首页 > 最新文献

Nature Energy最新文献

英文 中文
Emerging opportunities for high-temperature solid-state and gas-cycle heat pumps 高温固态和气体循环热泵的新机遇
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-05 DOI: 10.1038/s41560-025-01908-4
Andrej Kitanovski, Katja Klinar, Ercang Luo, Miguel Muñoz Rojo, Vladimir Soldo, Luka Boban, Kaiqi Luo, Rui Yang, Xavier Moya
Industrial-sector decarbonization requires the adoption of energy-efficient heating technologies such as heat pumps. Among these, vapour compression is the most efficient method. However, its refrigerants pose environmental and safety concerns and preclude heat-pump operation above 600 K. Many industrial processes operating above this temperature use fossil fuels or resistive electrical heating, which generate a substantial amount of unused waste heat. It is therefore essential to develop technologies that efficiently recover and pump heat at such high temperatures. In this Review, we highlight the opportunities and challenges for emerging and environmentally friendly high-temperature heat-pump technologies based on solids or gases. These technologies have the potential to deliver heat at temperatures up to 1,600 K. We provide an outlook on potential solutions, applications and scalability and a roadmap for future technological progress. The decarbonization of industrial sectors requires the development of environmentally friendly high-temperature heat-pump technologies. This Review evaluates the potential of various solid-state and gas-cycle approaches and the challenges involved and outlines a roadmap for future development.
工业部门的脱碳需要采用节能加热技术,如热泵。其中,蒸汽压缩是最有效的方法。然而,它的制冷剂带来的环境和安全问题,并排除热泵运行高于600k。在这个温度以上运行的许多工业过程使用化石燃料或电阻加热,这会产生大量未使用的废热。因此,开发在如此高温下有效回收和泵送热量的技术至关重要。在这篇综述中,我们强调了新兴的基于固体或气体的环境友好型高温热泵技术的机遇和挑战。这些技术有可能在高达1600 K的温度下传递热量。我们对潜在的解决方案、应用和可扩展性进行了展望,并为未来的技术进步提供了路线图。工业部门的脱碳需要发展环境友好的高温热泵技术。本综述评估了各种固态和气体循环方法的潜力以及所涉及的挑战,并概述了未来发展的路线图。
{"title":"Emerging opportunities for high-temperature solid-state and gas-cycle heat pumps","authors":"Andrej Kitanovski, Katja Klinar, Ercang Luo, Miguel Muñoz Rojo, Vladimir Soldo, Luka Boban, Kaiqi Luo, Rui Yang, Xavier Moya","doi":"10.1038/s41560-025-01908-4","DOIUrl":"10.1038/s41560-025-01908-4","url":null,"abstract":"Industrial-sector decarbonization requires the adoption of energy-efficient heating technologies such as heat pumps. Among these, vapour compression is the most efficient method. However, its refrigerants pose environmental and safety concerns and preclude heat-pump operation above 600 K. Many industrial processes operating above this temperature use fossil fuels or resistive electrical heating, which generate a substantial amount of unused waste heat. It is therefore essential to develop technologies that efficiently recover and pump heat at such high temperatures. In this Review, we highlight the opportunities and challenges for emerging and environmentally friendly high-temperature heat-pump technologies based on solids or gases. These technologies have the potential to deliver heat at temperatures up to 1,600 K. We provide an outlook on potential solutions, applications and scalability and a roadmap for future technological progress. The decarbonization of industrial sectors requires the development of environmentally friendly high-temperature heat-pump technologies. This Review evaluates the potential of various solid-state and gas-cycle approaches and the challenges involved and outlines a roadmap for future development.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1412-1426"},"PeriodicalIF":60.1,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric-pressure ammonia synthesis on AuRu catalysts enabled by plasmon-controlled hydrogenation and nitrogen-species desorption 等离子体控制加氢和氮气解吸的AuRu催化剂上的常压氨合成
