Pub Date : 2024-04-17DOI: 10.1038/s41529-024-00463-9
Alfred Larsson, Sabrina Gericke, Andrea Grespi, Volkmar Koller, Josefin Eidhagen, Xiaoqi Yue, Eleanor Frampton, Stephan Appelfeller, Alexander Generalov, Alexei Preobrajenski, Jinshan Pan, Herbert Over, Edvin Lundgren
Corrosion results in large costs and environmental impact but can be controlled by thin oxide films that passivate the metal surfaces and hinder further oxidation or dissolution in an aqueous environment. The structure, chemistry, and thickness of these oxide films play a significant role in determining their anti-corrosion properties and the early-stage oxidation dynamics affect the properties of the developed oxide. Here, we use in situ X-ray Photoelectron Spectroscopy (XPS) to study the early-stage oxidation of a Ni-Cr-Mo alloy at room temperature and up to 400 °C. Cr and Mo begin to oxidize immediately after exposure to O2, and Cr3+, Mo4+, and Mo6+ oxides are formed. In contrast, Ni does not contribute significantly to the oxide film. A self-limiting oxide thickness, which did not depend on temperature below 400 °C, is observed. This is attributed to the consumption of available Cr and Mo near the surface, which results in an enrichment of metallic Ni under the oxide. The self-limited oxide thickness is 6–8 Å, which corresponds to 3–4 atomic layers of cations in the oxide. At 400 °C, sublimation of Mo6+ oxide is observed, resulting in the formation of an almost pure layer of Cr2O3 on the alloy surface. Lastly, a mechanism is presented that explains the formation of the bi-layer oxide structure observed for Ni-Cr-Mo alloys, which involves the enhanced migration of hexavalent Mo ions in the electric field, which drives mass transport during oxidation according to both the Cabrera Mott model and the Point Defect Model.
腐蚀会造成巨大的成本和环境影响,但可以通过钝化金属表面并阻碍其在水环境中进一步氧化或溶解的氧化物薄膜来加以控制。这些氧化物薄膜的结构、化学性质和厚度在决定其防腐蚀性能方面起着重要作用,而且早期氧化动态也会影响已形成的氧化物的性能。在此,我们使用原位 X 射线光电子能谱 (XPS) 研究了镍铬钼合金在室温和高达 400 °C 下的早期氧化过程。铬和钼在暴露于 O2 后立即开始氧化,并形成 Cr3+、Mo4+ 和 Mo6+ 氧化物。相比之下,镍对氧化膜的影响不大。在低于 400 °C 的温度下,可以观察到氧化物厚度的自我限制,这种限制与温度无关。这是由于表面附近的铬和钼消耗殆尽,导致金属镍在氧化物下富集。自限制氧化物厚度为 6-8 Å,相当于氧化物中阳离子的 3-4 个原子层。400 °C 时,观察到 Mo6+ 氧化物升华,从而在合金表面形成了几乎纯净的 Cr2O3 层。最后,我们提出了一种机制来解释 Ni-Cr-Mo 合金中观察到的双层氧化物结构的形成,该机制涉及六价 Mo 离子在电场中的迁移增强,根据 Cabrera Mott 模型和点缺陷模型,该机制在氧化过程中推动了质量传输。
{"title":"Dynamics of early-stage oxide formation on a Ni-Cr-Mo alloy","authors":"Alfred Larsson, Sabrina Gericke, Andrea Grespi, Volkmar Koller, Josefin Eidhagen, Xiaoqi Yue, Eleanor Frampton, Stephan Appelfeller, Alexander Generalov, Alexei Preobrajenski, Jinshan Pan, Herbert Over, Edvin Lundgren","doi":"10.1038/s41529-024-00463-9","DOIUrl":"10.1038/s41529-024-00463-9","url":null,"abstract":"Corrosion results in large costs and environmental impact but can be controlled by thin oxide films that passivate the metal surfaces and hinder further oxidation or dissolution in an aqueous environment. The structure, chemistry, and thickness of these oxide films play a significant role in determining their anti-corrosion properties and the early-stage oxidation dynamics affect the properties of the developed oxide. Here, we use in situ X-ray Photoelectron Spectroscopy (XPS) to study the early-stage oxidation of a Ni-Cr-Mo alloy at room temperature and up to 400 °C. Cr and Mo begin to oxidize immediately after exposure to O2, and Cr3+, Mo4+, and Mo6+ oxides are formed. In contrast, Ni does not contribute significantly to the oxide film. A self-limiting oxide thickness, which did not depend on temperature below 400 °C, is observed. This is attributed to the consumption of available Cr and Mo near the surface, which results in an enrichment of metallic Ni under the oxide. The self-limited oxide thickness is 6–8 Å, which corresponds to 3–4 atomic layers of cations in the oxide. At 400 °C, sublimation of Mo6+ oxide is observed, resulting in the formation of an almost pure layer of Cr2O3 on the alloy surface. Lastly, a mechanism is presented that explains the formation of the bi-layer oxide structure observed for Ni-Cr-Mo alloys, which involves the enhanced migration of hexavalent Mo ions in the electric field, which drives mass transport during oxidation according to both the Cabrera Mott model and the Point Defect Model.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":5.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00463-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1038/s41529-024-00458-6
