Vladimir A. Stoica, Tiannan Yang, Sujit Das, Yue Cao, Huaiyu (Hugo) Wang, Yuya Kubota, Cheng Dai, Hari Padma, Yusuke Sato, Anudeep Mangu, Quynh L. Nguyen, Zhan Zhang, Disha Talreja, Marc E. Zajac, Donald A. Walko, Anthony D. DiChiara, Shigeki Owada, Kohei Miyanishi, Kenji Tamasaku, Takahiro Sato, James M. Glownia, Vincent Esposito, Silke Nelson, Matthias C. Hoffmann, Richard D. Schaller, Aaron M. Lindenberg, Lane W. Martin, Ramamoorthy Ramesh, Iwao Matsuda, Diling Zhu, Long-Q. Chen, Haidan Wen, Venkatraman Gopalan, John W. Freeland
Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump–X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond–nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability. Understanding transformations of non-equilibrium materials is a key open scientific question. Here the pathway by which different polar supertextures undergo dynamical correlations and collectively transform into a metastable supercrystal state is revealed experimentally and theoretically over seven orders of magnitude timescale.
超快激励可以稳定平衡状态下无法进入的物质陨变态。建立超快激发与蜕变性之间的时空联系对于理解这些现象至关重要。在这里,我们利用单次光学泵浦-X 射线探针测量,捕捉异质结构中持久极涡超晶出现的快照。通过光诱导电荷扰动这种平衡,极性相的初始异质混合物在几皮秒内发生紊乱,形成由无序的铁电和受抑制的涡旋秩序组成的状态。在皮秒到纳秒的时间尺度上,瞬时迷宫式波动出现,并伴随着涡旋秩序的恢复。在更长的时间尺度上,这些波动逐渐被动态应变调制所熄灭,动态应变调制推动了单一涡旋超晶相的集体出现。我们的研究结果得到了动态相场建模的证实,揭示了设计器系统被超快激发至持续蜕变后的非平衡途径。
{"title":"Non-equilibrium pathways to emergent polar supertextures","authors":"Vladimir A. Stoica, Tiannan Yang, Sujit Das, Yue Cao, Huaiyu (Hugo) Wang, Yuya Kubota, Cheng Dai, Hari Padma, Yusuke Sato, Anudeep Mangu, Quynh L. Nguyen, Zhan Zhang, Disha Talreja, Marc E. Zajac, Donald A. Walko, Anthony D. DiChiara, Shigeki Owada, Kohei Miyanishi, Kenji Tamasaku, Takahiro Sato, James M. Glownia, Vincent Esposito, Silke Nelson, Matthias C. Hoffmann, Richard D. Schaller, Aaron M. Lindenberg, Lane W. Martin, Ramamoorthy Ramesh, Iwao Matsuda, Diling Zhu, Long-Q. Chen, Haidan Wen, Venkatraman Gopalan, John W. Freeland","doi":"10.1038/s41563-024-01981-2","DOIUrl":"10.1038/s41563-024-01981-2","url":null,"abstract":"Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump–X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond–nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability. Understanding transformations of non-equilibrium materials is a key open scientific question. Here the pathway by which different polar supertextures undergo dynamical correlations and collectively transform into a metastable supercrystal state is revealed experimentally and theoretically over seven orders of magnitude timescale.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1394-1401"},"PeriodicalIF":37.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction 利用电子反向散射衍射成像无阳极固态电池中锂和金属钠的微观结构
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-23 DOI: 10.1038/s41563-024-02006-8
Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek

‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li6.5Ta0.5La3Zr1.5O12, steel|Li6PS5Cl and Al|Na3.4Zr2Si2.4P0.6O12 interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.

