Pub Date : 2024-12-16DOI: 10.1038/s41587-024-02512-9
Esther C. H. Uijttewaal, Joonsun Lee, Annika Charlotte Sell, Naomi Botay, Gintautas Vainorius, Maria Novatchkova, Juliane Baar, Jiaye Yang, Tobias Potzler, Sophie van der Leij, Christopher Lowden, Julia Sinner, Anais Elewaut, Milanka Gavrilovic, Anna Obenauf, Daniel Schramek, Ulrich Elling
Pooled genetic screening with CRISPR–Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.
{"title":"CRISPR-StAR enables high-resolution genetic screening in complex in vivo models","authors":"Esther C. H. Uijttewaal, Joonsun Lee, Annika Charlotte Sell, Naomi Botay, Gintautas Vainorius, Maria Novatchkova, Juliane Baar, Jiaye Yang, Tobias Potzler, Sophie van der Leij, Christopher Lowden, Julia Sinner, Anais Elewaut, Milanka Gavrilovic, Anna Obenauf, Daniel Schramek, Ulrich Elling","doi":"10.1038/s41587-024-02512-9","DOIUrl":"https://doi.org/10.1038/s41587-024-02512-9","url":null,"abstract":"<p>Pooled genetic screening with CRISPR–Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"63 1","pages":""},"PeriodicalIF":46.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1038/s41587-024-02519-2
Matthew C. Watson, Kunal J. Rambhia, Meghan J. Seltzer, Sarah R. Carter, Rebecca L. Moritz, Aurelia Attal-Juncqua, James Diggans, John Dileo
To enhance the safety and security of the US bioeconomy, a new public–private partnership should be established to facilitate information sharing and threat analysis among industry, government and academia, and to develop and deploy safeguards.
{"title":"Toward a safer and more secure US bioeconomy","authors":"Matthew C. Watson, Kunal J. Rambhia, Meghan J. Seltzer, Sarah R. Carter, Rebecca L. Moritz, Aurelia Attal-Juncqua, James Diggans, John Dileo","doi":"10.1038/s41587-024-02519-2","DOIUrl":"10.1038/s41587-024-02519-2","url":null,"abstract":"To enhance the safety and security of the US bioeconomy, a new public–private partnership should be established to facilitate information sharing and threat analysis among industry, government and academia, and to develop and deploy safeguards.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"43 1","pages":"23-25"},"PeriodicalIF":33.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1038/s41587-024-02497-5
Erik Doevendans, Peter van Meer, Huub Schellekens
After two decades of experience with biosimilars, physicochemical and in vitro biological comparison with their reference products appear sufficient to guarantee clinical safety and efficacy. Hence, the regulation of biosimilars has become redundant, and biopharmaceuticals should now be regulated through the generic pathway available for small molecules.
{"title":"The devolution of biosimilars regulations","authors":"Erik Doevendans, Peter van Meer, Huub Schellekens","doi":"10.1038/s41587-024-02497-5","DOIUrl":"10.1038/s41587-024-02497-5","url":null,"abstract":"After two decades of experience with biosimilars, physicochemical and in vitro biological comparison with their reference products appear sufficient to guarantee clinical safety and efficacy. Hence, the regulation of biosimilars has become redundant, and biopharmaceuticals should now be regulated through the generic pathway available for small molecules.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"43 1","pages":"19-22"},"PeriodicalIF":33.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1038/s41587-024-02466-y
Haotian Du, Jingjia Liu, Kevin M. Jude, Xinbo Yang, Ying Li, Braxton Bell, Hongli Yang, Audrey Kassardjian, Wyatt Blackson, Ali Mobedi, Udit Parekh, R. Andres Parra Sperberg, Jean-Philippe Julien, Elizabeth D. Mellins, K. Christopher Garcia, Po-Ssu Huang
Major histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4+ T cells and antigen-presenting cells. Targeting peptide–MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen–MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders. TRACeR-II binders have a small helical bundle scaffold and use a single loop to recognize peptide–MHCII, which offers versatility and enables structural modeling of the interactions to target MHCII antigens. We demonstrate rapid generation of TRACeR-II binders to multiple molecules with affinities in the low-nanomolar to low-micromolar range, comparable to best-in-class TCRs and antibodies. Through computational protein design, we created specific binding sequences in silico from only the sequence of a severe acute respiratory syndrome coronavirus 2 peptide. TRACeR-II provides a straightforward approach to target antigen–MHCII without relying on combinatorial selection on complementarity-determining region loops.
