首页 > 最新文献

Nature Materials最新文献

英文 中文
Wafer-scale monolayer dielectric integration on atomically thin semiconductors. 原子薄半导体上的晶圆级单层介电集成。
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-12 DOI: 10.1038/s41563-025-02445-x
Zhenzhen Shen,Haoqi Wu,Chunsen Liu,Zizheng Liu,Yongbo Jiang,Tanjun Wang,Peng Zhou
A promising strategy for further miniaturizing metal-oxide-semiconductor field-effect transistors is the use of ultrathin two-dimensional channel materials. However, achieving robust dielectric integration with a sub-1-nm capacitance equivalent thickness (CET) remains challenging. Here we present a wafer-scale monolayer MoO3, transformed from MoS2, which can be seamlessly integrated with atomically thin semiconductors. Its atomically flat surface and the strong electronegativity of Mo6+ further enable the uniform deposition of high-κ dielectrics. Utilizing the 0.96-nm-CET MoO3/HfO2 as the dielectric, the top-gated p-type (n-type) two-dimensional transistors show a high ON/OFF ratio of 6.5 × 106 (3.2 × 108) and a steep subthreshold swing of 60.8 (63.1) mV dec-1. Statistical analysis of a 1,024-device array achieves a high yield of 92.2%. Furthermore, when monolayer MoO3 is used as the top-gated dielectric with an ultimately scaled CET of 0.64 nm, the gate leakage current meets the low-power limit standard (1.5 × 10-2 A cm-2) over the entire bias range. Our study provides a scalable approach for the integration of ultralow-CET dielectrics on two-dimensional materials, marking a critical step towards their future industrial deployment.
进一步小型化金属氧化物半导体场效应晶体管的一个有前途的策略是使用超薄的二维通道材料。然而,实现低于1nm的电容等效厚度(CET)的稳健介电集成仍然具有挑战性。在这里,我们提出了一种晶圆级单层MoO3,由MoS2转化而来,可以与原子薄半导体无缝集成。其原子平面和Mo6+的强电负性进一步使高κ介电体的均匀沉积成为可能。利用0.96 nm- cet的MoO3/HfO2作为介质,顶门控p型(n型)二维晶体管具有6.5 × 106 (3.2 × 108)的高开/关比和60.8 (63.1)mV / dec1的陡亚阈值摆幅。统计分析1024个器件阵列的良率达到了92.2%。此外,当使用单层MoO3作为顶门控电介质时,栅极泄漏电流在整个偏置范围内满足低功率极限标准(1.5 × 10-2 A cm-2)。我们的研究为在二维材料上集成超低cet介电体提供了一种可扩展的方法,标志着迈向其未来工业部署的关键一步。
{"title":"Wafer-scale monolayer dielectric integration on atomically thin semiconductors.","authors":"Zhenzhen Shen,Haoqi Wu,Chunsen Liu,Zizheng Liu,Yongbo Jiang,Tanjun Wang,Peng Zhou","doi":"10.1038/s41563-025-02445-x","DOIUrl":"https://doi.org/10.1038/s41563-025-02445-x","url":null,"abstract":"A promising strategy for further miniaturizing metal-oxide-semiconductor field-effect transistors is the use of ultrathin two-dimensional channel materials. However, achieving robust dielectric integration with a sub-1-nm capacitance equivalent thickness (CET) remains challenging. Here we present a wafer-scale monolayer MoO3, transformed from MoS2, which can be seamlessly integrated with atomically thin semiconductors. Its atomically flat surface and the strong electronegativity of Mo6+ further enable the uniform deposition of high-κ dielectrics. Utilizing the 0.96-nm-CET MoO3/HfO2 as the dielectric, the top-gated p-type (n-type) two-dimensional transistors show a high ON/OFF ratio of 6.5 × 106 (3.2 × 108) and a steep subthreshold swing of 60.8 (63.1) mV dec-1. Statistical analysis of a 1,024-device array achieves a high yield of 92.2%. Furthermore, when monolayer MoO3 is used as the top-gated dielectric with an ultimately scaled CET of 0.64 nm, the gate leakage current meets the low-power limit standard (1.5 × 10-2 A cm-2) over the entire bias range. Our study provides a scalable approach for the integration of ultralow-CET dielectrics on two-dimensional materials, marking a critical step towards their future industrial deployment.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"1 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental observation of liquid–solid transition of nanoconfined water at ambient temperature 室温下纳米密闭水液固转变的实验观察
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-12 DOI: 10.1038/s41563-025-02456-8