无阳极 "电池,或者更贴切地说,无金属储层电池,可以通过实现更高的能量密度、提高安全性和简化制造过程,极大地改进当前的固态电池技术。迄今为止,已报道了多种策略来控制电沉积碱金属薄膜的形态,使其均匀致密,但到目前为止,电沉积碱金属的微观结构尚不清楚,也没有找到合适的表征途径。在此,我们建立了一个可重复的方案,通过聚焦离子束和电子反向散射衍射相结合的方法,表征不同处理方式的锂和钠样品中金属晶粒的尺寸和取向。对 Cu|Li6.5Ta0.5La3Zr1.5O12、Steel|Li6PS5Cl 和 Al|Na3.4Zr2Si2.4P0.6O12 界面的电沉积薄膜进行了表征。分析结果表明,这些薄膜中的晶粒尺寸较大(100 微米),晶界有优先取向。此外,我们还利用原位电子反向散射衍射对金属的生长和溶解进行了研究,结果表明在电沉积过程中晶粒会发生动态粗化,在溶解过程中晶粒内部会形成孔隙。我们的研究方法和结果深化了通过表征碱金属微观结构来提高固态电池性能的研究领域。
{"title":"Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction","authors":"Till Fuchs, Till Ortmann, Juri Becker, Catherine G. Haslam, Maya Ziegler, Vipin Kumar Singh, Marcus Rohnke, Boris Mogwitz, Klaus Peppler, Linda F. Nazar, Jeff Sakamoto, Jürgen Janek","doi":"10.1038/s41563-024-02006-8","DOIUrl":"https://doi.org/10.1038/s41563-024-02006-8","url":null,"abstract":"<p>‘Anode-free’ or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|Li<sub>6.5</sub>Ta<sub>0.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>O<sub>12</sub>, steel|Li<sub>6</sub>PS<sub>5</sub>Cl and Al|Na<sub>3.4</sub>Zr<sub>2</sub>Si<sub>2.4</sub>P<sub>0.6</sub>O<sub>12</sub> interfaces were characterized. The analyses show large grain sizes (&gt;100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"21 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional crystalline platinum oxide 二维晶体氧化铂
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-19 DOI: 10.1038/s41563-024-02002-y
Jun Cai, Liyang Wei, Jian Liu, Chaowu Xue, Zhaoxi Chen, Yuxiong Hu, Yijing Zang, Meixiao Wang, Wujun Shi, Tian Qin, Hui Zhang, Liwei Chen, Xi Liu, Marc-Georg Willinger, Peijun Hu, Kaihui Liu, Bo Yang, Zhongkai Liu, Zhi Liu, Zhu-Jun Wang

Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO2, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.

铂(Pt)氧化物是许多反应中的重要催化剂,但研究表明,它们会在高温下分解,从而限制了它们在高温应用中的使用。在本研究中,我们采用一系列原位方法,发现了一种二维(2D)结晶氧化铂,它具有显著的热稳定性(在二氧化氮条件下为 1,200 K)。理论模拟显示,这种二维氧化铂的特点是铂原子的蜂窝状晶格被包裹在双氧层之间,形成六芒星结构,由于其独特的结构,平面内应力最小,垂直键合增强。这些特点造就了它的高热稳定性。多尺度原位观测追溯了这种二维氧化铂从α-PtO2 的形成过程,提供了从原子到毫米尺度对其形成机制的深入了解。这种二维铂氧化物具有出色的热稳定性和独特的表面电子结构,颠覆了以往认为铂氧化物在高温下不存在的观点,而且还具有独特的催化能力。这项研究拓展了我们对铂氧化物的认识,并揭示了氧化铂在高温环境下的氧化和催化行为。
{"title":"Two-dimensional crystalline platinum oxide","authors":"Jun Cai, Liyang Wei, Jian Liu, Chaowu Xue, Zhaoxi Chen, Yuxiong Hu, Yijing Zang, Meixiao Wang, Wujun Shi, Tian Qin, Hui Zhang, Liwei Chen, Xi Liu, Marc-Georg Willinger, Peijun Hu, Kaihui Liu, Bo Yang, Zhongkai Liu, Zhi Liu, Zhu-Jun Wang","doi":"10.1038/s41563-024-02002-y","DOIUrl":"https://doi.org/10.1038/s41563-024-02002-y","url":null,"abstract":"<p>Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO<sub>2</sub>, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"14 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A refresh-in-sensing reusable biosensor 可重复使用的生物传感器
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-17 DOI: 10.1038/s41563-024-02001-z
Salvador Gallegos-Martinez, Yu Shrike Zhang
An electrochemical biosensor capable of detecting low levels of cancer biomarkers is reusable over 200 regeneration cycles without compromising device sensitivity and accuracy.
