首页 > 最新文献

Nature Materials最新文献

英文 中文
How charge frustration causes ion ordering and microphase separation at surfaces 电荷挫折是如何引起离子有序和表面微相分离的
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-26 DOI: 10.1038/s41563-025-02467-5
Mingyi Zhang, Benjamin A. Legg, Benjamin A. Helfrecht, Yuanzhong Zhang, Shuai Tan, Ying Xia, Rae Karell Yodong, Monica Iepure, Venkateshkumar Prabhakaran, Peter J. Pauzauskie, Younjin Min, Christopher J. Mundy, James J. De Yoreo
{"title":"How charge frustration causes ion ordering and microphase separation at surfaces","authors":"Mingyi Zhang, Benjamin A. Legg, Benjamin A. Helfrecht, Yuanzhong Zhang, Shuai Tan, Ying Xia, Rae Karell Yodong, Monica Iepure, Venkateshkumar Prabhakaran, Peter J. Pauzauskie, Younjin Min, Christopher J. Mundy, James J. De Yoreo","doi":"10.1038/s41563-025-02467-5","DOIUrl":"https://doi.org/10.1038/s41563-025-02467-5","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"30 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving high tensile strength and ductility in refractory alloys by tuning electronic structure 通过调整电子结构来提高耐火合金的抗拉强度和延展性
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-26 DOI: 10.1038/s41563-025-02464-8
Hailong Huang, Prashant Singh, Duane D. Johnson, Dishant Beniwal, Pratik K. Ray, Gaoyuan Ouyang, Luke Gaydos, Trevor Riedemann, Tirthesh Ingale, Vishal Soni, Rajarshi Banerjee, Thomas W. Scharf, Ping Lu, Frank W. DelRio, Andrew B. Kustas, John A. Sharon, Ryan Deacon, Syed I. A. Jalali, Michael Patullo, Sharon Park, Kevin J. Hemker, Ryan T. Ott, Nicolas Argibay
{"title":"Achieving high tensile strength and ductility in refractory alloys by tuning electronic structure","authors":"Hailong Huang, Prashant Singh, Duane D. Johnson, Dishant Beniwal, Pratik K. Ray, Gaoyuan Ouyang, Luke Gaydos, Trevor Riedemann, Tirthesh Ingale, Vishal Soni, Rajarshi Banerjee, Thomas W. Scharf, Ping Lu, Frank W. DelRio, Andrew B. Kustas, John A. Sharon, Ryan Deacon, Syed I. A. Jalali, Michael Patullo, Sharon Park, Kevin J. Hemker, Ryan T. Ott, Nicolas Argibay","doi":"10.1038/s41563-025-02464-8","DOIUrl":"https://doi.org/10.1038/s41563-025-02464-8","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"7 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The paradoxes of interfacial electrolyte structures 界面电解质结构的悖论
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-26 DOI: 10.1038/s41563-025-02468-4
Ricardo Garcia
{"title":"The paradoxes of interfacial electrolyte structures","authors":"Ricardo Garcia","doi":"10.1038/s41563-025-02468-4","DOIUrl":"https://doi.org/10.1038/s41563-025-02468-4","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"33 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146048361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging the power of metasurfaces. 利用元表面的力量。
IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-23 DOI: 10.1038/s41563-025-02469-3
Marco Abbarchi, David Grosso, Badre Kerzabi, George Palikaras
{"title":"Leveraging the power of metasurfaces.","authors":"Marco Abbarchi, David Grosso, Badre Kerzabi, George Palikaras","doi":"10.1038/s41563-025-02469-3","DOIUrl":"https://doi.org/10.1038/s41563-025-02469-3","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146041395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higgs mode-driven phase transitions in two-dimensional perovskites. 二维钙钛矿中的希格斯模式驱动相变。
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-20 DOI: 10.1038/s41563-025-02472-8
Gregory D Scholes
{"title":"Higgs mode-driven phase transitions in two-dimensional perovskites.","authors":"Gregory D Scholes","doi":"10.1038/s41563-025-02472-8","DOIUrl":"https://doi.org/10.1038/s41563-025-02472-8","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"63 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146005489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell viscosity influences haematogenous dissemination and metastatic extravasation of tumour cells. 细胞黏度影响肿瘤细胞的血源性播散和转移性外渗。
IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-19 DOI: 10.1038/s41563-025-02462-w