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-05 DOI: 10.1038/s41560-025-01911-9
Lin Yuan, Briley B. Bourgeois, Elijah Begin, Yirui Zhang, Alan X. Dai, Zhihua Cheng, Amy S. McKeown-Green, Zhichen Xue, Yi Cui, Kun Xu, Yu Wang, Matthew R. Jones, Yi Cui, Arun Majumdar, Junwei Lucas Bao, Jennifer A. Dionne
The Haber–Bosch process for ammonia synthesis contributes up to ~3% of global greenhouse gas emissions. Plasmonic catalysts strongly concentrate light and can alter the reaction intermediates via out-of-equilibrium processes, providing the potential for an alternative, less-energy-intensive pathway to synthesize ammonia. Here we show that gold-ruthenium (AuRu) bimetallic nanoparticles can synthesize ammonia at room temperature and pressure using visible light. We create AuRu alloys with varying compositions and achieve ammonia production rates of ~60 μmol per gram of catalyst bed per hour. In situ infrared spectroscopy reveals that light accelerates the hydrogenation of nitrogen intermediates compared to conventional thermal catalysis. Through computational modelling, we demonstrate that photo-excited electrons enable associative hydrogenation pathways for nitrogen activation rather than direct nitrogen–nitrogen bond breaking. This light-assisted mechanism requires both hydrogen and light working together to overcome the nitrogen activation barrier, mimicking how biological enzymes produce ammonia naturally and providing fundamental insights for developing sustainable, energy-efficient chemical synthesis. Conventional ammonia synthesis is energy intensive. Here the authors explore the mechanism of light-driven ammonia synthesis through in situ spectroscopy and modelling, and demonstrate that certain AuRu plasmonic alloys are promising catalysts for this potentially more sustainable process.
氨合成的Haber-Bosch工艺占全球温室气体排放量的3%。等离子体催化剂强烈集中光,可以通过非平衡过程改变反应中间体,提供了一种替代的、低能耗的合成氨途径的潜力。本研究表明,金钌(AuRu)双金属纳米颗粒可以在室温和常压下利用可见光合成氨。我们制造了不同成分的AuRu合金,并实现了每克催化剂床每小时约60 μmol的氨产量。原位红外光谱显示,与传统的热催化相比,光加速了氮中间体的加氢。通过计算模型,我们证明了光激发电子使氮活化的结合氢化途径而不是直接的氮-氮键断裂。这种光辅助机制需要氢和光共同努力来克服氮的激活障碍,模拟生物酶自然产生氨的方式,并为开发可持续、节能的化学合成提供基本见解。传统的氨合成是能源密集型的。在这里,作者通过原位光谱和建模探索了光驱动氨合成的机制,并证明了某些AuRu等离子体合金是这种潜在的更可持续的过程的有前途的催化剂。
{"title":"Atmospheric-pressure ammonia synthesis on AuRu catalysts enabled by plasmon-controlled hydrogenation and nitrogen-species desorption","authors":"Lin Yuan, Briley B. Bourgeois, Elijah Begin, Yirui Zhang, Alan X. Dai, Zhihua Cheng, Amy S. McKeown-Green, Zhichen Xue, Yi Cui, Kun Xu, Yu Wang, Matthew R. Jones, Yi Cui, Arun Majumdar, Junwei Lucas Bao, Jennifer A. Dionne","doi":"10.1038/s41560-025-01911-9","DOIUrl":"10.1038/s41560-025-01911-9","url":null,"abstract":"The Haber–Bosch process for ammonia synthesis contributes up to ~3% of global greenhouse gas emissions. Plasmonic catalysts strongly concentrate light and can alter the reaction intermediates via out-of-equilibrium processes, providing the