Pub Date : 2025-02-13DOI: 10.1038/s41560-025-01714-y
Sayan Kar, Dongseok Kim, Ariffin Bin Mohamad Annuar, Bidyut Bikash Sarma, Michael Stanton, Erwin Lam, Subhajit Bhattacharjee, Suvendu Karak, Heather F. Greer, Erwin Reisner
Direct air capture is an emerging technology to decrease atmospheric CO2 levels, but it is currently costly and the long-term consequences of CO2 storage are uncertain. An alternative approach is to utilize atmospheric CO2 on-site to produce value-added renewable fuels, but current CO2 utilization technologies predominantly require a concentrated CO2 feed or high temperature. Here we report a gas-phase dual-bed direct air carbon capture and utilization flow reactor that produces syngas (CO + H2) through on-site utilization of air-captured CO2 using light without requiring high temperature or pressure. The reactor consists of a bed of solid silica-amine adsorbent to capture aerobic CO2 and produce CO2-free air; concentrated light is used to release the captured CO2 and convert it to syngas over a bed of a silica/alumina-titania-cobalt bis(terpyridine) molecular–semiconductor photocatalyst. We use the oxidation of depolymerized poly(ethylene terephthalate) plastics as the counter-reaction. We envision this technology to operate in a diurnal fashion where CO2 is captured during night-time and converted to syngas under concentrated sunlight during the day.
{"title":"Direct air capture of CO2 for solar fuel production in flow","authors":"Sayan Kar, Dongseok Kim, Ariffin Bin Mohamad Annuar, Bidyut Bikash Sarma, Michael Stanton, Erwin Lam, Subhajit Bhattacharjee, Suvendu Karak, Heather F. Greer, Erwin Reisner","doi":"10.1038/s41560-025-01714-y","DOIUrl":"https://doi.org/10.1038/s41560-025-01714-y","url":null,"abstract":"<p>Direct air capture is an emerging technology to decrease atmospheric CO<sub>2</sub> levels, but it is currently costly and the long-term consequences of CO<sub>2</sub> storage are uncertain. An alternative approach is to utilize atmospheric CO<sub>2</sub> on-site to produce value-added renewable fuels, but current CO<sub>2</sub> utilization technologies predominantly require a concentrated CO<sub>2</sub> feed or high temperature. Here we report a gas-phase dual-bed direct air carbon capture and utilization flow reactor that produces syngas (CO + H<sub>2</sub>) through on-site utilization of air-captured CO<sub>2</sub> using light without requiring high temperature or pressure. The reactor consists of a bed of solid silica-amine adsorbent to capture aerobic CO<sub>2</sub> and produce CO<sub>2</sub>-free air; concentrated light is used to release the captured CO<sub>2</sub> and convert it to syngas over a bed of a silica/alumina-titania-cobalt bis(terpyridine) molecular–semiconductor photocatalyst. We use the oxidation of depolymerized poly(ethylene terephthalate) plastics as the counter-reaction. We envision this technology to operate in a diurnal fashion where CO<sub>2</sub> is captured during night-time and converted to syngas under concentrated sunlight during the day.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"19 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143401309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41560-025-01723-x
Chenyang Duan, Han Gao, Ke Xiao, Vishal Yeddu, Bo Wang, Renxing Lin, Hongfei Sun, Pu Wu, Yameen Ahmed, Anh Dinh Bui, Xuntian Zheng, Yurui Wang, Jin Wen, Yinke Wang, Wennan Ou, Chenshuaiyu Liu, Yuhong Zhang, Hieu Nguyen, Haowen Luo, Ludong Li, Ye Liu, Xin Luo, Makhsud I. Saidaminov, Hairen Tan
{"title":"Author Correction: Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells","authors":"Chenyang Duan, Han Gao, Ke Xiao, Vishal Yeddu, Bo Wang, Renxing Lin, Hongfei Sun, Pu Wu, Yameen Ahmed, Anh Dinh Bui, Xuntian Zheng, Yurui Wang, Jin Wen, Yinke Wang, Wennan Ou, Chenshuaiyu Liu, Yuhong Zhang, Hieu Nguyen, Haowen Luo, Ludong Li, Ye Liu, Xin Luo, Makhsud I. Saidaminov, Hairen Tan","doi":"10.1038/s41560-025-01723-x","DOIUrl":"https://doi.org/10.1038/s41560-025-01723-x","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"12 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41560-025-01705-z
Byungha Shin
The performance of kesterite solar cells is limited by poor extraction of electrons and holes and their recombination. Researchers have now discovered that annealing the device in a hydrogen-containing atmosphere can promote efficient charge extraction by redistributing certain elements like sodium and oxygen.