Valentin Gensbittel, Zeynep Yesilata, Louis Bochler, Gautier Follain, Laurie Nemoz-Billet, Olivier Lefebvre, Klemens Uhlmann, Annabel Larnicol, Giulia E M Ammirati, Sébastien Harlepp, Ruchi Goswami, Salvatore Girardo, Laetitia Paulen, Vincent Hyenne, Vincent Mittelheisser, Tristan Stemmelen, Anne Molitor, Raphael Carapito, Guillaume Belthier, Julie Pannequin, Martin Kräter, Daniel J Müller, Daniel Balzani, Jochen Guck, Naël Osmani, Jacky G Goetz

Metastases arise from a multistep process during which tumour cells face several microenvironmental mechanical challenges, which influence metastatic success. However, how circulating tumour cells (CTCs) adapt their mechanics to such microenvironments is not fully understood. Here we report that the deformability of CTCs affects their haematogenous dissemination and identify mechanical phenotypes that favour metastatic extravasation. Combining intravital microscopy with CTC-mimicking elastic beads, mechanical tuning in tumour lines and profiling of tumour-patient-derived cells, we demonstrate that the inherent mechanical properties of circulating objects dictate their ability to enter constraining vessels. We identify cellular viscosity as a rheostat of CTC circulation and arrest, and show that cellular viscosity is crucial for efficient extravasation. Moreover, we find that mechanical properties that favour extravasation and subsequent metastatic outgrowth can be opposite. Altogether, our results establish CTC viscosity as a key biomechanical parameter that shapes several steps of metastasis.

转移是一个多步骤的过程,在这个过程中,肿瘤细胞面临一些微环境的机械挑战,这些挑战会影响转移的成功。然而,循环肿瘤细胞(ctc)如何适应这种微环境的机制尚不完全清楚。在这里,我们报告了ctc的可变形性影响其血液传播,并确定了有利于转移性外渗的机械表型。结合活体显微镜与模拟ctc的弹性珠,肿瘤细胞系的机械调谐和肿瘤患者来源细胞的分析,我们证明了循环物体固有的机械特性决定了它们进入限制性血管的能力。我们确定细胞粘度是CTC循环和停止的变阻器,并表明细胞粘度对有效的外渗至关重要。此外,我们发现有利于外渗和随后转移性生长的机械特性可能是相反的。总之,我们的研究结果确定了CTC粘度是决定转移几个步骤的关键生物力学参数。
{"title":"Cell viscosity influences haematogenous dissemination and metastatic extravasation of tumour cells.","authors":"Valentin Gensbittel, Zeynep Yesilata, Louis Bochler, Gautier Follain, Laurie Nemoz-Billet, Olivier Lefebvre, Klemens Uhlmann, Annabel Larnicol, Giulia E M Ammirati, Sébastien Harlepp, Ruchi Goswami, Salvatore Girardo, Laetitia Paulen, Vincent Hyenne, Vincent Mittelheisser, Tristan Stemmelen, Anne Molitor, Raphael Carapito, Guillaume Belthier, Julie Pannequin, Martin Kräter, Daniel J Müller, Daniel Balzani, Jochen Guck, Naël Osmani, Jacky G Goetz","doi":"10.1038/s41563-025-02462-w","DOIUrl":"https://doi.org/10.1038/s41563-025-02462-w","url":null,"abstract":"<p><p>Metastases arise from a multistep process during which tumour cells face several microenvironmental mechanical challenges, which influence metastatic success. However, how circulating tumour cells (CTCs) adapt their mechanics to such microenvironments is not fully understood. Here we report that the deformability of CTCs affects their haematogenous dissemination and identify mechanical phenotypes that favour metastatic extravasation. Combining intravital microscopy with CTC-mimicking elastic beads, mechanical tuning in tumour lines and profiling of tumour-patient-derived cells, we demonstrate that the inherent mechanical properties of circulating objects dictate their ability to enter constraining vessels. We identify cellular viscosity as a rheostat of CTC circulation and arrest, and show that cellular viscosity is crucial for efficient extravasation. Moreover, we find that mechanical properties that favour extravasation and subsequent metastatic outgrowth can be opposite. Altogether, our results establish CTC viscosity as a key biomechanical parameter that shapes several steps of metastasis.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-range chemical signalling in vivo is regulated by mechanical signals. 体内远距离化学信号是由机械信号调控的。
IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-19 DOI: 10.1038/s41563-025-02463-9
Eva K Pillai, Sudipta Mukherjee, Niklas Gampl, Ross J McGinn, Katrin A Mooslehner, Julia M Becker, Alexander K Winkel, Amelia J Thompson, Kristian Franze

