首页 > 最新文献

Nature Energy最新文献

英文 中文
Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes 采用微尺寸合金阳极的高能锂离子电池非对称电解质设计
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-20 DOI: 10.1038/s41560-024-01619-2
Ai-Min Li, Zeyi Wang, Taeyong Lee, Nan Zhang, Tianyu Li, Weiran Zhang, Chamithri Jayawardana, Munaiah Yeddala, Brett L. Lucht, Chunsheng Wang

Micro-sized alloying anodes offer lower cost and higher capacity than graphite in Li-ion batteries. However, they suffer from fast capacity decay and low Coulombic efficiency in carbonate electrolytes because the organic solid electrolyte interphase (SEI) strongly bonds to the alloys, leading to cracks of both SEI and alloying particles, which allows electrolyte penetration and forms new SEI during lithiation–delithiation cycles. Using nano-sized alloying anodes can enhance the cell cycle life but also reduces the battery calendar life and increases the manufacturing costs. Here we significantly improved the cycle performance of micro-sized Si, Al, Sn and Bi anodes by developing asymmetric electrolytes (solvent-free ionic liquids and molecular solvent) to form LiF-rich inorganic SEI, enabling 90 mAh μSi||LiNi0.8Mn0.1Co0.1O2 and 70 mAh Li3.75Si||SPAN pouch cells (areal capacity of 4.5 mAh cm−2; N/P of 1.4) to achieve >400 cycles with a high capacity retention of >85%. The asymmetric electrolyte design forms LiF-rich interphases that enable high-capacity anodes and high-energy cathodes to achieve a long cycle life and provide a general solution for high-energy Li-ion batteries.

在锂离子电池中,微尺寸合金阳极比石墨成本更低,容量更大。然而,它们在碳酸盐电解质中存在容量衰减快和库仑效率低的问题,这是因为有机固体电解质相(SEI)与合金紧密结合,导致 SEI 和合金颗粒出现裂缝,从而使电解质渗透,并在锂化-退锂循环过程中形成新的 SEI。使用纳米尺寸的合金阳极可以提高电池循环寿命,但同时也会缩短电池日历寿命并增加制造成本。在这里,我们通过开发非对称电解质(无溶剂离子液体和分子溶剂)来形成富含 LiF 的无机 SEI,从而大幅提高了微尺寸 Si、Al、Sn 和 Bi 阳极的循环性能,使 90 mAh μSi||LiNi0.8Mn0.1Co0.1O2 和 70 mAh Li3.75Si||SPAN 袋式电池(等容量为 4.5 mAh cm-2;N/P 为 1.4)实现了 400 次循环,容量保持率高达 85%。非对称电解质设计形成了富含锂富相间,使高容量阳极和高能量阴极实现了长循环寿命,为高能量锂离子电池提供了通用解决方案。
{"title":"Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes","authors":"Ai-Min Li, Zeyi Wang, Taeyong Lee, Nan Zhang, Tianyu Li, Weiran Zhang, Chamithri Jayawardana, Munaiah Yeddala, Brett L. Lucht, Chunsheng Wang","doi":"10.1038/s41560-024-01619-2","DOIUrl":"https://doi.org/10.1038/s41560-024-01619-2","url":null,"abstract":"<p>Micro-sized alloying anodes offer lower cost and higher capacity than graphite in Li-ion batteries. However, they suffer from fast capacity decay and low Coulombic efficiency in carbonate electrolytes because the organic solid electrolyte interphase (SEI) strongly bonds to the alloys, leading to cracks of both SEI and alloying particles, which allows electrolyte penetration and forms new SEI during lithiation–delithiation cycles. Using nano-sized alloying anodes can enhance the cell cycle life but also reduces the battery calendar life and increases the manufacturing costs. Here we significantly improved the cycle performance of micro-sized Si, Al, Sn and Bi anodes by developing asymmetric electrolytes (solvent-free ionic liquids and molecular solvent) to form LiF-rich inorganic SEI, enabling 90 mAh μSi||LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> and 70 mAh Li<sub>3.75</sub>Si||SPAN pouch cells (areal capacity of 4.5 mAh cm<sup>−2</sup>; N/P of 1.4) to achieve &gt;400 cycles with a high capacity retention of &gt;85%. The asymmetric electrolyte design forms LiF-rich interphases that enable high-capacity anodes and high-energy cathodes to achieve a long cycle life and provide a general solution for high-energy Li-ion batteries.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing how energy companies negotiate with landowners when obtaining land for hydraulic fracturing 评估能源公司在获得水力压裂用地时如何与土地所有者谈判
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-19 DOI: 10.1038/s41560-024-01601-y
Ben Farrer, Robert Holahan, Kellyanne Allen, Lydia Allen, Jonathan E. Doriscar, Victoria Johnson, Tara Riggs, Soleil Smith