Yu Song, Xiaonan Lu, Kaixin Wang, Joseph V. Ryan, Morten M. Smedskjaer, John D. Vienna, Mathieu Bauchy
Ensuring the long-term chemical durability of glasses is critical for nuclear waste immobilization operations. Durable glasses usually undergo qualification for disposal based on their response to standardized tests such as the product consistency test or the vapor hydration test (VHT). The VHT uses elevated temperature and water vapor to accelerate glass alteration and the formation of secondary phases. Understanding the relationship between glass composition and VHT response is of fundamental and practical interest. However, this relationship is complex, non-linear, and sometimes fairly variable, posing challenges in identifying the distinct effect of individual oxides on VHT response. Here, we leverage a dataset comprising 654 Hanford low-activity waste (LAW) glasses across a wide compositional envelope and employ various machine learning techniques to explore this relationship. We find that Gaussian process regression (GPR), a nonparametric regression method, yields the highest predictive accuracy. By utilizing the trained model, we discern the influence of each oxide on the glasses’ VHT response. Moreover, we discuss the trade-off between underfitting and overfitting for extrapolating the material performance in the context of sparse and heterogeneous datasets.
{"title":"Unveiling the effect of composition on nuclear waste immobilization glasses’ durability by nonparametric machine learning","authors":"Yu Song, Xiaonan Lu, Kaixin Wang, Joseph V. Ryan, Morten M. Smedskjaer, John D. Vienna, Mathieu Bauchy","doi":"10.1038/s41529-024-00458-6","DOIUrl":"10.1038/s41529-024-00458-6","url":null,"abstract":"Ensuring the long-term chemical durability of glasses is critical for nuclear waste immobilization operations. Durable glasses usually undergo qualification for disposal based on their response to standardized tests such as the product consistency test or the vapor hydration test (VHT). The VHT uses elevated temperature and water vapor to accelerate glass alteration and the formation of secondary phases. Understanding the relationship between glass composition and VHT response is of fundamental and practical interest. However, this relationship is complex, non-linear, and sometimes fairly variable, posing challenges in identifying the distinct effect of individual oxides on VHT response. Here, we leverage a dataset comprising 654 Hanford low-activity waste (LAW) glasses across a wide compositional envelope and employ various machine learning techniques to explore this relationship. We find that Gaussian process regression (GPR), a nonparametric regression method, yields the highest predictive accuracy. By utilizing the trained model, we discern the influence of each oxide on the glasses’ VHT response. Moreover, we discuss the trade-off between underfitting and overfitting for extrapolating the material performance in the context of sparse and heterogeneous datasets.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":5.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00458-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1038/s41529-024-00455-9
Zeyu Chen, Yongzhe Wang, Yiling Huang, Fan Peng, Chucheng Lin, Wei Zheng, Xuemei Song, Yaran Niu, Yi Zeng
It is difficult to obtain a single-phase environmental barrier coating material that simultaneously offers the advantages of low thermal conductivity, a suitable coefficient of thermal expansion, and excellent corrosion resistance. Herein, to synthesize the advantages of single-phase materials, we have developed an effective approach for the design of high-entropy multiphase ceramics of rare earth oxides and silicates. Such a specific design approach is capable of making high-entropy RE2SiO5/RE2O3 and RE2SiO5/RE2Si2O7 (RE = Lu, Yb, Tm, Er, Ho, and Y) multiphase ceramics as two types of potential environmental barrier coating materials for Al2O3f/Al2O3 and SiCf/SiC ceramic matrix composites.