一种能够检测低水平癌症生物标志物的电化学生物传感器可重复使用 200 个再生周期,而不会影响设备的灵敏度和准确性。
{"title":"A refresh-in-sensing reusable biosensor","authors":"Salvador Gallegos-Martinez,&nbsp;Yu Shrike Zhang","doi":"10.1038/s41563-024-02001-z","DOIUrl":"10.1038/s41563-024-02001-z","url":null,"abstract":"An electrochemical biosensor capable of detecting low levels of cancer biomarkers is reusable over 200 regeneration cycles without compromising device sensitivity and accuracy.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1465-1467"},"PeriodicalIF":37.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-mediated condensation controls the mechanics of mitotic chromosomes 离子介导的缩聚控制着有丝分裂染色体的机械结构
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-16 DOI: 10.1038/s41563-024-01975-0
Hannes Witt, Janni Harju, Emma M. J. Chameau, Charlotte M. A. Bruinsma, Tinka V. M. Clement, Christian F. Nielsen, Ian D. Hickson, Erwin J. G. Peterman, Chase P. Broedersz, Gijs J. L. Wuite
During mitosis in eukaryotic cells, mechanical forces generated by the mitotic spindle pull the sister chromatids into the nascent daughter cells. How do mitotic chromosomes achieve the necessary mechanical stiffness and stability to maintain their integrity under these forces? Here we use optical tweezers to show that ions involved in physiological chromosome condensation are crucial for chromosomal stability, stiffness and viscous dissipation. We combine these experiments with high-salt histone depletion and theory to show that chromosomal elasticity originates from the chromatin fibre behaving as a flexible polymer, whereas energy dissipation can be explained by modelling chromatin loops as an entangled polymer solution. Taken together, we show how collective properties of mitotic chromosomes, a biomaterial of incredible complexity, emerge from molecular properties, and how they are controlled by the physico-chemical environment. The physical mechanisms that govern chromosomal viscoelasticity remain elusive. Here the authors combine single-chromosome manipulation and computational methods to show that their collective properties are controlled by the physico-chemical environment.
在真核细胞的有丝分裂过程中,有丝分裂纺锤体产生的机械力会将姐妹染色单体拉入新生的子细胞中。有丝分裂染色体如何在这些力的作用下获得必要的机械硬度和稳定性以保持其完整性?在这里,我们利用光学镊子证明,参与生理性染色体凝聚的离子对染色体的稳定性、硬度和粘性耗散至关重要。我们将这些实验与高盐组蛋白耗竭和理论相结合,证明染色体的弹性源于染色质纤维作为柔性聚合物的行为,而能量耗散可通过将染色质环路模拟为纠缠聚合物溶液来解释。总之,我们展示了有丝分裂染色体这种复杂程度令人难以置信的生物材料的集体特性是如何从分子特性中产生的,以及它们是如何受物理化学环境控制的。
{"title":"Ion-mediated condensation controls the mechanics of mitotic chromosomes","authors":"Hannes Witt,&nbsp;Janni Harju,&nbsp;Emma M. J. Chameau,&nbsp;Charlotte M. A. Bruinsma,&nbsp;Tinka V. M. Clement,&nbsp;Christian F. Nielsen,&nbsp;Ian D. Hickson,&nbsp;Erwin J. G. Peterman,&nbsp;Chase P. Broedersz,&nbsp;Gijs J. L. Wuite","doi":"10.1038/s41563-024-01975-0","DOIUrl":"10.1038/s41563-024-01975-0","url":null,"abstract":"During mitosis in eukaryotic cells, mechanical forces generated by the mitotic spindle pull the sister chromatids into the nascent daughter cells. How do mitotic chromosomes achieve the necessary mechanical stiffness and stability to maintain their integrity under these forces? Here we use optical tweezers to show that ions involved in physiological chromosome condensation are crucial for chromosomal stability, stiffness and viscous dissipation. We combine these experiments with high-salt histone depletion and theory to show that chromosomal elasticity originates from the chromatin fibre behaving as a flexible polymer, whereas energy dissipation can be explained by modelling chromatin loops as an entangled polymer solution. Taken together, we show how collective properties of mitotic chromosomes, a biomaterial of incredible complexity, emerge from molecular properties, and how they are controlled by the physico-chemical environment. The physical mechanisms that govern chromosomal viscoelasticity remain elusive. Here the authors combine single-chromosome manipulation and computational methods to show that their collective properties are controlled by the physico-chemical environment.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1556-1562"},"PeriodicalIF":37.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-01975-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing the moiré of moiré 将摩尔纹的摩尔纹可视化
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-16 DOI: 10.1038/s41563-024-02003-x
Honglie Ning, Nuh Gedik
Second-order superlattices emerge from the interference between moiré superlattices of comparable periodicities. Direct real-space visualization reveals their rich structural diversity and extreme sensitivity to external parameters such as strain and twist angle.