Biological processes are regulated by chemical and mechanical signals, yet how these signalling modalities interact remains poorly understood. Here we identify a crosstalk between tissue stiffness and long-range chemical signalling in the developing Xenopus laevis brain. Targeted knockdown of the mechanosensitive ion channel Piezo1 in retinal ganglion cells or in the brain tissue surrounding retinal ganglion cells causes pathfinding errors in vivo. In the brain parenchyma, Piezo1 downregulation decreases the expression of the diffusive long-range chemical guidance cues Semaphorin3A (Sema3A) and Slit1, which instruct turning responses in distant cells. Furthermore, Piezo1 knockdown results in tissue softening due to reduced expression of the adhesion proteins NCAM1 and N-cadherin. Targeted depletion of NCAM1 and N-cadherin similarly reduces tissue stiffness and Sema3A expression. Conversely, increasing environmental stiffness ex vivo enhances tissue-level force generation and Slit1 and Sema3A expression. Finally, in vivo stiffening of soft brain regions induces ectopic Sema3A production via a Piezo1-dependent mechanism. Overall, these findings demonstrate that tissue mechanics locally modulates the availability of diffusive, long-range chemical signals, thus influencing cell function at sites distant from the mechanical cue.

生物过程是由化学和机械信号调节的,然而这些信号如何相互作用仍然知之甚少。在这里,我们确定了在发育中的非洲爪蟾大脑中组织硬度和远程化学信号之间的串扰。视网膜神经节细胞或视网膜神经节细胞周围脑组织中机械敏感离子通道Piezo1的靶向敲除导致体内寻路错误。在脑实质中,Piezo1的下调降低了弥漫性远程化学引导线索Semaphorin3A (Sema3A)和Slit1的表达,它们指导远处细胞的转向反应。此外,由于粘附蛋白NCAM1和N-cadherin的表达减少,Piezo1敲低导致组织软化。靶向去除NCAM1和N-cadherin类似地降低组织硬度和Sema3A表达。相反,体外环境刚度的增加会增强组织水平的力产生和Slit1和Sema3A的表达。最后,体内软脑区的硬化通过piezo1依赖机制诱导异位Sema3A的产生。总的来说,这些发现表明,组织力学局部调节弥漫性、远距离化学信号的可用性,从而影响远离机械提示的部位的细胞功能。
{"title":"Long-range chemical signalling in vivo is regulated by mechanical signals.","authors":"Eva K Pillai, Sudipta Mukherjee, Niklas Gampl, Ross J McGinn, Katrin A Mooslehner, Julia M Becker, Alexander K Winkel, Amelia J Thompson, Kristian Franze","doi":"10.1038/s41563-025-02463-9","DOIUrl":"https://doi.org/10.1038/s41563-025-02463-9","url":null,"abstract":"<p><p>Biological processes are regulated by chemical and mechanical signals, yet how these signalling modalities interact remains poorly understood. Here we identify a crosstalk between tissue stiffness and long-range chemical signalling in the developing Xenopus laevis brain. Targeted knockdown of the mechanosensitive ion channel Piezo1 in retinal ganglion cells or in the brain tissue surrounding retinal ganglion cells causes pathfinding errors in vivo. In the brain parenchyma, Piezo1 downregulation decreases the expression of the diffusive long-range chemical guidance cues Semaphorin3A (Sema3A) and Slit1, which instruct turning responses in distant cells. Furthermore, Piezo1 knockdown results in tissue softening due to reduced expression of the adhesion proteins NCAM1 and N-cadherin. Targeted depletion of NCAM1 and N-cadherin similarly reduces tissue stiffness and Sema3A expression. Conversely, increasing environmental stiffness ex vivo enhances tissue-level force generation and Slit1 and Sema3A expression. Finally, in vivo stiffening of soft brain regions induces ectopic Sema3A production via a Piezo1-dependent mechanism. Overall, these findings demonstrate that tissue mechanics locally modulates the availability of diffusive, long-range chemical signals, thus influencing cell function at sites distant from the mechanical cue.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146003963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-area non-stoichiometric phase transition in transition metal chalcogenide films. 过渡金属硫族化物薄膜中的大面积非化学计量相变。
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-16 DOI: 10.1038/s41563-025-02471-9
Zhongqiang Chen,Jin-An Shi,Jianqi Huang,Yuan Chang,Ruijie Xu,Kankan Xu,Xu Zhang,Xudong Liu,Da Tian,Yong Zhang,Sajjad Ali,Xingze Dai,Gan Liu,Zheng Dai,Shuai Zhang,Fucong Fei,Xiaoxiang Xi,Yufeng Hao,Liang He,Wu Zhou,Teng Yang,Junfeng Gao,Feng Ding,Yongbing Xu,Fengqi Song,Biaobing Jin,Xinran Wang,Yi Shi,Rong Zhang,Xuefeng Wang