To extract natural gas through hydraulic fracturing, energy companies often need to obtain consent from many different private landowners, whose properties lie atop the gas reservoir. Negotiations with these landowners have important economic, environmental and social implications. In this paper we present a dataset on negotiations in Ohio and use these data to investigate how landowners may be advantaged or disadvantaged in these lease negotiations. We find that they are disadvantaged in two ways. First, because energy companies can use persistent and personal strategies to overcome landowner reluctance. Second, because of the institutional context: specifically the widespread use of compulsory unitization. We conclude by discussing the implications of these findings for equity in energy policy and by drawing out the other potential uses of these data.

要通过水力压裂法开采天然气,能源公司往往需要征得许多不同的私人土地所有者的同意,这些土地所有者的财产位于天然气储层之上。与这些土地所有者的谈判具有重要的经济、环境和社会影响。在本文中,我们介绍了俄亥俄州的谈判数据集,并利用这些数据研究了土地所有者在这些租约谈判中的优势或劣势。我们发现他们在两个方面处于不利地位。首先,因为能源公司可以利用持久的个人策略来克服土地所有者的不情愿。其次,由于制度背景:特别是强制单位化的广泛使用。最后,我们讨论了这些发现对能源政策公平性的影响,并指出了这些数据的其他潜在用途。
{"title":"Assessing how energy companies negotiate with landowners when obtaining land for hydraulic fracturing","authors":"Ben Farrer, Robert Holahan, Kellyanne Allen, Lydia Allen, Jonathan E. Doriscar, Victoria Johnson, Tara Riggs, Soleil Smith","doi":"10.1038/s41560-024-01601-y","DOIUrl":"https://doi.org/10.1038/s41560-024-01601-y","url":null,"abstract":"<p>To extract natural gas through hydraulic fracturing, energy companies often need to obtain consent from many different private landowners, whose properties lie atop the gas reservoir. Negotiations with these landowners have important economic, environmental and social implications. In this paper we present a dataset on negotiations in Ohio and use these data to investigate how landowners may be advantaged or disadvantaged in these lease negotiations. We find that they are disadvantaged in two ways. First, because energy companies can use persistent and personal strategies to overcome landowner reluctance. Second, because of the institutional context: specifically the widespread use of compulsory unitization. We conclude by discussing the implications of these findings for equity in energy policy and by drawing out the other potential uses of these data.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-aqueous alkoxide-mediated electrochemical carbon capture 非水氧化碱介导的电化学碳捕获
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-16 DOI: 10.1038/s41560-024-01614-7
Andong Liu, Charles B. Musgrave, Xing Li, William A. Goddard, Yayuan Liu

Electrochemically mediated carbon capture utilizing redox-tunable organic sorbents has emerged as a promising strategy to mitigate anthropogenic carbon dioxide emissions. However, most reported systems are sensitive to molecular oxygen, severely limiting their application under ambient air conditions. Here we demonstrate an electrochemical carbon capture concept via non-aqueous proton-coupled electron transfer, where alkoxides are employed as the active sorbent while carbon dioxide absorption and desorption are modulated reversibly by the redox-tunable Brønsted basicity of certain organic molecules. Since all species involved in the process have outstanding oxygen stability and relatively low vapour pressure, our electrochemically mediated carbon capture mechanism intrinsically minimizes parasitic reactions and evaporative losses under aerobic conditions. Flow-based prototypes are demonstrated to operate efficiently in the presence of 20% oxygen under various practically relevant carbon dioxide feed concentrations, paving a way towards effective carbon capture driven by electrochemical stimuli.