{"title":"Investigation on improving the comprehensive performance of environmental barrier coating materials by high-entropy multiphase design","authors":"Zeyu Chen, Yongzhe Wang, Yiling Huang, Fan Peng, Chucheng Lin, Wei Zheng, Xuemei Song, Yaran Niu, Yi Zeng","doi":"10.1038/s41529-024-00455-9","DOIUrl":"10.1038/s41529-024-00455-9","url":null,"abstract":"It is difficult to obtain a single-phase environmental barrier coating material that simultaneously offers the advantages of low thermal conductivity, a suitable coefficient of thermal expansion, and excellent corrosion resistance. Herein, to synthesize the advantages of single-phase materials, we have developed an effective approach for the design of high-entropy multiphase ceramics of rare earth oxides and silicates. Such a specific design approach is capable of making high-entropy RE2SiO5/RE2O3 and RE2SiO5/RE2Si2O7 (RE = Lu, Yb, Tm, Er, Ho, and Y) multiphase ceramics as two types of potential environmental barrier coating materials for Al2O3f/Al2O3 and SiCf/SiC ceramic matrix composites.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-13"},"PeriodicalIF":5.1,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00455-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1038/s41529-023-00411-z
Weiwei Qu, Zehao Chen, Zhilin Zhang, Xue Li, Fan Yang, Jinlong Wang, Minghui Chen, Shusuo Li, Fuhui Wang
The hot corrosion experiments of René N5 alloy coated with three different NiCrAlY metal bonding layers are carried out, that the layers are prepared by different methods (APS, HVAF and MIP). Compared with bare René N5 alloy samples, the hot corrosion resistance of coated samples is improved. It can be attributed to the small internal stress of the surface oxide layer on the coating sample, which is difficult to spall, reducing the degree of hot corrosion reaction. The hot corrosion resistance of NiCrAlY layers is MIP > HVAF > APS, which is positively positively related to the density of layers, because the influence of element diffusion in the process of hot corrosion is effectively slowed down.