Phase engineering is of vital importance for determining the material functionalities and expanding the material library. However, the controllable and scalable phase transition of transition metal chalcogenides remains extremely challenging. The microscopic observation of the phase evolution pathway is an essential prerequisite for understanding the phase transition mechanism. Here we atomically observe a non-stoichiometric phase evolution process in large-scale superconducting PdTe2 films under heating through in situ scanning transmission electron microscopy. The unprecedented phase transition from PdTe2 to PdTe via atomic reconstruction is evidenced and theoretically verified by our machine learning molecular dynamics simulations. In particular, forming the intermediate state of PdTe2/PdTe heterostructure during the phase transition robustly generates giant-helicity-dependent terahertz emission due to inversion symmetry breaking. Our results not only provide insights into the atomic reconstruction in transition metal chalcogenides but also offer a general strategy for the fabrication of large-area transition metal monochalcogenide films and heterostructures, potentially applicable for various device applications.
阶段工程对于确定材料的功能和扩展材料库具有重要意义。然而,过渡金属硫族化合物的可控和可扩展相变仍然是极具挑战性的。相演化途径的微观观察是理解相变机理的必要前提。本文通过原位扫描电镜从原子角度观察了加热条件下大规模超导PdTe2薄膜的非化学计量相演化过程。我们的机器学习分子动力学模拟证明了通过原子重建从PdTe2到PdTe的前所未有的相变,并从理论上验证了这一点。特别是,在相变过程中形成PdTe2/PdTe异质结构的中间态,由于反转对称性破缺,会产生巨大的依赖于螺旋的太赫兹辐射。我们的研究结果不仅为过渡金属硫族化合物的原子重建提供了见解,而且为制造大面积过渡金属单硫族化合物薄膜和异质结构提供了一般策略,可能适用于各种器件应用。
{"title":"Large-area non-stoichiometric phase transition in transition metal chalcogenide films.","authors":"Zhongqiang Chen,Jin-An Shi,Jianqi Huang,Yuan Chang,Ruijie Xu,Kankan Xu,Xu Zhang,Xudong Liu,Da Tian,Yong Zhang,Sajjad Ali,Xingze Dai,Gan Liu,Zheng Dai,Shuai Zhang,Fucong Fei,Xiaoxiang Xi,Yufeng Hao,Liang He,Wu Zhou,Teng Yang,Junfeng Gao,Feng Ding,Yongbing Xu,Fengqi Song,Biaobing Jin,Xinran Wang,Yi Shi,Rong Zhang,Xuefeng Wang","doi":"10.1038/s41563-025-02471-9","DOIUrl":"https://doi.org/10.1038/s41563-025-02471-9","url":null,"abstract":"Phase engineering is of vital importance for determining the material functionalities and expanding the material library. However, the controllable and scalable phase transition of transition metal chalcogenides remains extremely challenging. The microscopic observation of the phase evolution pathway is an essential prerequisite for understanding the phase transition mechanism. Here we atomically observe a non-stoichiometric phase evolution process in large-scale superconducting PdTe2 films under heating through in situ scanning transmission electron microscopy. The unprecedented phase transition from PdTe2 to PdTe via atomic reconstruction is evidenced and theoretically verified by our machine learning molecular dynamics simulations. In particular, forming the intermediate state of PdTe2/PdTe heterostructure during the phase transition robustly generates giant-helicity-dependent terahertz emission due to inversion symmetry breaking. Our results not only provide insights into the atomic reconstruction in transition metal chalcogenides but also offer a general strategy for the fabrication of large-area transition metal monochalcogenide films and heterostructures, potentially applicable for various device applications.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"57 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical behaviour of additively manufactured metals. 增材制造金属的力学性能。
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-16 DOI: 10.1038/s41563-025-02459-5
Ting Zhu,Wen Chen
Additive manufacturing is reshaping the production of engineering components in diverse industries, such as the automotive, aerospace, defence and biomedical sectors, by offering outstanding design and fabrication flexibility. The non-equilibrium processing conditions inherent to additive manufacturing yield materials with unique microstructures and tailored mechanical properties that are often unattainable through conventional routes. This Review highlights recent advances in additively manufactured metals that show distinctive mechanical behaviours, including strength-ductility synergy, microstresses and gradient plasticity, fracture and fatigue resistance, and high-temperature creep performance. We examine the deformation mechanisms and micromechanical effects arising from the heterogeneous microstructures produced by additive manufacturing to guide the design of high-performance structural materials. Furthermore, we discuss critical research needs and emerging opportunities in processing control, alloy design, advanced characterization, computational modelling and machine learning aimed at achieving exceptional mechanical properties in additively manufactured metals.