利用氧化还原可调的有机吸附剂进行电化学介导的碳捕获已成为减缓人为二氧化碳排放的一种有前途的策略。然而,大多数报道的系统对分子氧敏感,严重限制了它们在环境空气条件下的应用。在这里,我们展示了一种通过非水质质子耦合电子转移进行电化学碳捕获的概念,其中烷氧基化合物被用作活性吸附剂,而二氧化碳的吸收和解吸则由某些有机分子的氧化还原可调布氏碱性可逆调节。由于该过程中涉及的所有物质都具有出色的氧稳定性和相对较低的蒸汽压,我们的电化学介导碳捕集机制从本质上最大限度地减少了有氧条件下的寄生反应和蒸发损失。基于流动的原型已证明可在 20% 的氧气存在下,在各种实际相关的二氧化碳进料浓度下高效运行,为电化学刺激驱动的有效碳捕获铺平了道路。
{"title":"Non-aqueous alkoxide-mediated electrochemical carbon capture","authors":"Andong Liu, Charles B. Musgrave, Xing Li, William A. Goddard, Yayuan Liu","doi":"10.1038/s41560-024-01614-7","DOIUrl":"https://doi.org/10.1038/s41560-024-01614-7","url":null,"abstract":"<p>Electrochemically mediated carbon capture utilizing redox-tunable organic sorbents has emerged as a promising strategy to mitigate anthropogenic carbon dioxide emissions. However, most reported systems are sensitive to molecular oxygen, severely limiting their application under ambient air conditions. Here we demonstrate an electrochemical carbon capture concept via non-aqueous proton-coupled electron transfer, where alkoxides are employed as the active sorbent while carbon dioxide absorption and desorption are modulated reversibly by the redox-tunable Brønsted basicity of certain organic molecules. Since all species involved in the process have outstanding oxygen stability and relatively low vapour pressure, our electrochemically mediated carbon capture mechanism intrinsically minimizes parasitic reactions and evaporative losses under aerobic conditions. Flow-based prototypes are demonstrated to operate efficiently in the presence of 20% oxygen under various practically relevant carbon dioxide feed concentrations, paving a way towards effective carbon capture driven by electrochemical stimuli.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells 二胺螯合物提高锡铅混合和全长晶串联太阳能电池的稳定性
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-15 DOI: 10.1038/s41560-024-01613-8
Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent

Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.

过氧化物串联太阳能电池显示出良好的性能,但非辐射性重组及其随时间的逐渐恶化,尤其是在锡铅混合低带隙层中,限制了性能和稳定性。在这里,我们发现锡铅混合包晶体薄膜呈现出一种成分梯度,表面的锡过量--我们发现这种梯度加剧了氧化并增加了重组率。我们发现,二胺会优先螯合锡原子,将它们从薄膜表面移除,实现更平衡的锡:铅化学计量,从而使薄膜表面对锡的氧化具有抵抗力。这一过程形成了电阻性低维阻挡层,钝化了缺陷,减少了界面重组。使用 1,2-二氨基丙烷进一步提高阻挡层的均匀性,使其分布和钝化更加均匀。串联系统的功率转换效率达到 28.8%。在空气中模拟单太阳光照、无冷却的情况下,封装串联系统在最大功率点运行 1000 小时后,仍能保持 90% 的初始效率。
{"title":"Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells","authors":"Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent","doi":"10.1038/s41560-024-01613-8","DOIUrl":"https://doi.org/10.1038/s41560-024-01613-8","url":null,"abstract":"<p>Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells 实现太阳能电池快速印刷的导电胶体包覆晶量子点油墨
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-13 DOI: 10.1038/s41560-024-01608-5
Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan

Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI3 (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI3 PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm2) fabrication using the blade-coating technique with a speed up to 50 mm s−1.

量子点(QD)为大面积光电应用的半导体高通量加工提供了一个多功能平台。遗憾的是,量子点太阳能电池受制于耗时的逐层制备工艺,这是制造可印刷器件的一大挑战。在这里,我们展示了一种顺序酰化配位协议,包括胺辅助配体去除和路易斯碱配位表面修复,以合成导电 APbI3(A = 甲脒 (FA)、铯或甲基铵)胶体包晶状 QD(PeQD)油墨,无需额外的固态配体交换即可实现一步式 PeQD 薄膜沉积。所制备的 PeQD 薄膜具有均匀的形貌、更高的电子耦合、更有序的结构和均匀的能量分布。基于 FAPbI3 PeQD 的窄带隙太阳能电池的冠军效率达到了 16.61%(认证值为 16.20%),超过了使用其他 QD 墨水和逐层工艺获得的数值。导电 PeQD 油墨可用于使用刀片涂层技术制造大面积器件(9 × 9 cm2),速度可达 50 mm s-1。
{"title":"Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells","authors":"Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan","doi":"10.1038/s41560-024-01608-5","DOIUrl":"https://doi.org/10.1038/s41560-024-01608-5","url":null,"abstract":"<p>Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI<sub>3</sub> (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI<sub>3</sub> PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm<sup>2</sup>) fabrication using the blade-coating technique with a speed up to 50 mm s<sup>−1</sup>.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and opportunities in truck electrification revealed by big operational data 运营大数据揭示卡车电气化的挑战与机遇
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-12 DOI: 10.1038/s41560-024-01602-x
Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu

The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO2 emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO2 emissions than diesel trucks.

卡车电气化是实现零排放运输的一大挑战。在此,我们收集了中国 61598 辆电动卡车的全年记录。与柴油卡车相比,目前电动卡车的使用率明显偏低。23%的电动运货卡车和 30% 的电动半挂牵引车可以实现与柴油卡车的一对一替代,而平均需要 3.8 辆电动运货卡车和 3.6 辆电动半挂牵引车才能满足单独一辆柴油卡车的运输需求。对于能够一对一替代的柴油卡车,电动卡车的成本和生命周期内的二氧化碳排放量分别降低了 15% 至 54%,以及 1% 至 49%。使用模式、车辆技术和充电基础设施的改进可以提高电气化的可行性,带来成本和脱碳效益。通过优化使用提高电池能量密度,可使 85% 以上的柴油半挂车实现一对一电气化。此外,在使用清洁电力的情况下,2030 年大多数中国电动卡车的预期生命周期二氧化碳排放量将低于柴油卡车。
{"title":"Challenges and opportunities in truck electrification revealed by big operational data","authors":"Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu","doi":"10.1038/s41560-024-01602-x","DOIUrl":"https://doi.org/10.1038/s41560-024-01602-x","url":null,"abstract":"<p>The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO<sub>2</sub> emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO<sub>2</sub> emissions than diesel trucks.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodes with 100% active materials 100% 活性材料电极
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-08 DOI: 10.1038/s41560-024-01595-7
Eric McCalla
Battery researchers are struggling to design viable all-solid batteries, which promise enhanced safety but are currently achievable only at a high cost and with complex cell designs. Now a study on a sulfide-based cathode material demonstrates that a radical redesign of the electrode using 100% active material may help address the issue.
电池研究人员一直在努力设计可行的全固态电池,这种电池有望提高安全性,但目前只能通过高成本和复杂的电池设计来实现。现在,一项关于硫化物基阴极材料的研究表明,使用 100% 活性材料对电极进行彻底的重新设计可能有助于解决这一问题。
{"title":"Electrodes with 100% active materials","authors":"Eric McCalla","doi":"10.1038/s41560-024-01595-7","DOIUrl":"https://doi.org/10.1038/s41560-024-01595-7","url":null,"abstract":"Battery researchers are struggling to design viable all-solid batteries, which promise enhanced safety but are currently achievable only at a high cost and with complex cell designs. Now a study on a sulfide-based cathode material demonstrates that a radical redesign of the electrode using 100% active material may help address the issue.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes 利用优化的空穴传输材料和反应性较低的电极提高 pi-n 型过氧化物太阳能电池的反向偏压稳定性
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-07 DOI: 10.1038/s41560-024-01600-z
Fangyuan Jiang, Yangwei Shi, Tanka R. Rana, Daniel Morales, Isaac E. Gould, Declan P. McCarthy, Joel A. Smith, M. Greyson Christoforo, Muammer Y. Yaman, Faiz Mandani, Tanguy Terlier, Hannah Contreras, Stephen Barlow, Aditya D. Mohite, Henry J. Snaith, Seth R. Marder, J. Devin MacKenzie, Michael D. McGehee, David S. Ginger

As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels.