二阶超晶格产生于周期性相当的摩尔超晶格之间的干涉。直接的实空间可视化揭示了它们丰富的结构多样性以及对外部参数(如应变和扭转角)的极端敏感性。
{"title":"Visualizing the moiré of moiré","authors":"Honglie Ning, Nuh Gedik","doi":"10.1038/s41563-024-02003-x","DOIUrl":"https://doi.org/10.1038/s41563-024-02003-x","url":null,"abstract":"Second-order superlattices emerge from the interference between moiré superlattices of comparable periodicities. Direct real-space visualization reveals their rich structural diversity and extreme sensitivity to external parameters such as strain and twist angle.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"9 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin Hall-induced bilinear magnetoelectric resistance 自旋霍尔诱导的双线性磁电电阻
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1038/s41563-024-02000-0
Dong-Jun Kim, Kyoung-Whan Kim, Kyusup Lee, Jung Hyun Oh, Xinhou Chen, Shuhan Yang, Yuchen Pu, Yakun Liu, Fanrui Hu, Phuoc Cao Van, Jong-Ryul Jeong, Kyung-Jin Lee, Hyunsoo Yang
Magnetoresistance is a fundamental transport phenomenon that is essential for reading the magnetic states for various information storage, innovative computing and sensor devices. Recent studies have expanded the scope of magnetoresistances to the nonlinear regime, such as a bilinear magnetoelectric resistance (BMER), which is proportional to both electric field and magnetic field. Here we demonstrate that the BMER is a general phenomenon that arises even in three-dimensional systems without explicit momentum-space spin textures. Our theory suggests that the spin Hall effect enables the BMER provided that the magnitudes of spin accumulation at the top and bottom interfaces are not identical. The sign of the BMER follows the sign of the spin Hall effect of heavy metals, thereby evidencing that the BMER originates from the bulk spin Hall effect. Our observation suggests that the BMER serves as a general nonlinear transport characteristic in three-dimensional systems, especially playing a crucial role in antiferromagnetic spintronics. The spin Hall-induced bilinear magnetoelectric resistance is a general phenomenon that arises in three-dimensional systems, particularly playing a crucial role in antiferromagnetic spintronics.
磁阻是一种基本的传输现象,对于读取各种信息存储、创新计算和传感器设备的磁态至关重要。最近的研究将磁阻的范围扩展到了非线性机制,如双线性磁电电阻(BMER),它与电场和磁场都成正比。在这里,我们证明了双线性磁电电阻是一种普遍现象,即使在没有明确动量空间自旋纹理的三维系统中也会出现。我们的理论表明,只要上下界面的自旋累积量不完全相同,自旋霍尔效应就能产生 BMER。BMER 的符号与重金属自旋霍尔效应的符号一致,从而证明 BMER 源自体自旋霍尔效应。我们的观察结果表明,BMER 是三维系统中的一种通用非线性输运特性,尤其在反铁磁自旋电子学中发挥着重要作用。
{"title":"Spin Hall-induced bilinear magnetoelectric resistance","authors":"Dong-Jun Kim,&nbsp;Kyoung-Whan Kim,&nbsp;Kyusup Lee,&nbsp;Jung Hyun Oh,&nbsp;Xinhou Chen,&nbsp;Shuhan Yang,&nbsp;Yuchen Pu,&nbsp;Yakun Liu,&nbsp;Fanrui Hu,&nbsp;Phuoc Cao Van,&nbsp;Jong-Ryul Jeong,&nbsp;Kyung-Jin Lee,&nbsp;Hyunsoo Yang","doi":"10.1038/s41563-024-02000-0","DOIUrl":"10.1038/s41563-024-02000-0","url":null,"abstract":"Magnetoresistance is a fundamental transport phenomenon that is essential for reading the magnetic states for various information storage, innovative computing and sensor devices. Recent studies have expanded the scope of magnetoresistances to the nonlinear regime, such as a bilinear magnetoelectric resistance (BMER), which is proportional to both electric field and magnetic field. Here we demonstrate that the BMER is a general phenomenon that arises even in three-dimensional systems without explicit momentum-space spin textures. Our theory suggests that the spin Hall effect enables the BMER provided that the magnitudes of spin accumulation at the top and bottom interfaces are not identical. The sign of the BMER follows the sign of the spin Hall effect of heavy metals, thereby evidencing that the BMER originates from the bulk spin Hall effect. Our observation suggests that the BMER serves as a general nonlinear transport characteristic in three-dimensional systems, especially playing a crucial role in antiferromagnetic spintronics. The spin Hall-induced bilinear magnetoelectric resistance is a general phenomenon that arises in three-dimensional systems, particularly playing a crucial role in antiferromagnetic spintronics.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1509-1514"},"PeriodicalIF":37.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence 热激活延迟荧光体中的电子分布去局域化,实现高效率和长寿命蓝色电致发光
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-12 DOI: 10.1038/s41563-024-02004-w
Tianyu Huang, Qi Wang, Hai Zhang, Yangyang Xin, Yuewei Zhang, Xiankai Chen, Dongdong Zhang, Lian Duan
Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.
