首页 > 最新文献

Nature Energy最新文献

英文 中文
Securing the nuclear fuel supply chain for a growing energy future 为日益增长的未来能源保障核燃料供应链
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-29 DOI: 10.1038/s41560-025-01931-5
Peter E. Carpenter, Bennett Johnson, Leopold Peiseler, William C. Chueh, Sally M. Benson, Adrian Yao
Experts from across the nuclear fuel cycle gathered in Arlington, USA, to strategize ways to overcome supply chain challenges and meet growing nuclear energy demand.
来自核燃料循环各个领域的专家聚集在美国阿灵顿,讨论如何克服供应链挑战,满足日益增长的核能需求。
{"title":"Securing the nuclear fuel supply chain for a growing energy future","authors":"Peter E. Carpenter, Bennett Johnson, Leopold Peiseler, William C. Chueh, Sally M. Benson, Adrian Yao","doi":"10.1038/s41560-025-01931-5","DOIUrl":"10.1038/s41560-025-01931-5","url":null,"abstract":"Experts from across the nuclear fuel cycle gathered in Arlington, USA, to strategize ways to overcome supply chain challenges and meet growing nuclear energy demand.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"30-31"},"PeriodicalIF":60.1,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Historical and future learning for the new era of multi-terawatt photovoltaics 多太瓦光伏新时代的历史与未来学习
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-23 DOI: 10.1038/s41560-025-01929-z
Kirstin Alberi, I. Marius Peters, Pierre Verlinden, Simon Philipps, Akio Koike, Teresa Barnes, Joe Berry, Mariana Bertoni, Christian Breyer, Laurie Burnham, Chris Case, Yifeng Chen, Stefaan De Wolf, Renate Egan, Armin Froitzheim, Sebastian Gatz, Markus Gloeckler, Jan Christoph Goldschmidt, Ivan Gordon, Nancy M. Haegel, Martin Hermle, Christiana Honsberg, Edward Hsi, Bill Huber, Shogo Ishizuka, Arnulf Jäger-Waldau, Joel Jean, Jessica Yajie Jiang, Shannon Jurca, Izumi Kaizuka, Richard R. King, Keiichi Komoto, Michio Kondo, Milind Kulkarni, Sarah Kurtz, Daniel Macdonald, Danielle Merfeld, Naoya Kobayashi, Shigeru Niki, Andreas Obst, Takashi Oozeki, Ulrich W. Paetzold, Jonathan Pickering, Ralf Preu, Samantha B. Reese, Christian Reichel, Thomas Reindl, Ingrid Repins, Geoffrey Ronoh, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Abdelilah Slaoui, Ron Sinton, Kamal Soni, Billy J. Stanbery, Davor Sutija, Marko Topič, Yuzuru Ueda, Juzer Vasi, Karsten Wambach, Emily Warren, Eicke Weber, Masafumi Yamaguchi, Andreas W. Bett
Solar photovoltaics (PV) is entering a new era of multi-terawatt deployment, with 2 TW already in service and more than 75 TW predicted in many scenarios by 2050. This next era has been enabled by over five decades of cumulative advances in PV module cost reduction, performance and reliability. The current scale of deployment also introduces new needs, opportunities and challenges. In this Perspective we frame a path forwards based on learning, broadly defined as a combination of expansion of knowledge and advances through research and development, experience and collaboration. We discuss historical topics where learning has driven PV deployment until now, and emerging areas that are required to sustain high levels of future deployment. We expect progress to continue in terms of module price, performance and reliability, driven by advances in PV cell and module design, the emergence of tandem devices and increased focus on extending module lifetimes. Large-scale deployment also means large-scale sustainability and responsibility. We therefore posit that additional metrics, such as the impact on global CO2 emissions, resource consumption and design for reuse and recycling, will become increasingly important to the PV industry and provide opportunities for further learning. Solar photovoltaics is entering a multi-terawatt era, driven by decades of cost, performance and reliability gains. In this Perspective Alberi et al. discuss the role of historical and future learning, highlighting the increasing importance of sustainability considerations.