potential for an alternative, less-energy-intensive pathway to synthesize ammonia. Here we show that gold-ruthenium (AuRu) bimetallic nanoparticles can synthesize ammonia at room temperature and pressure using visible light. We create AuRu alloys with varying compositions and achieve ammonia production rates of ~60 μmol per gram of catalyst bed per hour. In situ infrared spectroscopy reveals that light accelerates the hydrogenation of nitrogen intermediates compared to conventional thermal catalysis. Through computational modelling, we demonstrate that photo-excited electrons enable associative hydrogenation pathways for nitrogen activation rather than direct nitrogen–nitrogen bond breaking. This light-assisted mechanism requires both hydrogen and light working together to overcome the nitrogen activation barrier, mimicking how biological enzymes produce ammonia naturally and providing fundamental insights for developing sustainable, energy-efficient chemical synthesis. Conventional ammonia synthesis is energy intensive. Here the authors explore the mechanism of light-driven ammonia synthesis through in situ spectroscopy and modelling, and demonstrate that certain AuRu plasmonic alloys are promising catalysts for this potentially more sustainable process.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"98-108"},"PeriodicalIF":60.1,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of policy-driven transmission expansion for costs, emissions and reliability in the USA 政策驱动的输电扩张对美国成本、排放和可靠性的影响
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-04 DOI: 10.1038/s41560-025-01921-7
Juan Ramon L. Senga, Audun Botterud, John E. Parsons, S. Drew Story, Christopher R. Knittel
{"title":"Implications of policy-driven transmission expansion for costs, emissions and reliability in the USA","authors":"Juan Ramon L. Senga, Audun Botterud, John E. Parsons, S. Drew Story, Christopher R. Knittel","doi":"10.1038/s41560-025-01921-7","DOIUrl":"https://doi.org/10.1038/s41560-025-01921-7","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"29 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced CO2 electroreduction to multi-carbon products in strong acid induced by surface-adsorbed iodide ions 表面吸附碘离子在强酸中诱导CO2电还原生成多碳产物
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-02 DOI: 10.1038/s41560-025-01924-4
Xue Ding, Binbin Pan, Baojie Fan, Qinghan Yu, Jie Xu, Yuchen Yan, Yuqing Luo, Lu Wang, Yanguang Li
{"title":"Enhanced CO2 electroreduction to multi-carbon products in strong acid induced by surface-adsorbed iodide ions","authors":"Xue Ding, Binbin Pan, Baojie Fan, Qinghan Yu, Jie Xu, Yuchen Yan, Yuqing Luo, Lu Wang, Yanguang Li","doi":"10.1038/s41560-025-01924-4","DOIUrl":"https://doi.org/10.1038/s41560-025-01924-4","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"115 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidifying safety on cue 随时随地巩固安全
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-01 DOI: 10.1038/s41560-025-01913-7
Sang-Young Lee
Lithium-metal batteries offer high energy density but are prone to thermal runaway due to reactive lithium and flammable electrolytes. Research now reports a thermoresponsive electrolyte that rapidly solidifies near the separator’s melting point, forming a protective scaffold that prevents short circuits while allowing normal operation.
