首页 > 最新文献

Nature Reviews Nephrology最新文献

英文 中文
A guide to studying 3D genome structure and dynamics in the kidney 肾脏三维基因组结构和动态研究指南
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-10-15 DOI: 10.1038/s41581-024-00894-2
Brian J. Beliveau, Shreeram Akilesh
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease. Here, the authors describe approaches to investigating 3D genome architecture and dynamics. They discuss the physical organization and dynamic regulation of the genome and highlight studies that have provided insights into the roles of genome structure and regulation in kidney health and disease.
人类基因组紧紧包裹在细胞核的三维环境中。绘制三维基因组结构图的方法日新月异、日臻成熟,揭示了基因组组织和基因调控的基本原理。从单个基因到整个染色体,基因组在不同尺度上进行物理组织。核膜和核小体等核标志物在划分核内基因组方面发挥着重要作用。基因组的活动(如基因转录)也在这种三维组织中进行功能分区。基因组的三维结构不是静态的,而是在不同时间尺度上受到严格调控。基因组结构随时间的动态变化代表了基因组的第四个维度。创新方法已被用于绘制重要细胞过程(包括生物体发育、对刺激的反应、细胞分裂和衰老)中基因组结构的动态调控图。此外,4D 基因组的破坏还与包括肾脏在内的各种疾病有关。随着研究 4D 基因组的工具和方法越来越容易获得,未来应用这些方法研究肾脏生物学的研究将有助于深入了解肾脏在健康和疾病中的功能。
{"title":"A guide to studying 3D genome structure and dynamics in the kidney","authors":"Brian J. Beliveau, Shreeram Akilesh","doi":"10.1038/s41581-024-00894-2","DOIUrl":"10.1038/s41581-024-00894-2","url":null,"abstract":"The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease. Here, the authors describe approaches to investigating 3D genome architecture and dynamics. They discuss the physical organization and dynamic regulation of the genome and highlight studies that have provided insights into the roles of genome structure and regulation in kidney health and disease.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 2","pages":"97-114"},"PeriodicalIF":28.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renal nerves in physiology, pathophysiology and interoception 生理、病理生理学和互感中的肾神经
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-10-03 DOI: 10.1038/s41581-024-00893-3
Louise C. Evans, Alex Dayton, John W. Osborn
Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases. Here, the authors discuss the roles of renal nerves and the effects of renal denervation in hypertension, chronic kidney disease, heart failure and arrhythmias. They suggest that interruption of afferent pathways that modulate sympathetic nervous system activity are likely to underlie some of the beneficial effects of renal denervation.
肾交感传出神经在肾功能和血压调节中起着关键作用。肾交感神经活动增加被认为会促进肾钠潴留、肾素释放和肾血管收缩,从而导致高血压。这一假说促成了治疗高血压的导管肾去神经(RDN)技术的发展。2023 年,美国食品和药物管理局批准了两种同时消融肾传出神经和肾传入神经的 RDN 设备用于该适应症。然而,在动物模型中,选择性消融肾传入神经与消融肾传出神经和肾传入神经的抗高血压效果相当,并且与交感神经活动减少有关。选择性传入 RDN 还能改善慢性肾病模型的肾功能。值得注意的是,RDN 的益处不仅限于高血压和慢性肾脏病,还扩展到与交感神经活性升高有关的其他临床病症,包括心力衰竭和心律失常。这些发现表明,肾脏是一个互感器官,因为肾脏感觉神经活动的增加会调节其他器官的交感神经活动。未来的研究需要将这些知识转化为治疗高血压和其他心肾疾病的新疗法。
{"title":"Renal nerves in physiology, pathophysiology and interoception","authors":"Louise C. Evans, Alex Dayton, John W. Osborn","doi":"10.1038/s41581-024-00893-3","DOIUrl":"10.1038/s41581-024-00893-3","url":null,"abstract":"Sympathetic efferent renal nerves have key roles in the regulation of kidney function and blood pressure. Increased renal sympathetic nerve activity is thought to contribute to hypertension by promoting renal sodium retention, renin release and renal vasoconstriction. This hypothesis led to the development of catheter-based renal denervation (RDN) for the treatment of hypertension. Two RDN devices that ablate both efferent and afferent renal nerves received FDA approval for this indication in 2023. However, in animal models, selective ablation of afferent renal nerves resulted in comparable anti-hypertensive effects to ablation of efferent and afferent renal nerves and was associated with a reduction in sympathetic nerve activity. Selective afferent RDN also improved kidney function in a chronic kidney disease model. Notably, the beneficial effects of RDN extend beyond hypertension and chronic kidney disease to other clinical conditions that are associated with elevated sympathetic nerve activity, including heart failure and arrhythmia. These findings suggest that the kidney is an interoceptive organ, as increased renal sensory nerve activity modulates sympathetic activity to other organs. Future studies are needed to translate this knowledge into novel therapies for the treatment of hypertension and other cardiorenal diseases. Here, the authors discuss the roles of renal nerves and the effects of renal denervation in hypertension, chronic kidney disease, heart failure and arrhythmias. They suggest that interruption of afferent pathways that modulate sympathetic nervous system activity are likely to underlie some of the beneficial effects of renal denervation.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 1","pages":"57-69"},"PeriodicalIF":28.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidisciplinary collaboration to improve neonatal kidney health 多学科合作改善新生儿肾脏健康