太阳能光伏发电(PV)正在进入一个多太瓦部署的新时代,到2050年,已经有2太瓦投入使用,预计在许多情况下将超过75太瓦。50多年来,光伏组件在降低成本、性能和可靠性方面的累积进步,使下一个时代成为可能。目前的部署规模也带来了新的需求、机遇和挑战。在这一视角下,我们构建了一条以学习为基础的前进道路,其广义定义为知识扩张与通过研发、经验和合作取得进步的结合。我们讨论了迄今为止推动光伏部署的历史主题,以及维持未来高水平部署所需的新兴领域。我们预计,在光伏电池和组件设计的进步、串联设备的出现以及对延长组件寿命的日益关注的推动下,组件的价格、性能和可靠性将继续取得进展。大规模部署也意味着大规模的可持续性和责任。因此,我们认为其他指标,如对全球二氧化碳排放的影响、资源消耗和设计的再利用和回收,将对光伏产业变得越来越重要,并提供进一步学习的机会。在几十年来成本、性能和可靠性提升的推动下,太阳能光伏发电正在进入一个多太瓦时代。在这个视角中,Alberi等人讨论了历史和未来学习的作用,强调了可持续性考虑的重要性日益增加。
{"title":"Historical and future learning for the new era of multi-terawatt photovoltaics","authors":"Kirstin Alberi, I. Marius Peters, Pierre Verlinden, Simon Philipps, Akio Koike, Teresa Barnes, Joe Berry, Mariana Bertoni, Christian Breyer, Laurie Burnham, Chris Case, Yifeng Chen, Stefaan De Wolf, Renate Egan, Armin Froitzheim, Sebastian Gatz, Markus Gloeckler, Jan Christoph Goldschmidt, Ivan Gordon, Nancy M. Haegel, Martin Hermle, Christiana Honsberg, Edward Hsi, Bill Huber, Shogo Ishizuka, Arnulf Jäger-Waldau, Joel Jean, Jessica Yajie Jiang, Shannon Jurca, Izumi Kaizuka, Richard R. King, Keiichi Komoto, Michio Kondo, Milind Kulkarni, Sarah Kurtz, Daniel Macdonald, Danielle Merfeld, Naoya Kobayashi, Shigeru Niki, Andreas Obst, Takashi Oozeki, Ulrich W. Paetzold, Jonathan Pickering, Ralf Preu, Samantha B. Reese, Christian Reichel, Thomas Reindl, Ingrid Repins, Geoffrey Ronoh, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Abdelilah Slaoui, Ron Sinton, Kamal Soni, Billy J. Stanbery, Davor Sutija, Marko Topič, Yuzuru Ueda, Juzer Vasi, Karsten Wambach, Emily Warren, Eicke Weber, Masafumi Yamaguchi, Andreas W. Bett","doi":"10.1038/s41560-025-01929-z","DOIUrl":"10.1038/s41560-025-01929-z","url":null,"abstract":"Solar photovoltaics (PV) is entering a new era of multi-terawatt deployment, with 2 TW already in service and more than 75 TW predicted in many scenarios by 2050. This next era has been enabled by over five decades of cumulative advances in PV module cost reduction, performance and reliability. The current scale of deployment also introduces new needs, opportunities and challenges. In this Perspective we frame a path forwards based on learning, broadly defined as a combination of expansion of knowledge and advances through research and development, experience and collaboration. We discuss historical topics where learning has driven PV deployment until now, and emerging areas that are required to sustain high levels of future deployment. We expect progress to continue in terms of module price, performance and reliability, driven by advances in PV cell and module design, the emergence of tandem devices and increased focus on extending module lifetimes. Large-scale deployment also means large-scale sustainability and responsibility. We therefore posit that additional metrics, such as the impact on global CO2 emissions, resource consumption and design for reuse and recycling, will become increasingly important to the PV industry and provide opportunities for further learning. Solar photovoltaics is entering a multi-terawatt era, driven by decades of cost, performance and reliability gains. In this Perspective Alberi et al. discuss the role of historical and future learning, highlighting the increasing importance of sustainability considerations.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"38-46"},"PeriodicalIF":60.1,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical processes and the energy system 化学过程和能源系统
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-19 DOI: 10.1038/s41560-025-01954-y
Achieving a cleaner energy future depends, in part, on deployment of low-carbon chemical processes. Alongside innovations in chemistry, advances in process design and systems-level thinking are needed to deliver scalable solutions.