通过不同的制备方法(APS、HVAF 和 MIP),对镀有三种不同 NiCrAlY 金属键合层的 René N5 合金进行了热腐蚀实验。与裸露的 René N5 合金样品相比,涂层样品的耐热腐蚀性能有所提高。这可能是因为涂层样品表面氧化层的内应力小,不易剥落,降低了热腐蚀反应的程度。NiCrAlY 涂层的耐热腐蚀性能为 MIP > HVAF > APS,与涂层密度呈正相关,这是因为在热腐蚀过程中元素扩散的影响被有效减缓了。
{"title":"Characteristics and hot corrosion behavior of NiCrAlY metal bonding layers prepared by different processes","authors":"Weiwei Qu, Zehao Chen, Zhilin Zhang, Xue Li, Fan Yang, Jinlong Wang, Minghui Chen, Shusuo Li, Fuhui Wang","doi":"10.1038/s41529-023-00411-z","DOIUrl":"10.1038/s41529-023-00411-z","url":null,"abstract":"The hot corrosion experiments of René N5 alloy coated with three different NiCrAlY metal bonding layers are carried out, that the layers are prepared by different methods (APS, HVAF and MIP). Compared with bare René N5 alloy samples, the hot corrosion resistance of coated samples is improved. It can be attributed to the small internal stress of the surface oxide layer on the coating sample, which is difficult to spall, reducing the degree of hot corrosion reaction. The hot corrosion resistance of NiCrAlY layers is MIP > HVAF > APS, which is positively positively related to the density of layers, because the influence of element diffusion in the process of hot corrosion is effectively slowed down.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":5.1,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-023-00411-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140541208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1038/s41529-024-00452-y
Bo Liu, Fangyuan Lu, Shidong Zhu, Cuiwei Du, Xiaogang Li
Microorganisms are notoriously known to cause local corrosion and stress corrosion cracking (SCC), which seriously endangers the materials service safety. Cu can enhance antibacterial function of the material and reduce the vulnerability to hydrogen embrittlement (HE). However, the dilemma of how much Cu content generates the best resistance to microbiological corrosion and SCC arises. Here, we modified the Cu content in pipeline steel to obtain the best antibacterial effect to nitrate reducing bacteria Bacillus cereus and HE resistance. The findings offer a fresh perspective on how to design and prepare a steel that are both resistant to microbiological corrosion and SCC.
{"title":"Enhancement resistance to microbiologically influenced stress corrosion of Cu-bearing steel against Bacillus cereus","authors":"Bo Liu, Fangyuan Lu, Shidong Zhu, Cuiwei Du, Xiaogang Li","doi":"10.1038/s41529-024-00452-y","DOIUrl":"10.1038/s41529-024-00452-y","url":null,"abstract":"Microorganisms are notoriously known to cause local corrosion and stress corrosion cracking (SCC), which seriously endangers the materials service safety. Cu can enhance antibacterial function of the material and reduce the vulnerability to hydrogen embrittlement (HE). However, the dilemma of how much Cu content generates the best resistance to microbiological corrosion and SCC arises. Here, we modified the Cu content in pipeline steel to obtain the best antibacterial effect to nitrate reducing bacteria Bacillus cereus and HE resistance. The findings offer a fresh perspective on how to design and prepare a steel that are both resistant to microbiological corrosion and SCC.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-14"},"PeriodicalIF":5.1,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00452-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1038/s41529-024-00454-w
Thomas D. W. Corbett, Marcus Westholm, Anna Rosling, Tullia Calogiuri, Reinaldy Poetra, Harun Niron, Mathilde Hagens, Alix Vidal, Jan Willem Van Groenigen, Jens Hartmann, Ivan A. Janssens, Lukas Rieder, Eric Struyf, Michiel Van Tendeloo, Siegfried E. Vlaeminck, Sara Vicca, Anna Neubeck
The development of carbon dioxide removal methods, coupled with decreased CO2 emissions, is fundamental to achieving the targets outlined in the Paris Agreement limiting global warming to 1.5 °C. Here we are investigating the importance of the organic carbon feedstock to support silicate mineral weathering in small-scale flow through bioreactors and subsequent CO2 sequestration. Here, we combine two bacteria and two fungi, widely reported for their weathering potential, in simple flow through bioreactors (columns) consisting of forsterite and widely available, cheap organic carbon sources (wheat straw, bio-waste digestate of pig manure and biowaste, and manure compost), over six weeks. Compared to their corresponding abiotic controls, the inoculated straw and digestate columns release more total alkalinity (~2 times more) and produce greater dissolved and solid inorganic carbon (29% for straw and 13% for digestate), suggesting an increase in CO2 sequestration because of bio-enhanced silicate weathering. Microbial biomass is higher in the straw columns compared to the digestate and manure compost columns, with a phospholipid fatty acid derived total microbial biomass 10 x greater than the other biotic columns. Scanning Electron Microscopy imaging shows the most extensive colonisation and biofilm formation on the mineral surfaces in the straw columns. The biotic straw and digestate columns sequester 50 and 14 mg C more than their abiotic controls respectively, while there is no difference in the manure columns. The selection of organic carbon sources to support microbial communities in the flow through bioreactors controlls the silicate weathering rates and CO2 sequestration.