锂金属电池提供高能量密度,但由于活性锂和易燃电解质,容易发生热失控。现在研究报告了一种热响应电解质,它在分离器熔点附近迅速凝固,形成一个保护支架,在允许正常运行的同时防止短路。
{"title":"Solidifying safety on cue","authors":"Sang-Young Lee","doi":"10.1038/s41560-025-01913-7","DOIUrl":"10.1038/s41560-025-01913-7","url":null,"abstract":"Lithium-metal batteries offer high energy density but are prone to thermal runaway due to reactive lithium and flammable electrolytes. Research now reports a thermoresponsive electrolyte that rapidly solidifies near the separator’s melting point, forming a protective scaffold that prevents short circuits while allowing normal operation.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1398-1399"},"PeriodicalIF":60.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast thermo-responsive electrolyte for enhanced safety in lithium metal batteries 用于提高锂金属电池安全性的超快热响应电解质
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-01 DOI: 10.1038/s41560-025-01905-7
Chao Yang, Wenxi Hu, Mengting Zheng, Xing Zhou, Xiaowei Liu, Jingting Yang, Dawei Xu, Meilong Wang, Youcai Zhang, Wen Chen, Jun Lu, Ya You
Short circuits in lithium metal batteries caused by separator failure at elevated temperatures present a critical thermal safety challenge. Smart, temperature-responsive materials offer a promising way to prevent short circuits, yet practical systems with sufficiently fast response times have not been realized. Here we propose a thermo-responsive electrolyte that undergoes a rapid liquid-to-solid phase transition upon heating, offering a highly effective strategy to enhance lithium metal battery safety. The electrolyte leverages LiPF6 to initiate cationic polymerization, enabling solidification within seconds at a temperature threshold near the separator’s melting point. This fast phase change forms an effective heat shield that prevents internal short circuits and thermal runaway. Demonstrated in LiFePO4||Li pouch cells, the electrolyte ensures stable operation up to 90 °C and completely suppresses thermal runaway. Notably, the transition temperature can be tuned between 100 °C and 150 °C, allowing compatibility with various commercial separators. This ultrafast thermo-responsive electrolyte offers a pathway towards the design of intrinsically safe lithium metal batteries. Short circuits from separator failure threaten lithium metal battery safety, but ultrafast temperature-responsive materials are lacking. Here a thermo-responsive electrolyte solidifies in seconds, preventing thermal runaway and enabling stable operation up to 90 °C.
锂金属电池在高温下因分离器失效而引起的短路是一个严峻的热安全挑战。智能的温度响应材料为防止短路提供了一种很有前途的方法,但具有足够快响应时间的实用系统尚未实现。在这里,我们提出了一种热响应电解质,在加热时经历快速的液相到固相转变,为提高锂金属电池的安全性提供了一种非常有效的策略。电解质利用LiPF6引发阳离子聚合,在分离器熔点附近的温度阈值下,在几秒钟内实现凝固。这种快速相变形成了有效的隔热罩,防止内部短路和热失控。在LiFePO4||锂袋电池中,该电解质确保在90°C下稳定运行,并完全抑制热失控。值得注意的是,转变温度可以在100°C和150°C之间调节,允许与各种商业分离器兼容。这种超快速热响应电解质为设计本质安全的锂金属电池提供了一条途径。隔膜故障引起的短路威胁着锂金属电池的安全性,但目前还缺乏超快温度响应材料。在这里,热响应电解质在几秒钟内固化,防止热失控,并实现高达90°C的稳定运行。
{"title":"Ultrafast thermo-responsive electrolyte for enhanced safety in lithium metal batteries","authors":"Chao Yang, Wenxi Hu, Mengting Zheng, Xing Zhou, Xiaowei Liu, Jingting Yang, Dawei Xu, Meilong Wang, Youcai Zhang, Wen Chen, Jun Lu, Ya You","doi":"10.1038/s41560-025-01905-7","DOIUrl":"10.1038/s41560-025-01905-7","url":null,"abstract":"Short circuits in lithium metal batteries caused by separator failure at elevated temperatures present a critical thermal safety challenge. Smart, temperature-responsive materials offer a promising way to prevent short circuits, yet practical systems with sufficiently fast response times have not been realized. Here we propose a thermo-responsive electrolyte that undergoes a rapid liquid-to-solid phase transition upon heating, offering a highly effective strategy to enhance lithium metal battery safety. The electrolyte leverages LiPF6 to initiate cationic polymerization, enabling solidification within seconds at a temperature threshold near the separator’s melting point. This fast phase change forms an effective