实现一个更清洁的能源未来,在一定程度上取决于低碳化学工艺的部署。除了化学方面的创新,还需要流程设计和系统级思维的进步来提供可扩展的解决方案。
{"title":"Chemical processes and the energy system","authors":"","doi":"10.1038/s41560-025-01954-y","DOIUrl":"10.1038/s41560-025-01954-y","url":null,"abstract":"Achieving a cleaner energy future depends, in part, on deployment of low-carbon chemical processes. Alongside innovations in chemistry, advances in process design and systems-level thinking are needed to deliver scalable solutions.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1391-1391"},"PeriodicalIF":60.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41560-025-01954-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145800044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grid-scale corrosion-free Zn/Br flow batteries enabled by a multi-electron transfer reaction 由多电子转移反应实现的电网级无腐蚀Zn/Br液流电池
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-19 DOI: 10.1038/s41560-025-01907-5
Yue Xu, Tianyu Li, Zhangquan Peng, Congxin Xie, Xianfeng Li
Flow batteries are promising for renewable energy storage due to their safety and scalability. Zinc/bromine flow batteries (Zn/Br) are popular due to their high energy densities and inexpensive electrolytes. However, they have a poor service life and lead to environmental harm as a result of the generated corrosive and volatile Br2. Here we introduce a Br2 scavenger to the catholyte, reducing the Br2 concentration to an acceptable level (~7 mM). The scavenger, sodium sulfamate (SANa), reacts rapidly with Br2 to form a mild product, N-bromo sodium sulfamate (Br-SANa; Br+). Additionally, the two-electron transfer reaction of Br-SANa/Br− (Br+/Br−) increases the energy density. We have developed a Zn/Br flow battery, paired with a Zn anode, that outperforms traditional Zn/Br flow batteries in energy density (152 Wh l−1 versus 90 Wh l−1) and cycle life (>600 versus 30 cycles), using a sulfonated polyetheretherketone membrane. We assembled a 5-kW stack that operated stably for over 700 cycles (~1,400 h). Using this reaction, we have built a large-scale battery system. Zinc-bromine flow batteries face challenges from corrosive Br2, which limits their lifespan and environmental safety. Here, the authors introduce sodium sulfamate as a Br2 scavenger, enabling a more durable and higher-energy-density Zn/Br flow battery suitable for large-scale operation.