Wentian Zheng, Shichen Zhang, Jian Jiang, Yipeng He, Rainer Stöhr, Andrej Denisenko, Jörg Wrachtrup, Xiao Cheng Zeng, Ke Bian, En-Ge Wang, Ying Jiang
Nanoconfined water exhibits many abnormal properties compared with bulk water. However, the origin of those anomalies remains controversial due to the lack of experimental access to the molecular-level details of the hydrogen-bonding network of water within a nanocavity. Here we address this issue by combining scanning probe microscopy with nitrogen-vacancy-centre-based quantum sensing. Such a technique allows us to characterize both dynamics and structure of water confined between a hexagonal boron nitride flake and a hydrophilic diamond surface by nanoscale nuclear magnetic resonance. We observe a liquid–solid phase transition of nanoconfined water at ambient temperature with an onset confinement size of ~1.6 nm, below which the water diffusion is considerably suppressed and the hydrogen-bonding network of water becomes structurally ordered. The complete crystallization is observed below a confinement size of ~1 nm. The liquid–solid transition is further confirmed by molecular dynamics simulation. These findings shed new light on the phase transition of nanoconfined water and may form a unified picture for understanding water anomalies at the nanoscale.
与散装水相比,纳米承压水表现出许多异常性质。然而,由于缺乏对纳米空腔内水的氢键网络的分子水平细节的实验途径,这些异常的起源仍然存在争议。在这里,我们通过结合扫描探针显微镜和基于氮空位中心的量子传感来解决这个问题。这种技术使我们能够通过纳米级核磁共振表征六方氮化硼薄片和亲水金刚石表面之间的水的动力学和结构。在常温下,纳米约束水发生了液固相变,起始约束尺寸为~1.6 nm,在此范围内,水的扩散受到抑制,水的氢键网络结构有序。在约1 nm的约束尺寸下,观察到完整的结晶。分子动力学模拟进一步证实了液固转变。这些发现为纳米承压水的相变提供了新的线索,并可能为理解纳米尺度上的水异常形成统一的图景。
{"title":"Experimental observation of liquid–solid transition of nanoconfined water at ambient temperature","authors":"Wentian Zheng, Shichen Zhang, Jian Jiang, Yipeng He, Rainer Stöhr, Andrej Denisenko, Jörg Wrachtrup, Xiao Cheng Zeng, Ke Bian, En-Ge Wang, Ying Jiang","doi":"10.1038/s41563-025-02456-8","DOIUrl":"https://doi.org/10.1038/s41563-025-02456-8","url":null,"abstract":"Nanoconfined water exhibits many abnormal properties compared with bulk water. However, the origin of those anomalies remains controversial due to the lack of experimental access to the molecular-level details of the hydrogen-bonding network of water within a nanocavity. Here we address this issue by combining scanning probe microscopy with nitrogen-vacancy-centre-based quantum sensing. Such a technique allows us to characterize both dynamics and structure of water confined between a hexagonal boron nitride flake and a hydrophilic diamond surface by nanoscale nuclear magnetic resonance. We observe a liquid–solid phase transition of nanoconfined water at ambient temperature with an onset confinement size of ~1.6 nm, below which the water diffusion is considerably suppressed and the hydrogen-bonding network of water becomes structurally ordered. The complete crystallization is observed below a confinement size of ~1 nm. The liquid–solid transition is further confirmed by molecular dynamics simulation. These findings shed new light on the phase transition of nanoconfined water and may form a unified picture for understanding water anomalies at the nanoscale.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"39 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible two-dimensional neural sensors 柔性二维神经传感器
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41563-025-02460-y
Hyung Joon Shim, Dion Khodagholy
{"title":"Flexible two-dimensional neural sensors","authors":"Hyung Joon Shim, Dion Khodagholy","doi":"10.1038/s41563-025-02460-y","DOIUrl":"https://doi.org/10.1038/s41563-025-02460-y","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"3 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gate structuring on n-type bilayer MoS2 field-effect transistors for ultrahigh current density. 超高电流密度的n型双层MoS2场效应晶体管的栅极结构。