{"title":"Charge extraction with hydrogen","authors":"Byungha Shin","doi":"10.1038/s41560-025-01705-z","DOIUrl":"10.1038/s41560-025-01705-z","url":null,"abstract":"The performance of kesterite solar cells is limited by poor extraction of electrons and holes and their recombination. Researchers have now discovered that annealing the device in a hydrogen-containing atmosphere can promote efficient charge extraction by redistributing certain elements like sodium and oxygen.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"157-158"},"PeriodicalIF":49.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s41560-025-01713-z
Silvana Lakeman
Jennifer Danis, expert in environmental and energy law and Federal Energy Policy Director at the Institute for Policy Integrity (New York University School of Law), talks to Nature Energy about shifts in the gas infrastructure landscape of the United States, highlighting gaps and opportunities for research and policy to be better aligned for positive change.
{"title":"The gas infrastructure shift in the United States","authors":"Silvana Lakeman","doi":"10.1038/s41560-025-01713-z","DOIUrl":"https://doi.org/10.1038/s41560-025-01713-z","url":null,"abstract":"Jennifer Danis, expert in environmental and energy law and Federal Energy Policy Director at the Institute for Policy Integrity (New York University School of Law), talks to Nature Energy about shifts in the gas infrastructure landscape of the United States, highlighting gaps and opportunities for research and policy to be better aligned for positive change.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"55 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05DOI: 10.1038/s41560-025-01706-y
Chibueze V. Amanchukwu
Improving the solid–electrolyte interface at the lithium-metal interface is key to stabilizing rechargeable metal batteries. Now, stabilizing the cathode electrolyte interface through molecular optimization of the salt anion is shown to support the formation of a robust inorganic polymer and conductive interface, enabling high energy and power densities at various current densities and temperatures.
{"title":"A dash of salt","authors":"Chibueze V. Amanchukwu","doi":"10.1038/s41560-025-01706-y","DOIUrl":"10.1038/s41560-025-01706-y","url":null,"abstract":"Improving the solid–electrolyte interface at the lithium-metal interface is key to stabilizing rechargeable metal batteries. Now, stabilizing the cathode electrolyte interface through molecular optimization of the salt anion is shown to support the formation of a robust inorganic polymer and conductive interface, enabling high energy and power densities at various current densities and temperatures.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"155-156"},"PeriodicalIF":49.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05DOI: 10.1038/s41560-025-01703-1
Rik van Heerden, Oreane Y. Edelenbosch, Vassilis Daioglou, Thomas Le Gallic, Luiz Bernardo Baptista, Alice Di Bella, Francesco Pietro Colelli, Johannes Emmerling, Panagiotis Fragkos, Robin Hasse, Johanna Hoppe, Paul Kishimoto, Florian Leblanc, Julien Lefèvre, Gunnar Luderer, Giacomo Marangoni, Alessio Mastrucci, Hazel Pettifor, Robert Pietzcker, Pedro Rochedo, Bas van Ruijven, Roberto Schaeffer, Charlie Wilson, Sonia Yeh, Eleftheria Zisarou, Detlef van Vuuren
Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
{"title":"Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050","authors":"Rik van Heerden, Oreane Y. Edelenbosch, Vassilis Daioglou, Thomas Le Gallic, Luiz Bernardo Baptista, Alice Di Bella, Francesco Pietro Colelli, Johannes Emmerling, Panagiotis Fragkos, Robin Hasse, Johanna Hoppe, Paul Kishimoto, Florian Leblanc, Julien Lefèvre, Gunnar Luderer, Giacomo Marangoni, Alessio Mastrucci, Hazel Pettifor, Robert Pietzcker, Pedro Rochedo, Bas van Ruijven, Roberto Schaeffer, Charlie Wilson, Sonia Yeh, Eleftheria Zisarou, Detlef van Vuuren","doi":"10.1038/s41560-025-01703-1","DOIUrl":"https://doi.org/10.1038/s41560-025-01703-1","url":null,"abstract":"<p>Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO<sub>2</sub> emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"8 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1038/s41560-025-01708-w
Katharina Oemmelen
Long-term immersive fieldwork provides vital experiences and insights to advance energy access research in developing countries, argues Katharina Oemmelen.