液流电池由于其安全性和可扩展性,在可再生能源存储方面很有前景。锌/溴液流电池(Zn/Br)因其高能量密度和廉价的电解质而广受欢迎。然而,它们的使用寿命较差,并且由于产生腐蚀性和挥发性Br2而导致环境危害。我们在阴极液中加入Br2清除剂,将Br2浓度降低到可接受的水平(~7 mM)。清除剂氨基磺酸钠(SANa)与Br2迅速反应,生成温和的产物n -溴氨基磺酸钠(Br-SANa; Br+)。此外,Br- sana /Br−(Br+/Br−)的双电子转移反应增加了能量密度。我们开发了一种Zn/Br液流电池,搭配Zn阳极,使用磺化聚醚酮膜,在能量密度(152 Wh l - 1 vs 90 Wh l - 1)和循环寿命(bbb600 vs 30次循环)方面优于传统的Zn/Br液流电池。我们组装了一个5kw的堆栈,可以稳定运行700多个循环(约1,400小时)。利用这种反应,我们建立了一个大规模的电池系统。
{"title":"Grid-scale corrosion-free Zn/Br flow batteries enabled by a multi-electron transfer reaction","authors":"Yue Xu, Tianyu Li, Zhangquan Peng, Congxin Xie, Xianfeng Li","doi":"10.1038/s41560-025-01907-5","DOIUrl":"10.1038/s41560-025-01907-5","url":null,"abstract":"Flow batteries are promising for renewable energy storage due to their safety and scalability. Zinc/bromine flow batteries (Zn/Br) are popular due to their high energy densities and inexpensive electrolytes. However, they have a poor service life and lead to environmental harm as a result of the generated corrosive and volatile Br2. Here we introduce a Br2 scavenger to the catholyte, reducing the Br2 concentration to an acceptable level (~7 mM). The scavenger, sodium sulfamate (SANa), reacts rapidly with Br2 to form a mild product, N-bromo sodium sulfamate (Br-SANa; Br+). Additionally, the two-electron transfer reaction of Br-SANa/Br− (Br+/Br−) increases the energy density. We have developed a Zn/Br flow battery, paired with a Zn anode, that outperforms traditional Zn/Br flow batteries in energy density (152 Wh l−1 versus 90 Wh l−1) and cycle life (>600 versus 30 cycles), using a sulfonated polyetheretherketone membrane. We assembled a 5-kW stack that operated stably for over 700 cycles (~1,400 h). Using this reaction, we have built a large-scale battery system. Zinc-bromine flow batteries face challenges from corrosive Br2, which limits their lifespan and environmental safety. Here, the authors introduce sodium sulfamate as a Br2 scavenger, enabling a more durable and higher-energy-density Zn/Br flow battery suitable for large-scale operation.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1470-1481"},"PeriodicalIF":60.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interregional transmission can increase reliability while reducing costs and emissions in the US 在美国,跨区域传输可以提高可靠性,同时降低成本和排放
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-18 DOI: 10.1038/s41560-025-01914-6
Juan Ramon L. Senga, Audun Botterud, John E. Parsons, S. Drew Story, Christopher R. Knittel
{"title":"Interregional transmission can increase reliability while reducing costs and emissions in the US","authors":"Juan Ramon L. Senga, Audun Botterud, John E. Parsons, S. Drew Story, Christopher R. Knittel","doi":"10.1038/s41560-025-01914-6","DOIUrl":"https://doi.org/10.1038/s41560-025-01914-6","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"153 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145771049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vehicle-to-home charging can cut costs and emissions 车到户充电可以降低成本和排放
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-12 DOI: 10.1038/s41560-025-01899-2
Jiahui Chen, Gregory Keoleian, Parth Vaishnav
By optimizing the timing of electricity purchases for electric vehicle (EV) charging at home, as well as shifting electricity purchases for other household loads, US EV owners could reduce their lifetime charging costs by 40–90%, and lifecycle greenhouse gas emissions from household electricity use by 70–250%. Integrating EVs with homes can increase the greenhouse gas reductions they deliver, while reducing the cost of EV ownership.
