Correction to: Nature Biotechnology https://doi.org/10.1038/s41587-024-02487-7, published online 25 November 2024.
Correction to: Nature Biotechnology https://doi.org/10.1038/s41587-024-02487-7, published online 25 November 2024.
Correction to: Nature Biotechnology https://doi.org/10.1038/s41587-024-02391-0, published online 7 October 2024.
Human lungs contain unique cell populations in distal respiratory airways or terminal and respiratory bronchioles (RA/TRBs) that accumulate in persons with lung injury and idiopathic pulmonary fibrosis (IPF), a lethal lung disease. As these populations are absent in rodents, deeper understanding requires a human in vitro model. Here we convert human pluripotent stem cells (hPS cells) into expandable spheres, called induced respiratory airway progenitors (iRAPs), consisting of ~98% RA/TRB-associated cell types. One hPS cell can give rise to 1010 iRAP cells. We differentiate iRAPs through a stage consistent with transitional type 2 alveolar epithelial (AT2) cells into a population corresponding to mature AT1 cells with 95% purity. iRAPs with deletion of Heřmanský–Pudlák Syndrome 1 (HPS1), which causes pulmonary fibrosis in humans, replicate the aberrant differentiation and recruitment of profibrotic fibroblasts observed in IPF, indicating that intrinsic dysfunction of RA/TRB-associated alveolar progenitors contributes to HPS1-related IPF. iRAPs may provide a system suitable for IPF drug discovery and validation.
Circular mRNA faces challenges in enhancing its translation potential as an RNA therapeutic. Here we introduce two molecular designs that bolster circular mRNA translation through an internal cap-initiated mechanism. The first consists of a circular mRNA with a covalently attached N7-methylguanosine (m7G) cap through a branching structure (cap-circ mRNA). This modification allows circular mRNA to recruit translation machinery and produce proteins more efficiently than internal ribosome entry site (IRES)-containing circular mRNAs. Combining with an N1-methylpseudouridine (m1Ψ) modification, cap-circ mRNA exhibits a lower acute immunostimulatory effect, maintaining high translation in mice. The second design features the non-covalent attachment of an m7G cap to a circular mRNA through hybridization with an m7G cap-containing oligonucleotide, enhancing translation by more than 50-fold. This setup allows circular mRNAs to synthesize reporter proteins upon hybridizing with capped mRNAs or long non-coding RNAs and to undergo rolling circle-type translation. These advancements broaden the therapeutic applications of circular mRNAs by minimizing their molecular size, elevating translation efficiency and facilitating cell-type-selective translation.
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Understanding the diverse dynamic behaviors of individual RNA molecules in single cells requires visualizing them at high resolution in real time. However, single-molecule live-cell imaging of unmodified endogenous RNA has not yet been achieved in a generalizable manner. Here, we present single-molecule live-cell fluorescence in situ hybridization (smLiveFISH), a robust approach that combines the programmable RNA-guided, RNA-targeting CRISPR–Csm complex with multiplexed guide RNAs for direct and efficient visualization of single RNA molecules in a range of cell types, including primary cells. Using smLiveFISH, we track individual native NOTCH2 and MAP1B transcripts in living cells and identify two distinct localization mechanisms including the cotranslational translocation of NOTCH2 mRNA at the endoplasmic reticulum and directional transport of MAP1B mRNA toward the cell periphery. This method has the potential to unlock principles governing the spatiotemporal organization of native transcripts in health and disease.