增材制造通过提供出色的设计和制造灵活性,正在重塑汽车、航空航天、国防和生物医学等不同行业的工程部件生产。增材制造固有的非平衡加工条件使材料具有独特的微观结构和定制的机械性能,这通常是通过传统工艺无法实现的。本文重点介绍了增材制造金属的最新进展,这些金属具有独特的力学性能,包括强度-延性协同、微应力和梯度塑性、抗断裂和抗疲劳以及高温蠕变性能。我们研究了由增材制造产生的非均匀微结构引起的变形机制和微力学效应,以指导高性能结构材料的设计。此外,我们还讨论了在加工控制、合金设计、高级表征、计算建模和机器学习方面的关键研究需求和新兴机会,旨在实现增材制造金属的卓越机械性能。
{"title":"Mechanical behaviour of additively manufactured metals.","authors":"Ting Zhu,Wen Chen","doi":"10.1038/s41563-025-02459-5","DOIUrl":"https://doi.org/10.1038/s41563-025-02459-5","url":null,"abstract":"Additive manufacturing is reshaping the production of engineering components in diverse industries, such as the automotive, aerospace, defence and biomedical sectors, by offering outstanding design and fabrication flexibility. The non-equilibrium processing conditions inherent to additive manufacturing yield materials with unique microstructures and tailored mechanical properties that are often unattainable through conventional routes. This Review highlights recent advances in additively manufactured metals that show distinctive mechanical behaviours, including strength-ductility synergy, microstresses and gradient plasticity, fracture and fatigue resistance, and high-temperature creep performance. We examine the deformation mechanisms and micromechanical effects arising from the heterogeneous microstructures produced by additive manufacturing to guide the design of high-performance structural materials. Furthermore, we discuss critical research needs and emerging opportunities in processing control, alloy design, advanced characterization, computational modelling and machine learning aimed at achieving exceptional mechanical properties in additively manufactured metals.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"269 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145986634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous doping via nanoscale coating impacts the mechanics of Li intrusion in brittle solid electrolytes. 纳米涂层的非均相掺杂影响了脆性固体电解质中Li的侵入机理。
IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-16 DOI: 10.1038/s41563-025-02465-7
Xin Xu, Teng Cui, Geoff McConohy, Harsh D Jagad, Samuel S Lee, Sunny Wang, Celeste Melamed, Yufei Yang, Edward Barks, Emma Kaeli, Leah Narun, Yi Cui, Zewen Zhang, Hye Ryoung Lee, Rong Xu, Melody M Wang, Levi Hoogendoorn, Ajai Romana, Alexis Geslin, Robert Sinclair, Yi Cui, Yue Qi, X Wendy Gu, William C Chueh

Lithium dendrite intrusion in solid-state batteries limits fast charging and causes short-circuiting, yet the underlying regulating mechanisms are not well-understood. Here we discover that heterogeneous Ag+ doping dramatically affects lithium intrusion into Li6.6La3Zr1.6Ta0.4O12 (LLZO), a brittle solid electrolyte. Nanoscale Ag+ doping is achieved by thermally annealing a 3-nm-thick metallic coating on LLZO, inducing Ag-Li ion exchange and Ag diffusion into grains and grain boundaries. Density functional theory calculations and experimental characterization show negligible impact on the electronic properties and surface wettability from Ag+ incorporation. Mechanically, nanoindentation experiments show a fivefold increase in the mechanical force required to fracture the surface Ag+-doped LLZO, indicating substantial doping-induced surface toughening. Operando microprobe scanning electron microscopy experiments show that the Ag+-doped LLZO surface exhibits improved lithium plating at >250 mA cm-2 and an electroplating diameter that is expanded by over fourfold, even under an extreme indentation stress of 3 GPa. This demonstrates enhanced defect tolerance in LLZO, rather than electronic or adhesion effects. Our study reveals a chemo-mechanical mechanism via surface heterogeneous doping, complementing present bulk design rules to minimize mechanical failures in solid-state batteries.