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-10-03 DOI: 10.1038/s41581-024-00895-1
Jennifer R. Charlton, David T. Selewski, Matthew W. Harer, David J. Askenazi, Michelle C. Starr, Ronnie Guillet, on behalf of the Board of the Neonatal Kidney Collaborative
The Neonatal Kidney Collaborative is a multidisciplinary initiative that aims to improve neonatal kidney health. By uniting experts and promoting trainees from various fields, the collaborative has developed a strong foundation for research, education and advocacy efforts that will advance our understanding and treatment of kidney problems in newborns.
新生儿肾脏合作组织是一项旨在改善新生儿肾脏健康的多学科计划。通过联合各领域的专家和促进受训人员的发展,该合作组织为研究、教育和宣传工作奠定了坚实的基础,这将促进我们对新生儿肾脏问题的了解和治疗。
{"title":"Multidisciplinary collaboration to improve neonatal kidney health","authors":"Jennifer R. Charlton, David T. Selewski, Matthew W. Harer, David J. Askenazi, Michelle C. Starr, Ronnie Guillet, on behalf of the Board of the Neonatal Kidney Collaborative","doi":"10.1038/s41581-024-00895-1","DOIUrl":"10.1038/s41581-024-00895-1","url":null,"abstract":"The Neonatal Kidney Collaborative is a multidisciplinary initiative that aims to improve neonatal kidney health. By uniting experts and promoting trainees from various fields, the collaborative has developed a strong foundation for research, education and advocacy efforts that will advance our understanding and treatment of kidney problems in newborns.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 1","pages":"1-2"},"PeriodicalIF":28.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New AAV vector targets glomerular endothelial cells 以肾小球内皮细胞为靶标的新型 AAV 向量
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-27 DOI: 10.1038/s41581-024-00898-y
Monica Wang
{"title":"New AAV vector targets glomerular endothelial cells","authors":"Monica Wang","doi":"10.1038/s41581-024-00898-y","DOIUrl":"10.1038/s41581-024-00898-y","url":null,"abstract":"","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 11","pages":"705-705"},"PeriodicalIF":28.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk of kidney failure among patients with genetic kidney diseases 遗传性肾病患者出现肾衰竭的风险
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-25 DOI: 10.1038/s41581-024-00896-0
Susan J. Allison
{"title":"Risk of kidney failure among patients with genetic kidney diseases","authors":"Susan J. Allison","doi":"10.1038/s41581-024-00896-0","DOIUrl":"10.1038/s41581-024-00896-0","url":null,"abstract":"","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 11","pages":"705-705"},"PeriodicalIF":28.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial transcriptomics of acute kidney injury 急性肾损伤的空间转录组学
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-25 DOI: 10.1038/s41581-024-00899-x
Susan J. Allison
{"title":"Spatial transcriptomics of acute kidney injury","authors":"Susan J. Allison","doi":"10.1038/s41581-024-00899-x","DOIUrl":"10.1038/s41581-024-00899-x","url":null,"abstract":"","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 11","pages":"705-705"},"PeriodicalIF":28.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease 处于慢性肾脏病炎症和纤维化交叉口的新陈代谢
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-17 DOI: 10.1038/s41581-024-00889-z
Verónica Miguel, Isaac W. Shaw, Rafael Kramann
Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD. Kidney fibrosis is a key pathological process in chronic kidney disease. Here, the authors examine how the metabolic reprogramming of kidney immune and non-immune cells in response to injury can promote fibrosis and consider the potential of metabolism-targeted therapies for preventing the development and progression of kidney fibrosis.