随着包晶光伏技术向商业化迈进,必须与照明电池电流匹配的遮光电池的反向偏压降解是一项严峻的挑战。先前的研究强调了碘化物和银氧化的作用,以及空穴从电子传输层隧穿到包晶体中,使电流在反向偏压下流动导致降解的作用。在这里,我们展示了器件结构工程对包晶石太阳能电池反向偏压行为的重大影响。通过采用约 35 纳米厚的共轭聚合物空穴传输层和电化学性能更稳定的背电极,我们展示了超过 -15 V 的平均击穿电压,与硅电池相当。我们提高击穿电压的策略减少了保护部分遮光的太阳能模块所需的旁路二极管数量,这已被证明是硅太阳能电池板的有效策略。
{"title":"Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes","authors":"Fangyuan Jiang, Yangwei Shi, Tanka R. Rana, Daniel Morales, Isaac E. Gould, Declan P. McCarthy, Joel A. Smith, M. Greyson Christoforo, Muammer Y. Yaman, Faiz Mandani, Tanguy Terlier, Hannah Contreras, Stephen Barlow, Aditya D. Mohite, Henry J. Snaith, Seth R. Marder, J. Devin MacKenzie, Michael D. McGehee, David S. Ginger","doi":"10.1038/s41560-024-01600-z","DOIUrl":"https://doi.org/10.1038/s41560-024-01600-z","url":null,"abstract":"<p>As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chirality for stable interfaces 稳定界面的手性
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-06 DOI: 10.1038/s41560-024-01597-5
Juan-Pablo Correa-Baena
Interfacial engineering is key to ensure the long-term stability of perovskite solar cells. Research now shows that chiral molecules can both improve the mechanical stability of the interfaces and afford passivation of defects at the perovskite surface, making solar cells more tolerant to thermal cycling stress.
界面工程是确保过氧化物太阳能电池长期稳定性的关键。目前的研究表明,手性分子既能提高界面的机械稳定性,又能钝化过氧化物表面的缺陷,使太阳能电池更能承受热循环应力。
{"title":"Chirality for stable interfaces","authors":"Juan-Pablo Correa-Baena","doi":"10.1038/s41560-024-01597-5","DOIUrl":"https://doi.org/10.1038/s41560-024-01597-5","url":null,"abstract":"Interfacial engineering is key to ensure the long-term stability of perovskite solar cells. Research now shows that chiral molecules can both improve the mechanical stability of the interfaces and afford passivation of defects at the perovskite surface, making solar cells more tolerant to thermal cycling stress.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation 量子约束诱导的金属镍氢氧化电催化剂的抗电氧化作用
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-08-05 DOI: 10.1038/s41560-024-01604-9
Yuanyuan Zhou, Wei Yuan, Mengting Li, Zhenyang Xie, Xiaoyun Song, Yang Yang, Jian Wang, Li Li, Wei Ding, Wen-Feng Lin, Zidong Wei

The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle.

阴离子交换膜燃料电池(AEMFC)是一种极具吸引力和成本效益的能源转换技术,因为它可以使用地球上丰富且低成本的非贵金属催化剂。然而,AEMFC 中用于催化氢氧化反应的非贵金属容易发生自氧化,导致不可逆转的失效。在这里,我们展示了一种量子井状催化结构(QWCS),它是通过将镍纳米粒子原子限制在掺碳的氧化钼/氧化钼异质结(C-MoOx/MoOx)中而构建的,可以选择性地转移氢氧化反应中的外部电子,同时自身仍保持金属性。镍纳米粒子的电子获得了 QWCS 提供的 1.11 eV 的势垒,从而使镍相对于可逆氢电极(VRHE)的稳定性高达 1.2 V。QWCS 催化的 AEMFC 实现了 486 mW mgNi-1 的高功率密度,并在关机-启动循环期间经受住了氢饥饿操作,而没有 QWCS 的对应 AEMFC 在一个循环中就失效了。
{"title":"Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation","authors":"Yuanyuan Zhou, Wei Yuan, Mengting Li, Zhenyang Xie, Xiaoyun Song, Yang Yang, Jian Wang, Li Li, Wei Ding, Wen-Feng Lin, Zidong Wei","doi":"10.1038/s41560-024-01604-9","DOIUrl":"https://doi.org/10.1038/s41560-024-01604-9","url":null,"abstract":"<p>The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoO<sub><i>x</i></sub>/MoO<sub><i>x</i></sub> heterojunction (C-MoO<sub><i>x</i></sub>/MoO<sub><i>x</i></sub>) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (V<sub>RHE</sub>) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mg<sub>Ni</sub><sup>−1</sup> and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1