蓝色热激活延迟荧光发光体有望成为下一代有机发光二极管,但其性能仍无法满足商业化的要求。在这里,我们通过引入一种辅助受体,建立了高效稳定的热激活延迟荧光发光体的设计规则,这种受体可以使电子分布去局域化,增强负极子和三重激发态的分子稳定性,同时还能加速三重子到singlet的上转换和单重子辐射过程。基于多咔唑-苯甲腈结构的概念性热激活延迟荧光化合物显示出接近统一的光量子产率、短寿命延迟以及更好的光致发光和电致发光稳定性。一种深蓝色的有机发光二极管使用了其中一种分子作为多共振发射器的敏化剂,在初始亮度为 1,000 cd m-2 时,达到初始亮度 95% 的显著时间为 221 h,最大外部量子效率为 30.8%,国际照明委员会坐标为 (0.14, 0.17)。
{"title":"Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence","authors":"Tianyu Huang,&nbsp;Qi Wang,&nbsp;Hai Zhang,&nbsp;Yangyang Xin,&nbsp;Yuewei Zhang,&nbsp;Xiankai Chen,&nbsp;Dongdong Zhang,&nbsp;Lian Duan","doi":"10.1038/s41563-024-02004-w","DOIUrl":"10.1038/s41563-024-02004-w","url":null,"abstract":"Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17). The stability and efficiency of thermally activated delayed fluorescent (TADF) emitters are still limited. Here the authors design TADF compounds by introducing an auxiliary acceptor with both enhanced stability and enhanced efficiency.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1523-1530"},"PeriodicalIF":37.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronically configurable microscopic metasheet robots 电子可配置微型元片机器人
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-11 DOI: 10.1038/s41563-024-02007-7
Qingkun Liu, Wei Wang, Himani Sinhmar, Itay Griniasty, Jason Z. Kim, Jacob T. Pelster, Paragkumar Chaudhari, Michael F. Reynolds, Michael C. Cao, David A. Muller, Alyssa B. Apsel, Nicholas L. Abbott, Hadas Kress-Gazit, Paul L. McEuen, Itai Cohen

Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.