heat shield that prevents internal short circuits and thermal runaway. Demonstrated in LiFePO4||Li pouch cells, the electrolyte ensures stable operation up to 90 °C and completely suppresses thermal runaway. Notably, the transition temperature can be tuned between 100 °C and 150 °C, allowing compatibility with various commercial separators. This ultrafast thermo-responsive electrolyte offers a pathway towards the design of intrinsically safe lithium metal batteries. Short circuits from separator failure threaten lithium metal battery safety, but ultrafast temperature-responsive materials are lacking. Here a thermo-responsive electrolyte solidifies in seconds, preventing thermal runaway and enabling stable operation up to 90 °C.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1493-1502"},"PeriodicalIF":60.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of hydrogen and carbon nanotubes from methane using a multi-pass floating catalyst chemical vapour deposition reactor with process gas recycling 利用多道浮式催化剂化学气相沉积反应器和工艺气体循环利用甲烷生产氢和碳纳米管
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-01 DOI: 10.1038/s41560-025-01925-3
Jack Peden, James Ryley, Jeronimo Terrones, Fiona Smail, James A. Elliott, Alan Windle, Adam Boies
Converting natural gas into hydrogen and solid carbon materials using methane pyrolysis presents a promising opportunity to produce sustainable fuels and materials. The production of hydrogen and bulk carbon nanotubes (CNTs) via methane pyrolysis has been demonstrated independently, but concurrent production from the same reactor has remained elusive. Here we present a multi-pass floating catalyst chemical vapour deposition (FCCVD) reactor that converts methane into hydrogen and CNT aerogel. Whereas previous FCCVD CNT production consumed hydrogen, the multi-pass reactor recycles the carrier gas to eliminate the need for a hydrogen input. This results in a net output of 85 vol% hydrogen alongside CNT aerogel and a 446-fold increase in molar process efficiency. Furthermore, the demonstrated use of biogas to produce CNT aerogel enables a potential net sequestration of CO2 from the atmosphere. The results of this study have been extrapolated to a pilot-scale reactor, using data gathered at a commercial facility, to consider the challenges and opportunities associated with scale-up. Methane pyrolysis produces hydrogen and carbon materials, but some approaches based on chemical vapour deposition actually consume hydrogen to mitigate unwanted side reactions. Here Peden et al. use gas recycling in a multi-pass floating catalyst chemical vapour deposition reactor to produce hydrogen alongside carbon nanotube aerogels.
利用甲烷热解将天然气转化为氢和固体碳材料,为生产可持续燃料和材料提供了一个有希望的机会。通过甲烷热解制备氢和块状碳纳米管(CNTs)已经得到了独立的证明,但在同一反应器中同时生产仍是难以捉摸的。在这里,我们提出了一个多通道浮动催化剂化学气相沉积(FCCVD)反应器,将甲烷转化为氢和碳纳米管气凝胶。而以前的FCCVD碳纳米管生产消耗氢气,多通道反应器回收载气,以消除氢输入的需要。这导致净输出85 vol%的氢与碳纳米管气凝胶和增加446倍的摩尔过程效率。此外,已证明的利用沼气生产碳纳米管气凝胶能够从大气中潜在的净封存二氧化碳。利用在商业设施收集的数据,将这项研究的结果外推到一个中试规模的反应堆,以考虑与扩大规模相关的挑战和机遇。
{"title":"Production of hydrogen and carbon nanotubes from methane using a multi-pass floating catalyst chemical vapour deposition reactor with process gas recycling","authors":"Jack Peden, James Ryley, Jeronimo Terrones, Fiona Smail, James A. Elliott, Alan Windle, Adam Boies","doi":"10.1038/s41560-025-01925-3","DOIUrl":"10.1038/s41560-025-01925-3","url":null,"abstract":"Converting natural gas into hydrogen and solid carbon materials using methane pyrolysis presents a promising opportunity to produce sustainable fuels and materials. The production of hydrogen and bulk carbon nanotubes (CNTs) via methane pyrolysis has been demonstrated independently, but concurrent production from the same reactor has remained elusive. Here we present a multi-pass floating catalyst chemical vapour deposition (FCCVD) reactor that converts methane into hydrogen and CNT aerogel. Whereas previous FCCVD CNT production consumed hydrogen, the multi-pass reactor recycles the carrier gas to eliminate the