慢性肾脏病(CKD)是指肾脏功能持续丧失(3 个月),其发病率越来越高(占全球人口的 10%),但治疗方法却很有限。细胞外基质异常积聚导致的纤维化是几乎所有类型的肾脏慢性重复损伤的最终共同途径,被认为是 CKD 的标志。肌成纤维细胞是产生细胞外基质的关键细胞,受损肾小管和免疫细胞之间的串扰激活了肌成纤维细胞。新的证据表明,新陈代谢的改变会影响细胞的生物能和代谢信号,是肾脏纤维化发病机制的关键因素。免疫细胞的功能与其代谢特征密切相关,肾脏细胞似乎会因损伤而发生细胞类型特异性代谢转变,所有这些都能决定慢性肾脏病的损伤和修复反应。详细了解不同肾脏细胞亚群代谢重编程的异质性对于阐明细胞类型之间的交流过程以及开发基于代谢的慢性肾脏病创新治疗策略至关重要。
{"title":"Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease","authors":"Verónica Miguel, Isaac W. Shaw, Rafael Kramann","doi":"10.1038/s41581-024-00889-z","DOIUrl":"10.1038/s41581-024-00889-z","url":null,"abstract":"Chronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD. Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling. Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD. Kidney fibrosis is a key pathological process in chronic kidney disease. Here, the authors examine how the metabolic reprogramming of kidney immune and non-immune cells in response to injury can promote fibrosis and consider the potential of metabolism-targeted therapies for preventing the development and progression of kidney fibrosis.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 1","pages":"39-56"},"PeriodicalIF":28.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polygenic scores and their applications in kidney disease 多基因评分及其在肾病中的应用
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-13 DOI: 10.1038/s41581-024-00886-2
Atlas Khan, Krzysztof Kiryluk
Genome-wide association studies (GWAS) have uncovered thousands of risk variants that individually have small effects on the risk of human diseases, including chronic kidney disease, type 2 diabetes, heart diseases and inflammatory disorders, but cumulatively explain a substantial fraction of disease risk, underscoring the complexity and pervasive polygenicity of common disorders. This complexity poses unique challenges to the clinical translation of GWAS findings. Polygenic scores combine small effects of individual GWAS risk variants across the genome to improve personalized risk prediction. Several polygenic scores have now been developed that exhibit sufficiently large effects to be considered clinically actionable. However, their clinical use is limited by their partial transferability across ancestries and a lack of validated models that combine polygenic, monogenic, family history and clinical risk factors. Moreover, prospective studies are still needed to demonstrate the clinical utility and cost-effectiveness of polygenic scores in clinical practice. Here, we discuss evolving methods for developing polygenic scores, best practices for validating and reporting their performance, and the study designs that will empower their clinical implementation. We specifically focus on the polygenic scores relevant to nephrology and other chronic, complex diseases and review their key limitations, necessary refinements and potential clinical applications. Polygenic scores model the combined risk of multiple variants across the genome to identify individuals at inherited risk of complex diseases. This Review discusses evolving methods for developing polygenic scores and describes examples across a spectrum of disease traits.