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41563-025-02452-y
Junyoung Kwon,Kyoung Yeon Kim,Dongwon Jang,Min Seok Yoo,Alum Jung,Dong-Su Ko,Yoonhoo Ha,Huije Ryu,Woon Ih Choi,Yeonchoo Cho,Changhyun Kim,Eunji Yang,Eun Kyu Lee,Chang-Seok Lee,Sang Won Kim,Uihui Kwon,Dae Sin Kim,Sung Kyu Lim,Kyung-Eun Byun,Minsu Seol,Jeehwan Kim
The foundry industry and academia are confronting the limits of Moore's Law scaling for logic transistors. Silicon field‑effect transistors (FETs) now rely on gate‑all‑around structures and ultrathin channels, even at the cost of decreased carrier mobility and complex fabrication processes. Two‑dimensional (2D) semiconductors offer a promising alternative because they retain their crystalline quality at atomic thicknesses. Nonetheless, whether they truly exhibit higher performance than silicon remains questionable. Here, by implementing a dual‑gate structure on bilayer MoS2 FETs, we mitigate the fringing‑field barrier created by the elevated top contact and achieve high carrier densities without increasing fabrication complexity. Simulations and statistical analysis confirm that the dual‑gate compensates the fringe field, enabling a drain current of 1.55 mA µm-1 even with conventional gold contacts. Quantum‑transport simulation indicates that, with further gate‑length and equivalent‑oxide‑thickness scaling, the on-state current can reach levels comparable to silicon FETs at the 3-nm node, and monolithic 3D integration can extend the applicability of dual‑gate 2D transistors to future logic technologies.
晶圆代工行业和学术界正面临着逻辑晶体管摩尔定律缩放的极限。硅场效应晶体管(fet)现在依赖于栅极四面结构和超薄通道,即使以降低载流子迁移率和复杂的制造工艺为代价。二维(2D)半导体提供了一个很有前途的选择,因为它们在原子厚度上保持了晶体质量。尽管如此,它们是否真的表现出比硅更高的性能仍然值得怀疑。在这里,通过在双层MoS2 fet上实现双栅极结构,我们减轻了由于顶部接触升高而产生的边缘场势垒,并在不增加制造复杂性的情况下实现了高载流子密度。仿真和统计分析证实,双栅极补偿了条纹场,即使使用传统的金触点,也能实现1.55 mAµm-1的漏极电流。量子输运模拟表明,随着栅极长度和等效氧化物厚度的进一步缩放,导通状态电流可以达到与3纳米节点的硅fet相当的水平,单片3D集成可以将双栅极2D晶体管的适用性扩展到未来的逻辑技术。
{"title":"Gate structuring on n-type bilayer MoS2 field-effect transistors for ultrahigh current density.","authors":"Junyoung Kwon,Kyoung Yeon Kim,Dongwon Jang,Min Seok Yoo,Alum Jung,Dong-Su Ko,Yoonhoo Ha,Huije Ryu,Woon Ih Choi,Yeonchoo Cho,Changhyun Kim,Eunji Yang,Eun Kyu Lee,Chang-Seok Lee,Sang Won Kim,Uihui Kwon,Dae Sin Kim,Sung Kyu Lim,Kyung-Eun Byun,Minsu Seol,Jeehwan Kim","doi":"10.1038/s41563-025-02452-y","DOIUrl":"https://doi.org/10.1038/s41563-025-02452-y","url":null,"abstract":"The foundry industry and academia are confronting the limits of Moore's Law scaling for logic transistors. Silicon field‑effect transistors (FETs) now rely on gate‑all‑around structures and ultrathin channels, even at the cost of decreased carrier mobility and complex fabrication processes. Two‑dimensional (2D) semiconductors offer a promising alternative because they retain their crystalline quality at atomic thicknesses. Nonetheless, whether they truly exhibit higher performance than silicon remains questionable. Here, by implementing a dual‑gate structure on bilayer MoS2 FETs, we mitigate the fringing‑field barrier created by the elevated top contact and achieve high carrier densities without increasing fabrication complexity. Simulations and statistical analysis confirm that the dual‑gate compensates the fringe field, enabling a drain current of 1.55 mA µm-1 even with conventional gold contacts. Quantum‑transport simulation indicates that, with further gate‑length and equivalent‑oxide‑thickness scaling, the on-state current can reach levels comparable to silicon FETs at the 3-nm node, and monolithic 3D integration can extend the applicability of dual‑gate 2D transistors to future logic technologies.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"244 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145937738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrically writing a magnetic heliknoton in a chiral magnet 在手性磁体中用电写入磁性的日子