need for a hydrogen input. This results in a net output of 85 vol% hydrogen alongside CNT aerogel and a 446-fold increase in molar process efficiency. Furthermore, the demonstrated use of biogas to produce CNT aerogel enables a potential net sequestration of CO2 from the atmosphere. The results of this study have been extrapolated to a pilot-scale reactor, using data gathered at a commercial facility, to consider the challenges and opportunities associated with scale-up. Methane pyrolysis produces hydrogen and carbon materials, but some approaches based on chemical vapour deposition actually consume hydrogen to mitigate unwanted side reactions. Here Peden et al. use gas recycling in a multi-pass floating catalyst chemical vapour deposition reactor to produce hydrogen alongside carbon nanotube aerogels.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"121-134"},"PeriodicalIF":60.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41560-025-01925-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic liquids improve the long-term stability of perovskite solar cells 离子液体提高了钙钛矿太阳能电池的长期稳定性
IF 56.7 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-12-01 DOI: 10.1038/s41560-025-01906-6
Wenzhan Xu, Wenhao Shao, Yuanhao Tang, Chenjian Lin, Hanjun Yang, Yu-Ting Yang, Jeong Hui Kim, Gangsan Lee, Prashant Kumar, Kevin R. Pedersen, Aidan H. Coffey, Steven P. Harvey, Kenneth R. Graham, Chenhui Zhu, Kai Zhu, Letian Dou
{"title":"Ionic liquids improve the long-term stability of perovskite solar cells","authors":"Wenzhan Xu, Wenhao Shao, Yuanhao Tang, Chenjian Lin, Hanjun Yang, Yu-Ting Yang, Jeong Hui Kim, Gangsan Lee, Prashant Kumar, Kevin R. Pedersen, Aidan H. Coffey, Steven P. Harvey, Kenneth R. Graham, Chenhui Zhu, Kai Zhu, Letian Dou","doi":"10.1038/s41560-025-01906-6","DOIUrl":"https://doi.org/10.1038/s41560-025-01906-6","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"55 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminating lattice collapse in dopant-free LiNi0.9Mn0.1O2 cathodes via electrochemically induced partial cation disorder 通过电化学诱导部分阳离子无序消除无掺杂LiNi0.9Mn0.1O2阴极的晶格崩溃
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-11-27 DOI: 10.1038/s41560-025-01910-w
Junghwa Lee, Zhelong Jiang, Nicolas B. Liang, Jin Hwan Kwak, Howie Nguyen, Grace M. Busse, Yiseul Yoo, Hari Ramachandran, Kipil Lim, Peter M. Csernica, Tianyi Li, Xin Xu, Kyung Yoon Chung, Kathrin Michel, Joop E. Frerichs, William E. Gent, Raphaële J. Clément, Jungjin Park, William C. Chueh
Layered oxide cathodes for lithium-ion batteries typically undergo large expansion and contraction during cycling, including a particularly abrupt shrinkage along the c lattice (c-collapse) at high states of charge, which limits their lifetime. Here we suppress the c-collapse in compositionally simple LiNi0.9Mn0.1O2 by electrochemically inducing partial disorder that is permanently retained throughout the bulk. Our approach leverages irreversible oxygen oxidation in Li-excess Ni-rich oxides to activate partial disordering of the cation sublattice, while preserving the long-range layered structure. By varying the initial Li-excess, we obtain Li-stoichiometric transition-metal oxides with tunable cation disorder. Surprisingly, when the concentration of transition-metal ions occupying Li sites (TMLi) reaches ≥12%, the c-lattice parameter remains nearly invariant during (de)lithiation, reducing chemical strain, preserving microstructural integrity and extending battery cycle life. The resulting material displays high specific capacity, long-term stability, small voltage hysteresis and negligible voltage decay. This concept opens the possibility of designing materials by inducing persistent intrinsic disorder electrochemically. Lithium-ion battery cathode lifetime is limited by large expansion and contraction during cycling. This study uses electrochemical activation to suppress collapse in LiNi0.9Mn0.1O2 cathodes, achieving improved capacity and cycle life.