{"title":"A general system for targeting MHC class II–antigen complex via a single adaptable loop","authors":"Haotian Du, Jingjia Liu, Kevin M. Jude, Xinbo Yang, Ying Li, Braxton Bell, Hongli Yang, Audrey Kassardjian, Wyatt Blackson, Ali Mobedi, Udit Parekh, R. Andres Parra Sperberg, Jean-Philippe Julien, Elizabeth D. Mellins, K. Christopher Garcia, Po-Ssu Huang","doi":"10.1038/s41587-024-02466-y","DOIUrl":"https://doi.org/10.1038/s41587-024-02466-y","url":null,"abstract":"<p>Major histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4<sup>+</sup> T cells and antigen-presenting cells. Targeting peptide–MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen–MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders. TRACeR-II binders have a small helical bundle scaffold and use a single loop to recognize peptide–MHCII, which offers versatility and enables structural modeling of the interactions to target MHCII antigens. We demonstrate rapid generation of TRACeR-II binders to multiple molecules with affinities in the low-nanomolar to low-micromolar range, comparable to best-in-class TCRs and antibodies. Through computational protein design, we created specific binding sequences in silico from only the sequence of a severe acute respiratory syndrome coronavirus 2 peptide. TRACeR-II provides a straightforward approach to target antigen–MHCII without relying on combinatorial selection on complementarity-determining region loops.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"352 1","pages":""},"PeriodicalIF":46.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1038/s41587-024-02506-7
Melanie Senior
Merger and acquisition activity is at a seven-year low in 2024 as buyers digest prior deals and US election jitters delayed further spending. Expect a pick-up in 2025.
{"title":"Biopharma deals get smaller and earlier","authors":"Melanie Senior","doi":"10.1038/s41587-024-02506-7","DOIUrl":"10.1038/s41587-024-02506-7","url":null,"abstract":"Merger and acquisition activity is at a seven-year low in 2024 as buyers digest prior deals and US election jitters delayed further spending. Expect a pick-up in 2025.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"43 1","pages":"11-18"},"PeriodicalIF":33.1,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1038/s41587-024-02513-8
Pallavi A. Balivada, Stephanie A. Gaglione, Michael E. Birnbaum
A method for designing high-affinity, specific binders to peptide–MHC complexes may improve the next generation of antigen-specific T cell-based therapeutics.