通过优化电动汽车(EV)在家中充电的购电时间,以及改变其他家庭负荷的购电时间,美国电动汽车车主可以将其一生的充电成本降低40-90%,并将家庭用电产生的生命周期温室气体排放量降低70-250%。将电动汽车与家庭结合可以增加温室气体排放量,同时降低拥有电动汽车的成本。
{"title":"Vehicle-to-home charging can cut costs and emissions","authors":"Jiahui Chen, Gregory Keoleian, Parth Vaishnav","doi":"10.1038/s41560-025-01899-2","DOIUrl":"10.1038/s41560-025-01899-2","url":null,"abstract":"By optimizing the timing of electricity purchases for electric vehicle (EV) charging at home, as well as shifting electricity purchases for other household loads, US EV owners could reduce their lifetime charging costs by 40–90%, and lifecycle greenhouse gas emissions from household electricity use by 70–250%. Integrating EVs with homes can increase the greenhouse gas reductions they deliver, while reducing the cost of EV ownership.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1400-1401"},"PeriodicalIF":60.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41560-025-01899-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145799986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vehicle-to-home charging can cut costs and greenhouse gas emissions across the USA 汽车到家庭充电可以降低美国各地的成本和温室气体排放
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-12 DOI: 10.1038/s41560-025-01894-7
Jiahui Chen, James E. Anderson, Robert De Kleine, Hyung Chul Kim, Gregory Keoleian, Parth Vaishnav
Electric vehicles (EVs) can reduce greenhouse gas emissions, but widespread adoption is held back by higher upfront and—in some cases—lifetime ownership costs. Here, for a representative EV across the contiguous USA, we estimate the impact of different charging strategies on owners’ electricity bills and greenhouse gas emissions for charging and other household uses over the vehicle’s lifetime. We account for local climate, regional differences in vehicle use and projected grid decarbonization during the EV’s lifetime. Compared with uncontrolled charging, optimizing charging and using EV batteries to optimally shift electricity purchases for other household loads, a strategy referred to as vehicle-to-home (V2H), could reduce emissions from non-EV household loads by more than EV charging increases emissions in 69% of US counties, covering 62% of the population. V2H could cut costs by US$3,800 (5th–95th percentile range US$2,400–US$5,600) or 61% (37%–91%) and life-cycle emissions by 38 t CO2-equivalent (24 t CO2-e–57 t CO2e) or 89% (50%–150%). Upfront and lifetime costs often prevent EV adoption. Vaishnav and colleagues find that using EV batteries to shift the time of electricity purchases for other household uses can cut both owners’ electricity costs and greenhouse gas emissions.
电动汽车(ev)可以减少温室气体排放,但高昂的前期成本(在某些情况下是终身拥有成本)阻碍了电动汽车的广泛采用。在这里,我们以美国相邻地区的一辆代表性电动汽车为例,评估了不同充电策略对车主电费和温室气体排放的影响,以及车辆使用寿命期间的其他家庭使用。我们考虑了当地气候、车辆使用的区域差异以及电动汽车生命周期内预计的电网脱碳。与不受控制的充电相比,优化充电和使用电动汽车电池以最佳方式转移其他家庭负荷的电力购买,一种被称为车对户(V2H)的策略,可以减少非电动汽车家庭负荷的排放量,超过电动汽车充电增加的排放量在美国69%的县,覆盖62%的人口。V2H可以降低成本3800美元(第5 - 95百分位数范围2400 - 5600美元)或61%(37%-91%),生命周期排放38吨二氧化碳当量(24吨二氧化碳-e - 57吨二氧化碳当量)或89%(50%-150%)。
{"title":"Vehicle-to-home charging can cut costs and greenhouse gas emissions across the USA","authors":"Jiahui Chen, James E. Anderson, Robert De Kleine, Hyung Chul Kim, Gregory Keoleian, Parth Vaishnav","doi":"10.1038/s41560-025-01894-7","DOIUrl":"10.1038/s41560-025-01894-7","url":null,"abstract":"Electric vehicles (EVs) can reduce greenhouse gas emissions, but widespread adoption is held back by higher upfront and—in some cases—lifetime ownership costs. Here, for a representative EV across the contiguous USA, we estimate the impact of different charging strategies on owners’ electricity bills and greenhouse gas emissions for charging and other household uses over the vehicle’s lifetime. We account for local climate, regional differences in vehicle use and projected grid decarbonization during the EV’s lifetime. Compared with uncontrolled charging, optimizing charging and using EV batteries to optimally shift electricity purchases for other household loads, a strategy referred to as vehicle-to-home (V2H), could reduce emissions from non-EV household loads by more than EV charging increases emissions in 69% of US counties, covering 62% of the population. V2H could cut costs by US$3,800 (5th–95th percentile range US$2,400–US$5,600) or 61% (37%–91%) and life-cycle emissions by 38 t CO2-equivalent (24 t CO2-e–57 t CO2e) or 89% (50%–150%). Upfront and lifetime costs often prevent EV adoption. Vaishnav and colleagues find that using EV batteries to shift the time of electricity purchases for other household uses can cut both owners’ electricity costs and greenhouse gas emissions.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1458-1469"},"PeriodicalIF":60.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145746810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting methane into carbon nanotubes and hydrogen in a continuous flow reactor 在连续流动反应器中将甲烷转化为碳纳米管和氢气
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-08 DOI: 10.1038/s41560-025-01926-2
The co-production of carbon nanotubes and hydrogen from methane is achieved by recycling process gas in a continuous flow reactor. Developed from a single-pass reactor for carbon nanotube production, the multi-pass reactor offers efficiency improvements and the net production of hydrogen as an output value stream.