{"title":"Organic carbon source controlled microbial olivine dissolution in small-scale flow-through bioreactors, for CO2 removal","authors":"Thomas D. W. Corbett, Marcus Westholm, Anna Rosling, Tullia Calogiuri, Reinaldy Poetra, Harun Niron, Mathilde Hagens, Alix Vidal, Jan Willem Van Groenigen, Jens Hartmann, Ivan A. Janssens, Lukas Rieder, Eric Struyf, Michiel Van Tendeloo, Siegfried E. Vlaeminck, Sara Vicca, Anna Neubeck","doi":"10.1038/s41529-024-00454-w","DOIUrl":"10.1038/s41529-024-00454-w","url":null,"abstract":"The development of carbon dioxide removal methods, coupled with decreased CO2 emissions, is fundamental to achieving the targets outlined in the Paris Agreement limiting global warming to 1.5 °C. Here we are investigating the importance of the organic carbon feedstock to support silicate mineral weathering in small-scale flow through bioreactors and subsequent CO2 sequestration. Here, we combine two bacteria and two fungi, widely reported for their weathering potential, in simple flow through bioreactors (columns) consisting of forsterite and widely available, cheap organic carbon sources (wheat straw, bio-waste digestate of pig manure and biowaste, and manure compost), over six weeks. Compared to their corresponding abiotic controls, the inoculated straw and digestate columns release more total alkalinity (~2 times more) and produce greater dissolved and solid inorganic carbon (29% for straw and 13% for digestate), suggesting an increase in CO2 sequestration because of bio-enhanced silicate weathering. Microbial biomass is higher in the straw columns compared to the digestate and manure compost columns, with a phospholipid fatty acid derived total microbial biomass 10 x greater than the other biotic columns. Scanning Electron Microscopy imaging shows the most extensive colonisation and biofilm formation on the mineral surfaces in the straw columns. The biotic straw and digestate columns sequester 50 and 14 mg C more than their abiotic controls respectively, while there is no difference in the manure columns. The selection of organic carbon sources to support microbial communities in the flow through bioreactors controlls the silicate weathering rates and CO2 sequestration.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-13"},"PeriodicalIF":5.1,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00454-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The presence of inclusions in steels is responsible for hydrogen-induced cracking (HIC), which necessitates control over their size and distribution. The aims of this study are to investigate the effects of different inclusion-modifying elements on steels, as well as reveal the impact of inclusions on hydrogen migration. Various methods, including HIC evaluation, electrochemical hydrogen permeation, silver microprint, and in-situ hydrogen escape observation, are utilized. The results indicate that steel with a Ti/Mg content ratio of 4:1 exhibits favorable comprehensive resistance against HIC. Moreover, the observation of in-situ hydrogen escape observations reveals that steels with a higher number of hydrogen bubbles and a higher ratio of bubbles related to the inclusions demonstrate better HIC resistance. The refined, dispersed, and multi-compounded inclusions facilitate the formation of more complex trapping sites, ultimately improving the dispersion and pinning of dissociative hydrogen atoms. Consequently, employing a multicomponent inclusion modification strategy holds promise for the development of hydrogen-resistant pipeline steel.