全基因组关联研究(GWAS)发现了数以千计的风险变异,这些变异对人类疾病(包括慢性肾病、2 型糖尿病、心脏病和炎症性疾病)风险的单独影响很小,但累积起来却能解释很大一部分疾病风险,这凸显了常见疾病的复杂性和普遍的多基因性。这种复杂性给 GWAS 研究结果的临床转化带来了独特的挑战。多基因评分结合了单个 GWAS 风险变异在整个基因组中的微小影响,以改善个性化风险预测。目前已开发出几种多基因评分,它们显示出足够大的效应,可被认为具有临床可操作性。然而,由于它们在不同血统间的部分可转移性,以及缺乏结合多基因、单基因、家族史和临床风险因素的有效模型,它们在临床上的应用受到了限制。此外,还需要进行前瞻性研究,以证明多基因评分在临床实践中的临床实用性和成本效益。在此,我们将讨论不断发展的多基因评分开发方法、验证和报告多基因评分表现的最佳实践,以及有助于其临床应用的研究设计。我们特别关注与肾脏病学和其他慢性、复杂疾病相关的多基因评分,并回顾其主要局限性、必要的改进和潜在的临床应用。
{"title":"Polygenic scores and their applications in kidney disease","authors":"Atlas Khan, Krzysztof Kiryluk","doi":"10.1038/s41581-024-00886-2","DOIUrl":"10.1038/s41581-024-00886-2","url":null,"abstract":"Genome-wide association studies (GWAS) have uncovered thousands of risk variants that individually have small effects on the risk of human diseases, including chronic kidney disease, type 2 diabetes, heart diseases and inflammatory disorders, but cumulatively explain a substantial fraction of disease risk, underscoring the complexity and pervasive polygenicity of common disorders. This complexity poses unique challenges to the clinical translation of GWAS findings. Polygenic scores combine small effects of individual GWAS risk variants across the genome to improve personalized risk prediction. Several polygenic scores have now been developed that exhibit sufficiently large effects to be considered clinically actionable. However, their clinical use is limited by their partial transferability across ancestries and a lack of validated models that combine polygenic, monogenic, family history and clinical risk factors. Moreover, prospective studies are still needed to demonstrate the clinical utility and cost-effectiveness of polygenic scores in clinical practice. Here, we discuss evolving methods for developing polygenic scores, best practices for validating and reporting their performance, and the study designs that will empower their clinical implementation. We specifically focus on the polygenic scores relevant to nephrology and other chronic, complex diseases and review their key limitations, necessary refinements and potential clinical applications. Polygenic scores model the combined risk of multiple variants across the genome to identify individuals at inherited risk of complex diseases. This Review discusses evolving methods for developing polygenic scores and describes examples across a spectrum of disease traits.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 1","pages":"24-38"},"PeriodicalIF":28.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pathogenesis of IgA nephropathy and implications for treatment IgA 肾病的发病机制和治疗意义
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-04 DOI: 10.1038/s41581-024-00885-3
Chee Kay Cheung, Suceena Alexander, Heather N. Reich, Haresh Selvaskandan, Hong Zhang, Jonathan Barratt
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region — probably derived from the mucosal immune system — is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN. IgA nephropathy (IgAN) is thought to result from multiple hits that culminate in immune complex deposition in the kidney. Here, the authors describe the latest insights into the pathogenesis of IgAN and how they have revealed novel therapeutic targets and approaches to this disease.
IgA 肾病(IgAN)是原发性肾小球肾炎的一种常见形式,是全球慢性肾病的一个重要病因,观察性研究表明,大多数患者在有生之年都有发生肾衰竭的风险。一些研究进展使人们对疾病的发病机理有了更深入的了解,这种发病机理以多重打击模型为框架,即可能来自粘膜免疫系统的缺乏半乳糖的循环 IgA1 增加后,与特异性 IgG 和 IgA 抗体结合,产生沉积在肾小球内的免疫复合物,从而引发炎症、补体活化和肾脏损伤。虽然目前的治疗方案有限,但针对疾病发病机制中不同途径、细胞和介质的新疗法正在迅速出现,这些途径、细胞和介质包括肠道粘膜中的 B 细胞引物、细胞因子 APRIL 和 BAFF、浆细胞、补体激活和内皮素途径激活。随着更多治疗方法的问世,有可能改变许多 IgAN 患者的长期前景。
{"title":"The pathogenesis of IgA nephropathy and implications for treatment","authors":"Chee Kay Cheung, Suceena Alexander, Heather N. Reich, Haresh Selvaskandan, Hong Zhang, Jonathan Barratt","doi":"10.1038/s41581-024-00885-3","DOIUrl":"10.1038/s41581-024-00885-3","url":null,"abstract":"IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region — probably derived from the mucosal immune system — is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN. IgA nephropathy (IgAN) is thought to result from multiple hits that culminate in immune complex deposition in the kidney. Here, the authors describe the latest insights into the pathogenesis of IgAN and how they have revealed novel therapeutic targets and approaches to this disease.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"21 1","pages":"9-23"},"PeriodicalIF":28.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel mechanism of sodium and fluid retention in liver disease 肝病中钠和液体潴留的新机制
IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Pub Date : 2024-09-03 DOI: 10.1038/s41581-024-00892-4
Ellen F. Carney
{"title":"A novel mechanism of sodium and fluid retention in liver disease","authors":"Ellen F. Carney","doi":"10.1038/s41581-024-00892-4","DOIUrl":"10.1038/s41581-024-00892-4","url":null,"abstract":"","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 10","pages":"635-635"},"PeriodicalIF":28.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Nephrology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1