形状变形对微观生物的运动至关重要,但在亚毫米机器人中实现形状变形却很困难。通过克服与微型化相关的障碍,我们展示了微观电子可配置变形元片机器人。这些新陈代谢机器人利用长度跨越五十年的 "叽里格米 "结构进行局部扩展,从 10 纳米的电化学致动铰链到 100 微米的平展板,构成了约 1 毫米的机器人。这些面板被组织成单元格,可在 100 毫秒内伸缩 40%。这些单元被拼接成具有 200 多个铰链和独立电子致动区域的元板,使机器人能够在具有不同曲率分布的多个目标几何形状之间切换。通过以规定的相位延迟对独立区域进行电子致动,我们产生了运动步态。这些成果推进了微观、连续、顺应、可编程机器人的超材料范式,并为可重构微型机械、可调光学超表面和微型生物医学设备等广泛应用铺平了道路。
{"title":"Electronically configurable microscopic metasheet robots","authors":"Qingkun Liu, Wei Wang, Himani Sinhmar, Itay Griniasty, Jason Z. Kim, Jacob T. Pelster, Paragkumar Chaudhari, Michael F. Reynolds, Michael C. Cao, David A. Muller, Alyssa B. Apsel, Nicholas L. Abbott, Hadas Kress-Gazit, Paul L. McEuen, Itai Cohen","doi":"10.1038/s41563-024-02007-7","DOIUrl":"https://doi.org/10.1038/s41563-024-02007-7","url":null,"abstract":"<p>Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryogenic nano-imaging of second-order moiré superlattices 二阶摩尔纹超晶格的低温纳米成像
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-10 DOI: 10.1038/s41563-024-01993-y
Niels C. H. Hesp, Sergi Batlle-Porro, Roshan Krishna Kumar, Hitesh Agarwal, David Barcons Ruiz, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Petr Stepanov, Frank H. L. Koppens

Second-order superlattices form when moiré superlattices with similar periodicities interfere with each other, leading to larger superlattice periodicities. These crystalline structures are engineered using two-dimensional materials such as graphene and hexagonal boron nitride, and the specific alignment plays a crucial role in facilitating correlation-driven topological phases. Signatures of second-order superlattices have been identified in magnetotransport experiments; however, real-space visualization is still lacking. Here we reveal the second-order superlattice in magic-angle twisted bilayer graphene closely aligned with hexagonal boron nitride through electronic transport measurements and cryogenic nanoscale photovoltage measurements and evidenced by long-range periodic photovoltage modulations. Our results show that even minuscule strain and twist-angle variations as small as 0.01° can lead to drastic changes in the second-order superlattice structure. Our real-space observations, therefore, serve as a ‘magnifying glass’ for strain and twist angle and can elucidate the mechanisms responsible for the breaking of spatial symmetries in twisted bilayer graphene.

当具有相似周期性的摩尔超晶格相互干扰,导致更大的超晶格周期性时,就会形成二阶超晶格。这些晶体结构是利用石墨烯和六方氮化硼等二维材料设计而成的,特定的排列方式在促进相关驱动的拓扑相位方面起着至关重要的作用。二阶超晶格的特征已在磁传输实验中被识别出来,但仍然缺乏真实空间的可视化。在这里,我们通过电子传输测量和低温纳米级光电压测量,揭示了与六方氮化硼紧密排列的魔角扭曲双层石墨烯中的二阶超晶格,并通过长程周期性光电压调制加以证明。我们的结果表明,即使微小到 0.01°的应变和扭转角变化也会导致二阶超晶格结构发生剧烈变化。因此,我们的实空间观测结果可作为应变和扭转角的 "放大镜",并能阐明导致扭曲双层石墨烯空间对称性破坏的机制。
{"title":"Cryogenic nano-imaging of second-order moiré superlattices","authors":"Niels C. H. Hesp, Sergi Batlle-Porro, Roshan Krishna Kumar, Hitesh Agarwal, David Barcons Ruiz, Hanan Herzig Sheinfux, Kenji Watanabe, Takashi Taniguchi, Petr Stepanov, Frank H. L. Koppens","doi":"10.1038/s41563-024-01993-y","DOIUrl":"https://doi.org/10.1038/s41563-024-01993-y","url":null,"abstract":"<p>Second-order superlattices form when moiré superlattices with similar periodicities interfere with each other, leading to larger superlattice periodicities. These crystalline structures are engineered using two-dimensional materials such as graphene and hexagonal boron nitride, and the specific alignment plays a crucial role in facilitating correlation-driven topological phases. Signatures of second-order superlattices have been identified in magnetotransport experiments; however, real-space visualization is still lacking. Here we reveal the second-order superlattice in magic-angle twisted bilayer graphene closely aligned with hexagonal boron nitride through electronic transport measurements and cryogenic nanoscale photovoltage measurements and evidenced by long-range periodic photovoltage modulations. Our results show that even minuscule strain and twist-angle variations as small as 0.01° can lead to drastic changes in the second-order superlattice structure. Our real-space observations, therefore, serve as a ‘magnifying glass’ for strain and twist angle and can elucidate the mechanisms responsible for the breaking of spatial symmetries in twisted bilayer graphene.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"47 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1