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-07 DOI: 10.1038/s41563-025-02450-0
Long Li, Dongsheng Song, Weiwei Wang, Lingyao Kong, Shuisen Zhang, Ning Wang, Shilei Zhang, Mingliang Tian, Jiadong Zang, Yizhou Liu, Haifeng Du
{"title":"Electrically writing a magnetic heliknoton in a chiral magnet","authors":"Long Li, Dongsheng Song, Weiwei Wang, Lingyao Kong, Shuisen Zhang, Ning Wang, Shilei Zhang, Mingliang Tian, Jiadong Zang, Yizhou Liu, Haifeng Du","doi":"10.1038/s41563-025-02450-0","DOIUrl":"https://doi.org/10.1038/s41563-025-02450-0","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"2 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-nitride superconducting qubits based on atomic layer deposition 基于原子层沉积的全氮超导量子比特
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41563-025-02448-8
Danqing Wang, Yufeng Wu, Naomi Pieczulewski, Prachi Garg, Manuel C. C. Pace, Charlotte G. L. Bøttcher, Baishakhi Mazumder, David A. Muller, Hong X. Tang
{"title":"All-nitride superconducting qubits based on atomic layer deposition","authors":"Danqing Wang, Yufeng Wu, Naomi Pieczulewski, Prachi Garg, Manuel C. C. Pace, Charlotte G. L. Bøttcher, Baishakhi Mazumder, David A. Muller, Hong X. Tang","doi":"10.1038/s41563-025-02448-8","DOIUrl":"https://doi.org/10.1038/s41563-025-02448-8","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"459 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monolithic cell-on-memristor architecture enables wafer-scale integration of oscillatory chemoreceptors for bio-realistic gustatory chips 单片细胞-记忆电阻器架构使振荡化学感受器的生物逼真的味觉芯片的晶圆级集成
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41563-025-02436-y
Bowen Zhong, Xiaokun Qin, Hao Xu, Fei Deng, Hailong Wang, Linlin Li, Zhexin Li, Wenxuan Zhang, Zheng Lou, Lili Wang
{"title":"Monolithic cell-on-memristor architecture enables wafer-scale integration of oscillatory chemoreceptors for bio-realistic gustatory chips","authors":"Bowen Zhong, Xiaokun Qin, Hao Xu, Fei Deng, Hailong Wang, Linlin Li, Zhexin Li, Wenxuan Zhang, Zheng Lou, Lili Wang","doi":"10.1038/s41563-025-02436-y","DOIUrl":"https://doi.org/10.1038/s41563-025-02436-y","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"34 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A metastable tetragonal phase in two-dimensional halide perovskite lattices driven by a coherent Higgs mode 由相干希格斯模式驱动的二维卤化物钙钛矿晶格中的亚稳四方相
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-05 DOI: 10.1038/s41563-025-02433-1
Ayushi Shukla, Sraddha Agrawal, Shoshanna Peifer, Mercouri G. Kanatzidis, Pierre Darancet, Richard D. Schaller
{"title":"A metastable tetragonal phase in two-dimensional halide perovskite lattices driven by a coherent Higgs mode","authors":"Ayushi Shukla, Sraddha Agrawal, Shoshanna Peifer, Mercouri G. Kanatzidis, Pierre Darancet, Richard D. Schaller","doi":"10.1038/s41563-025-02433-1","DOIUrl":"https://doi.org/10.1038/s41563-025-02433-1","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"175 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145902858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging supermoiré relaxation in helical trilayer graphene 螺旋三层石墨烯的超红外弛豫成像
IF 41.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-05 DOI: 10.1038/s41563-025-02423-3
Jesse C. Hoke, Yifan Li, Yuwen Hu, Julian May-Mann, Kenji Watanabe, Takashi Taniguchi, Trithep Devakul, Benjamin E. Feldman
{"title":"Imaging supermoiré relaxation in helical trilayer graphene","authors":"Jesse C. Hoke, Yifan Li, Yuwen Hu, Julian May-Mann, Kenji Watanabe, Takashi Taniguchi, Trithep Devakul, Benjamin E. Feldman","doi":"10.1038/s41563-025-02423-3","DOIUrl":"https://doi.org/10.1038/s41563-025-02423-3","url":null,"abstract":"","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"41 1","pages":""},"PeriodicalIF":41.2,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of high-performance low-loading oxygen reduction catalysts for alkaline fuel cells. 碱性燃料电池高性能低负荷氧还原催化剂的合理设计。
IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-02 DOI: 10.1038/s41563-025-02422-4
Huiqi Li, Rui Zeng, Zixiao Shi, Hongsen Wang, Denis Leshchev, Eli Stavitski, Miriam M Tellez-Cruz, Weixuan Xu, Mi-Ju Kim, Andrés Molina Villarino, Qihao Li, David A Muller, Héctor D Abruña

The lack of mechanistic understanding and catalyst design principles for alkaline electrolytes, especially for the sluggish oxygen reduction reaction, has impeded the advancement of alkaline fuel cells. Here we propose a modified volcano plot and apply this rationale to strategically design Pt nanosheets with PdHx nanosheets substrates. This catalyst exhibited high stability with a specific activity of 1.71 mA cm-2 at 0.95 V versus the reversible hydrogen electrode, surpassing the benchmark of Pt/C by 49-fold. Spectroscopic, electrochemical and electron microscopic characterizations revealed that such performance enhancement originated from tensile-strained Pt{111} facets, improving oxidative stability and suppressing carbon corrosion. In fuel cell testing, the catalyst enabled a peak power density of 1.67 W cm-2 with a loading of 10 µgPGM Cathode cm-2. Further optimization delivered a peak power density of 21.7 W mg-1PGM Cathode+Anode with a total specific catalyst cost US$1.27 kW-1, surpassing the US Department of Energy's Pt group metal loading and cost targets. This study provides valuable insights into catalyst design for the alkaline oxygen reduction reaction.

缺乏对碱性电解质的机理理解和催化剂设计原则,特别是对缓慢的氧还原反应,阻碍了碱性燃料电池的发展。在这里,我们提出了一个改进的火山图,并应用这一原理来策略性地设计铂纳米片与PdHx纳米片衬底。与可逆氢电极相比,该催化剂在0.95 V下的比活度为1.71 mA cm-2,比Pt/C基准高出49倍。光谱、电化学和电镜表征表明,这种性能增强源于拉伸应变Pt{111}面,提高了氧化稳定性,抑制了碳腐蚀。在燃料电池测试中,该催化剂在阴极cm-2负载为10µgPGM的情况下实现了1.67 W cm-2的峰值功率密度。进一步优化后,阴极+阳极的峰值功率密度为21.7 W mg-1PGM,总比催化剂成本为1.27 kW-1美元,超过了美国能源部Pt族金属负载和成本目标。本研究为碱氧还原反应的催化剂设计提供了有价值的见解。
{"title":"Rational design of high-performance low-loading oxygen reduction catalysts for alkaline fuel cells.","authors":"Huiqi Li, Rui Zeng, Zixiao Shi, Hongsen Wang, Denis Leshchev, Eli Stavitski, Miriam M Tellez-Cruz, Weixuan Xu, Mi-Ju Kim, Andrés Molina Villarino, Qihao Li, David A Muller, Héctor D Abruña","doi":"10.1038/s41563-025-02422-4","DOIUrl":"https://doi.org/10.1038/s41563-025-02422-4","url":null,"abstract":"<p><p>The lack of mechanistic understanding and catalyst design principles for alkaline electrolytes, especially for the sluggish oxygen reduction reaction, has impeded the advancement of alkaline fuel cells. Here we propose a modified volcano plot and apply this rationale to strategically design Pt nanosheets with PdH<sub>x</sub> nanosheets substrates. This catalyst exhibited high stability with a specific activity of 1.71 mA cm<sup>-2</sup> at 0.95 V versus the reversible hydrogen electrode, surpassing the benchmark of Pt/C by 49-fold. Spectroscopic, electrochemical and electron microscopic characterizations revealed that such performance enhancement originated from tensile-strained Pt{111} facets, improving oxidative stability and suppressing carbon corrosion. In fuel cell testing, the catalyst enabled a peak power density of 1.67 W cm<sup>-2</sup> with a loading of 10 µg<sub>PGM Cathode</sub> cm<sup>-2</sup>. Further optimization delivered a peak power density of 21.7 W mg<sup>-1</sup><sub>PGM Cathode+Anode</sub> with a total specific catalyst cost US$1.27 kW<sup>-1</sup>, surpassing the US Department of Energy's Pt group metal loading and cost targets. This study provides valuable insights into catalyst design for the alkaline oxygen reduction reaction.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145892704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1