锂枝晶在固态电池中的侵入限制了电池的快速充电并导致短路,但其潜在的调节机制尚不清楚。本研究发现,非均相Ag+掺杂显著影响了锂离子在Li6.6La3Zr1.6Ta0.4O12 (LLZO)脆性固体电解质中的侵入。通过在LLZO上热退火3 nm厚的金属涂层,诱导Ag- li离子交换和Ag向晶粒和晶界扩散,实现了纳米级Ag+掺杂。密度泛函理论计算和实验表征表明,银离子掺入对电子性能和表面润湿性的影响可以忽略不计。机械上,纳米压痕实验表明,Ag+掺杂LLZO表面断裂所需的机械力增加了5倍,表明掺杂诱导了大量的表面增韧。Operando微探针扫描电镜实验表明,在>250 mA cm-2下,Ag+掺杂的LLZO表面的锂镀层得到了改善,即使在3gpa的极端压痕应力下,电镀直径也扩大了4倍以上。这证明了LLZO的缺陷容忍度提高,而不是电子或粘附效应。我们的研究揭示了一种化学-机械机制,通过表面非均相掺杂,补充了目前的体积设计规则,以最大限度地减少固态电池的机械故障。
{"title":"Heterogeneous doping via nanoscale coating impacts the mechanics of Li intrusion in brittle solid electrolytes.","authors":"Xin Xu, Teng Cui, Geoff McConohy, Harsh D Jagad, Samuel S Lee, Sunny Wang, Celeste Melamed, Yufei Yang, Edward Barks, Emma Kaeli, Leah Narun, Yi Cui, Zewen Zhang, Hye Ryoung Lee, Rong Xu, Melody M Wang, Levi Hoogendoorn, Ajai Romana, Alexis Geslin, Robert Sinclair, Yi Cui, Yue Qi, X Wendy Gu, William C Chueh","doi":"10.1038/s41563-025-02465-7","DOIUrl":"https://doi.org/10.1038/s41563-025-02465-7","url":null,"abstract":"<p><p>Lithium dendrite intrusion in solid-state batteries limits fast charging and causes short-circuiting, yet the underlying regulating mechanisms are not well-understood. Here we discover that heterogeneous Ag<sup>+</sup> doping dramatically affects lithium intrusion into Li<sub>6.6</sub>La<sub>3</sub>Zr<sub>1.6</sub>Ta<sub>0.4</sub>O<sub>12</sub> (LLZO), a brittle solid electrolyte. Nanoscale Ag<sup>+</sup> doping is achieved by thermally annealing a 3-nm-thick metallic coating on LLZO, inducing Ag-Li ion exchange and Ag diffusion into grains and grain boundaries. Density functional theory calculations and experimental characterization show negligible impact on the electronic properties and surface wettability from Ag<sup>+</sup> incorporation. Mechanically, nanoindentation experiments show a fivefold increase in the mechanical force required to fracture the surface Ag<sup>+</sup>-doped LLZO, indicating substantial doping-induced surface toughening. Operando microprobe scanning electron microscopy experiments show that the Ag<sup>+</sup>-doped LLZO surface exhibits improved lithium plating at >250 mA cm<sup>-2</sup> and an electroplating diameter that is expanded by over fourfold, even under an extreme indentation stress of 3 GPa. This demonstrates enhanced defect tolerance in LLZO, rather than electronic or adhesion effects. Our study reveals a chemo-mechanical mechanism via surface heterogeneous doping, complementing present bulk design rules to minimize mechanical failures in solid-state batteries.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145990079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1