一种设计高亲和力、特异性肽- mhc复合物结合物的方法可能会改善下一代抗原特异性T细胞治疗方法。
{"title":"A synthetic scaffold to target peptide–MHC complexes","authors":"Pallavi A. Balivada, Stephanie A. Gaglione, Michael E. Birnbaum","doi":"10.1038/s41587-024-02513-8","DOIUrl":"https://doi.org/10.1038/s41587-024-02513-8","url":null,"abstract":"A method for designing high-affinity, specific binders to peptide–MHC complexes may improve the next generation of antigen-specific T cell-based therapeutics.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"62 1","pages":""},"PeriodicalIF":46.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1038/s41587-024-02505-8
Haotian Du, Leena Mallik, Daniel Hwang, Yi Sun, Chengzi Kaku, Daniel Hoces, Shirley M. Sun, Reem Ghinnagow, Stephen D. Carro, Hoang Anh T. Phan, Sagar Gupta, Wyatt Blackson, Hyejin Lee, Christian A. Choe, Devin Dersh, Jingjia Liu, Braxton Bell, Hongli Yang, Georgia F. Papadaki, Michael C. Young, Emily Zhou, Gina El Nesr, Kimia Dasteh Goli, Laurence C. Eisenlohr, Andy J. Minn, Rogelio A. Hernandez-Lopez, Joseph G. Jardine, Nikolaos G. Sgourakis, Po-Ssu Huang
Identifying highly specific T cell receptors (TCRs) or antibodies against epitopic peptides presented by class I major histocompatibility complex (MHC I) proteins remains a bottleneck in the development of targeted therapeutics. Here, we introduce targeted recognition of antigen–MHC complex reporter for MHC I (TRACeR-I), a generalizable platform for targeting peptides on polymorphic HLA-A*, HLA-B* and HLA-C* allotypes while overcoming the cross-reactivity challenges of TCRs. Our TRACeR–MHC I co-crystal structure reveals a unique antigen recognition mechanism, with TRACeR forming extensive contacts across the entire peptide length to confer single-residue specificity at the accessible positions. We demonstrate rapid screening of TRACeR-I against a panel of disease-relevant HLAs with peptides derived from human viruses (human immunodeficiency virus, Epstein–Barr virus and severe acute respiratory syndrome coronavirus 2), and oncoproteins (Kirsten rat sarcoma virus, paired-like homeobox 2b and New York esophageal squamous cell carcinoma 1). TRACeR-based bispecific T cell engagers and chimeric antigen receptor T cells exhibit on-target killing of tumor cells with high efficacy in the low nanomolar range. Our platform empowers the development of broadly applicable MHC I-targeting molecules for research, diagnostic and therapeutic applications.
{"title":"Targeting peptide antigens using a multiallelic MHC I-binding system","authors":"Haotian Du, Leena Mallik, Daniel Hwang, Yi Sun, Chengzi Kaku, Daniel Hoces, Shirley M. Sun, Reem Ghinnagow, Stephen D. Carro, Hoang Anh T. Phan, Sagar Gupta, Wyatt Blackson, Hyejin Lee, Christian A. Choe, Devin Dersh, Jingjia Liu, Braxton Bell, Hongli Yang, Georgia F. Papadaki, Michael C. Young, Emily Zhou, Gina El Nesr, Kimia Dasteh Goli, Laurence C. Eisenlohr, Andy J. Minn, Rogelio A. Hernandez-Lopez, Joseph G. Jardine, Nikolaos G. Sgourakis, Po-Ssu Huang","doi":"10.1038/s41587-024-02505-8","DOIUrl":"https://doi.org/10.1038/s41587-024-02505-8","url":null,"abstract":"<p>Identifying highly specific T cell receptors (TCRs) or antibodies against epitopic peptides presented by class I major histocompatibility complex (MHC I) proteins remains a bottleneck in the development of targeted therapeutics. Here, we introduce targeted recognition of antigen–MHC complex reporter for MHC I (TRACeR-I), a generalizable platform for targeting peptides on polymorphic HLA-A*, HLA-B* and HLA-C* allotypes while overcoming the cross-reactivity challenges of TCRs. Our TRACeR–MHC I co-crystal structure reveals a unique antigen recognition mechanism, with TRACeR forming extensive contacts across the entire peptide length to confer single-residue specificity at the accessible positions. We demonstrate rapid screening of TRACeR-I against a panel of disease-relevant HLAs with peptides derived from human viruses (human immunodeficiency virus, Epstein–Barr virus and severe acute respiratory syndrome coronavirus 2), and oncoproteins (Kirsten rat sarcoma virus, paired-like homeobox 2b and New York esophageal squamous cell carcinoma 1). TRACeR-based bispecific T cell engagers and chimeric antigen receptor T cells exhibit on-target killing of tumor cells with high efficacy in the low nanomolar range. Our platform empowers the development of broadly applicable MHC I-targeting molecules for research, diagnostic and therapeutic applications.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"15 1","pages":""},"PeriodicalIF":46.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1038/s41587-024-02518-3
{"title":"BioNTech boosts oncology pipeline with China buy","authors":"","doi":"10.1038/s41587-024-02518-3","DOIUrl":"10.1038/s41587-024-02518-3","url":null,"abstract":"","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"42 12","pages":"1761-1761"},"PeriodicalIF":33.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1038/s41587-024-02504-9
Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Jiao Wang, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan, Hao Wu
The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.