锂离子电池的层状氧化物阴极在循环过程中通常会经历巨大的膨胀和收缩,包括在高电荷状态下沿c晶格的特别突然收缩(c坍缩),这限制了它们的寿命。在这里,我们通过电化学诱导永久保留在整个体中的部分无序来抑制组成简单的LiNi0.9Mn0.1O2中的c-坍塌。我们的方法利用锂过量富镍氧化物中的不可逆氧氧化来激活阳离子亚晶格的部分无序,同时保留远程层状结构。通过改变初始锂过量,我们得到了具有可调阳离子无序性的锂化学计量过渡金属氧化物。令人惊讶的是,当占据Li位点的过渡金属离子(TMLi)浓度达到≥12%时,c晶格参数在(去)锂化过程中几乎保持不变,从而降低了化学应变,保持了微观结构的完整性,延长了电池的循环寿命。所得材料具有高比容量、长期稳定、电压滞后小、电压衰减可忽略不计等特点。这一概念开启了通过电化学诱导持续内在无序来设计材料的可能性。锂离子电池正极在循环过程中膨胀和收缩较大,限制了电池的寿命。本研究利用电化学活化来抑制LiNi0.9Mn0.1O2阴极的坍塌,从而提高容量和循环寿命。
{"title":"Eliminating lattice collapse in dopant-free LiNi0.9Mn0.1O2 cathodes via electrochemically induced partial cation disorder","authors":"Junghwa Lee, Zhelong Jiang, Nicolas B. Liang, Jin Hwan Kwak, Howie Nguyen, Grace M. Busse, Yiseul Yoo, Hari Ramachandran, Kipil Lim, Peter M. Csernica, Tianyi Li, Xin Xu, Kyung Yoon Chung, Kathrin Michel, Joop E. Frerichs, William E. Gent, Raphaële J. Clément, Jungjin Park, William C. Chueh","doi":"10.1038/s41560-025-01910-w","DOIUrl":"10.1038/s41560-025-01910-w","url":null,"abstract":"Layered oxide cathodes for lithium-ion batteries typically undergo large expansion and contraction during cycling, including a particularly abrupt shrinkage along the c lattice (c-collapse) at high states of charge, which limits their lifetime. Here we suppress the c-collapse in compositionally simple LiNi0.9Mn0.1O2 by electrochemically inducing partial disorder that is permanently retained throughout the bulk. Our approach leverages irreversible oxygen oxidation in Li-excess Ni-rich oxides to activate partial disordering of the cation sublattice, while preserving the long-range layered structure. By varying the initial Li-excess, we obtain Li-stoichiometric transition-metal oxides with tunable cation disorder. Surprisingly, when the concentration of transition-metal ions occupying Li sites (TMLi) reaches ≥12%, the c-lattice parameter remains nearly invariant during (de)lithiation, reducing chemical strain, preserving microstructural integrity and extending battery cycle life. The resulting material displays high specific capacity, long-term stability, small voltage hysteresis and negligible voltage decay. This concept opens the possibility of designing materials by inducing persistent intrinsic disorder electrochemically. Lithium-ion battery cathode lifetime is limited by large expansion and contraction during cycling. This study uses electrochemical activation to suppress collapse in LiNi0.9Mn0.1O2 cathodes, achieving improved capacity and cycle life.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":"87-97"},"PeriodicalIF":60.1,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Informed investments in clean energy technologies 对清洁能源技术进行明智的投资
IF 60.1 1区 材料科学 Q1 ENERGY & FUELS Pub Date : 2025-11-24 DOI: 10.1038/s41560-025-01867-w
Jessika E. Trancik, Erin Baker, Gregory Nemet, Magdalena M. Klemun, Rebecca J. Hanes, Kavita Surana, Doug Arent, Samuel F. Baldwin, Steven A. Gabriel, Steven W. Popper, Valentina Bosetti, Max Henrion, Giacomo Marangoni, Rupert Way