碳纳米管和氢气的联合生产是通过在连续流反应器中回收工艺气体来实现的。从用于碳纳米管生产的单道反应器发展而来的多道反应器提高了效率,并将氢的净产量作为一个产出价值流。
{"title":"Converting methane into carbon nanotubes and hydrogen in a continuous flow reactor","authors":"","doi":"10.1038/s41560-025-01926-2","DOIUrl":"10.1038/s41560-025-01926-2","url":null,"abstract":"The co-production of carbon nanotubes and hydrogen from methane is achieved by recycling process gas in a continuous flow reactor. Developed from a single-pass reactor for carbon nanotube production, the multi-pass reactor offers efficiency improvements and the net production of hydrogen as an output value stream.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"32-33"},"PeriodicalIF":60.1,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI data centres as grid-interactive assets 人工智能数据中心作为网格交互资产
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-05 DOI: 10.1038/s41560-025-01927-1
Philip Colangelo, Ayse K. Coskun, Jack Megrue, Ciaran Roberts, Shayan Sengupta, Varun Sivaram, Ethan Tiao, Aroon Vijaykar, Chris Williams, Daniel C. Wilson, Brandon Records, Zack MacFarland, Daniel Dreiling, Nathan Morey, Anuja Ratnayake, Baskar Vairamohan
{"title":"AI data centres as grid-interactive assets","authors":"Philip Colangelo, Ayse K. Coskun, Jack Megrue, Ciaran Roberts, Shayan Sengupta, Varun Sivaram, Ethan Tiao, Aroon Vijaykar, Chris Williams, Daniel C. Wilson, Brandon Records, Zack MacFarland, Daniel Dreiling, Nathan Morey, Anuja Ratnayake, Baskar Vairamohan","doi":"10.1038/s41560-025-01927-1","DOIUrl":"https://doi.org/10.1038/s41560-025-01927-1","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"1 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centimetre-scale fullerene-free tin-based perovskite solar cells with a 14.51% certified efficiency 厘米级无富勒烯锡基钙钛矿太阳能电池,认证效率为14.51%
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-05 DOI: 10.1038/s41560-025-01919-1
Tianpeng Li, Feifei He, Tao Shen, Dongsheng Yan, Zuoming Jin, Bin Li, Peilin Wang, Zhiguo Zhang, Zhi Li, Yu Pu, Liangliang Deng, Lang Qin, Wenwu Li, Yiqiang Zhan, Zhen Liu, Qiyi Fang, Yunxi Yao, Yunqi Liu, Yan Zhao, Yang Wang, Jia Liang
{"title":"Centimetre-scale fullerene-free tin-based perovskite solar cells with a 14.51% certified efficiency","authors":"Tianpeng Li, Feifei He, Tao Shen, Dongsheng Yan, Zuoming Jin, Bin Li, Peilin Wang, Zhiguo Zhang, Zhi Li, Yu Pu, Liangliang Deng, Lang Qin, Wenwu Li, Yiqiang Zhan, Zhen Liu, Qiyi Fang, Yunxi Yao, Yunqi Liu, Yan Zhao, Yang Wang, Jia Liang","doi":"10.1038/s41560-025-01919-1","DOIUrl":"https://doi.org/10.1038/s41560-025-01919-1","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"1 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1