{"title":"Efficient non-viral immune cell engineering using circular single-stranded DNA-mediated genomic integration","authors":"Keqiang Xie, Jakob Starzyk, Ishita Majumdar, Jiao Wang, Katerina Rincones, Thao Tran, Danna Lee, Sarah Niemi, John Famiglietti, Bernhard Suter, Richard Shan, Hao Wu","doi":"10.1038/s41587-024-02504-9","DOIUrl":"https://doi.org/10.1038/s41587-024-02504-9","url":null,"abstract":"<p>The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture. In this study, we developed a non-viral genome writing catalyst (GATALYST) system that allows production of circular single-stranded DNAs (cssDNAs) up to approximately 20 kilobases as donor templates for highly efficient precision transgene integration. cssDNA donors enable knock-in efficiency of up to 70% in induced pluripotent stem cells (iPSCs) and improved efficiency in multiple clinically relevant primary immune cell types and at multiple genomic loci implicated for clinical applications with various nuclease editor systems. The high precision and efficiency in chimeric antigen receptor (CAR)-T and natural killer (NK) cells, improved safety, payload flexibility and scalable manufacturability of cssDNA shows potential for future applications of genome engineering.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"25 6 1","pages":""},"PeriodicalIF":46.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1038/s41587-024-02489-5
Evan Groover, Elizabeth Njuguna, Kailash Chander Bansal, Anne Muia, Musa Kwehangana, Christopher Simuntala, Richard Lloyd Mills, Emmanuel Kwakye, Pedro Rocha, Josephine Amedu, Eduardo Morillo, Mohana Anita Anthonysamy, A. B. M. Khaldun, Lilian Chimpepo, Massouroudini Akoudjin, D. M. J. B. Senanayake, Dechen Wangmo, Dessalegn Atnafu, Geronima P. Eusebio, Chalinee Kongsawat, Melinda Kliegman
The Innovate Genomics Institute brought together regulators from 16 countries to discuss global capacity building for the regulation of genome-edited crops. The workshop provided insights into the suitable use of technical analyses to validate edits and raised future considerations regarding regulation reporting, offering suggestions to help countries meet their objectives in the ever-growing landscape of genome editing techniques.
{"title":"A technical approach to global plant genome editing regulation","authors":"Evan Groover, Elizabeth Njuguna, Kailash Chander Bansal, Anne Muia, Musa Kwehangana, Christopher Simuntala, Richard Lloyd Mills, Emmanuel Kwakye, Pedro Rocha, Josephine Amedu, Eduardo Morillo, Mohana Anita Anthonysamy, A. B. M. Khaldun, Lilian Chimpepo, Massouroudini Akoudjin, D. M. J. B. Senanayake, Dechen Wangmo, Dessalegn Atnafu, Geronima P. Eusebio, Chalinee Kongsawat, Melinda Kliegman","doi":"10.1038/s41587-024-02489-5","DOIUrl":"10.1038/s41587-024-02489-5","url":null,"abstract":"The Innovate Genomics Institute brought together regulators from 16 countries to discuss global capacity building for the regulation of genome-edited crops. The workshop provided insights into the suitable use of technical analyses to validate edits and raised future considerations regarding regulation reporting, offering suggestions to help countries meet their objectives in the ever-growing landscape of genome editing techniques.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"42 12","pages":"1773-1780"},"PeriodicalIF":33.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}