Governments and companies face consequential decisions about allocating resources to the research, development, demonstration and deployment of energy technologies to meet environmental, economic and social goals. Here we discuss how research insights can inform and potentially improve these decisions to make effective use of limited resources and time in shaping the next-generation energy infrastructure. We outline three key research steps: forecasting technological change, relating investments to economic, social and environmental outcomes and informing decision-making processes. We recommend advances to address uncertainty as well as to make methods and results more practicable, emphasizing the importance of model validation, streamlining and interactivity. Progress has been made, yet further work is needed—for example, in the development of reduced-order, testable models and more comprehensive data collection. Overall, this research is beginning to inform decisions but could be adopted more widely by governments and the private sector to help support technological progress for energy affordability, equitable climate change mitigation, health benefits and other objectives. Deciding how and when to allocate resources to energy technologies can have important consequences. This Perspective outlines three key steps for research to both inform and improve decision-making for next-generation energy technologies and infrastructure.
政府和公司在为能源技术的研究、开发、示范和部署分配资源以实现环境、经济和社会目标方面面临重大决策。在这里,我们将讨论研究见解如何为这些决策提供信息,并有可能改进这些决策,从而有效利用有限的资源和时间来塑造下一代能源基础设施。我们概述了三个关键的研究步骤:预测技术变革,将投资与经济、社会和环境结果联系起来,并为决策过程提供信息。我们建议在解决不确定性以及使方法和结果更可行方面取得进展,强调模型验证、流线型和交互性的重要性。已经取得了进展,但还需要进一步的工作,例如,在开发降阶、可测试的模型和更全面的数据收集方面。总体而言,这项研究正开始为决策提供信息,但可以被政府和私营部门更广泛地采用,以帮助支持技术进步,以实现能源可负担性、公平地减缓气候变化、健康效益和其他目标。决定如何以及何时将资源分配给能源技术可能会产生重要影响。本展望概述了研究的三个关键步骤,为下一代能源技术和基础设施的决策提供信息和改进。
{"title":"Informed investments in clean energy technologies","authors":"Jessika E. Trancik, Erin Baker, Gregory Nemet, Magdalena M. Klemun, Rebecca J. Hanes, Kavita Surana, Doug Arent, Samuel F. Baldwin, Steven A. Gabriel, Steven W. Popper, Valentina Bosetti, Max Henrion, Giacomo Marangoni, Rupert Way","doi":"10.1038/s41560-025-01867-w","DOIUrl":"10.1038/s41560-025-01867-w","url":null,"abstract":"Governments and companies face consequential decisions about allocating resources to the research, development, demonstration and deployment of energy technologies to meet environmental, economic and social goals. Here we discuss how research insights can inform and potentially improve these decisions to make effective use of limited resources and time in shaping the next-generation energy infrastructure. We outline three key research steps: forecasting technological change, relating investments to economic, social and environmental outcomes and informing decision-making processes. We recommend advances to address uncertainty as well as to make methods and results more practicable, emphasizing the importance of model validation, streamlining and interactivity. Progress has been made, yet further work is needed—for example, in the development of reduced-order, testable models and more comprehensive data collection. Overall, this research is beginning to inform decisions but could be adopted more widely by governments and the private sector to help support technological progress for energy affordability, equitable climate change mitigation, health benefits and other objectives. Deciding how and when to allocate resources to energy technologies can have important consequences. This Perspective outlines three key steps for research to both inform and improve decision-making for next-generation energy technologies and infrastructure.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 12","pages":"1404-1411"},"PeriodicalIF":60.1,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145583124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1