{"title":"On-the-ground fieldwork elevates community voices in energy access research","authors":"Katharina Oemmelen","doi":"10.1038/s41560-025-01708-w","DOIUrl":"https://doi.org/10.1038/s41560-025-01708-w","url":null,"abstract":"Long-term immersive fieldwork provides vital experiences and insights to advance energy access research in developing countries, argues Katharina Oemmelen.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"55 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1038/s41560-025-01707-x
Observations of salt formation in CO2 reduction electrolysers were used to propose a mechanism for salt precipitation linked to the drying of liquid droplets carrying cations and (bi)carbonate ions. A hydrophobic surface coating was used to remove droplets from the flow channels before they can dry, increasing the operational stability of the electrolyser.
{"title":"Managing bicarbonate salt formation in CO2 reduction electrolysers for stable operation","authors":"","doi":"10.1038/s41560-025-01707-x","DOIUrl":"10.1038/s41560-025-01707-x","url":null,"abstract":"Observations of salt formation in CO2 reduction electrolysers were used to propose a mechanism for salt precipitation linked to the drying of liquid droplets carrying cations and (bi)carbonate ions. A hydrophobic surface coating was used to remove droplets from the flow channels before they can dry, increasing the operational stability of the electrolyser.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"164-165"},"PeriodicalIF":49.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1038/s41560-025-01712-0
With the start of a new year, we take a moment to look back at a selection of standout papers from 2024 in Nature Energy, exploring their key contributions and prospective influence.
{"title":"Retrospective on research in 2024","authors":"","doi":"10.1038/s41560-025-01712-0","DOIUrl":"10.1038/s41560-025-01712-0","url":null,"abstract":"With the start of a new year, we take a moment to look back at a selection of standout papers from 2024 in Nature Energy, exploring their key contributions and prospective influence.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"1-2"},"PeriodicalIF":49.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-025-01712-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1038/s41560-024-01673-w
Silvana Lakeman
Martín Obaya, expert in Latin American lithium mining and supply chains at the National Scientific and Technical Research Council-Universidad Nacional de San Martín in Argentina, talks to Nature Energy about navigating lithium supply and demand, highlighting nuance in stakeholder expectations and the importance of research in this relationship.
{"title":"Lithium Triangle supply chains","authors":"Silvana Lakeman","doi":"10.1038/s41560-024-01673-w","DOIUrl":"10.1038/s41560-024-01673-w","url":null,"abstract":"Martín Obaya, expert in Latin American lithium mining and supply chains at the National Scientific and Technical Research Council-Universidad Nacional de San Martín in Argentina, talks to Nature Energy about navigating lithium supply and demand, highlighting nuance in stakeholder expectations and the importance of research in this relationship.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"6-7"},"PeriodicalIF":49.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}