钢中夹杂物的存在是氢致开裂(HIC)的原因,因此必须控制夹杂物的大小和分布。本研究的目的是调查不同夹杂物改性元素对钢材的影响,并揭示夹杂物对氢迁移的影响。研究采用了多种方法,包括 HIC 评估、电化学氢渗透、银微印迹和原位氢逸观察。结果表明,Ti/Mg 含量比为 4:1 的钢具有良好的抗 HIC 综合能力。此外,原位氢逃逸观测结果表明,氢气泡数量越多、与夹杂物相关的气泡比例越高的钢材,其抗 HIC 性能越好。细化、分散和多复合夹杂物有助于形成更复杂的捕获点,最终改善离解氢原子的分散和钉扎。因此,采用多组分夹杂物改性策略有望开发出抗氢管道钢。
{"title":"Improving HIC resistance of pipe-steel by Ti/Mg treatment with insights into hydrogen migration","authors":"Zhixian Peng, Jing Liu, Rongzhe Hu, Shiqi Zhang, Feng Huang, Zhengliang Xue","doi":"10.1038/s41529-024-00439-9","DOIUrl":"10.1038/s41529-024-00439-9","url":null,"abstract":"The presence of inclusions in steels is responsible for hydrogen-induced cracking (HIC), which necessitates control over their size and distribution. The aims of this study are to investigate the effects of different inclusion-modifying elements on steels, as well as reveal the impact of inclusions on hydrogen migration. Various methods, including HIC evaluation, electrochemical hydrogen permeation, silver microprint, and in-situ hydrogen escape observation, are utilized. The results indicate that steel with a Ti/Mg content ratio of 4:1 exhibits favorable comprehensive resistance against HIC. Moreover, the observation of in-situ hydrogen escape observations reveals that steels with a higher number of hydrogen bubbles and a higher ratio of bubbles related to the inclusions demonstrate better HIC resistance. The refined, dispersed, and multi-compounded inclusions facilitate the formation of more complex trapping sites, ultimately improving the dispersion and pinning of dissociative hydrogen atoms. Consequently, employing a multicomponent inclusion modification strategy holds promise for the development of hydrogen-resistant pipeline steel.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":5.1,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00439-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140329053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1038/s41529-024-00438-w
Changyuan Xu, Linyang Li, Rong Hu, Huihua Wu, Lingnan Kong, Nianbing Zhong, Bo Wan, Lei Wu, Dong Lai, Yuanyuan He, Yang Liu, Xiaoling Peng, Mingfu Zhao, Quanhua Xie
To monitor in situ the temperature, pH, and micro-strain change information of sandstone artifacts in the process of oxalic acid corrosion, the temperature, pH, and micro-strain fiber Bragg grating (FBG) sensors are developed. A theoretical model of the sensors is established. The surface morphology, material composition, pore structure, temperature, pH, and micro-strain of sandstone corroded by oxalic acid solutions of different concentrations are investigated. The experimental results show that the higher the concentration of oxalic acid, the stronger the corrosiveness of the sandstone. Ferrous oxalate and calcium oxalate produced by corrosion continuously precipitate from the inside of the rock, and the dual reaction of crystallization and dissolution occurs, reducing the proportion of fine pores in the rock pore suction and gravity. The oxalic acid solution is transported to the middle of the sandstone (3 cm) and undergoes the strongest chemical reaction with ore particles and debris, resulting in the maximum wavelength drift of the temperature, pH, and micro-strain sensors. The results of this study provide important support for analyzing the acid dissolution mechanism of stone cultural relics and the preventive protection of cultural relics.
{"title":"In situ detection of spatial distribution information of temperature-pH-strain of sandstone cultural relics","authors":"Changyuan Xu, Linyang Li, Rong Hu, Huihua Wu, Lingnan Kong, Nianbing Zhong, Bo Wan, Lei Wu, Dong Lai, Yuanyuan He, Yang Liu, Xiaoling Peng, Mingfu Zhao, Quanhua Xie","doi":"10.1038/s41529-024-00438-w","DOIUrl":"10.1038/s41529-024-00438-w","url":null,"abstract":"To monitor in situ the temperature, pH, and micro-strain change information of sandstone artifacts in the process of oxalic acid corrosion, the temperature, pH, and micro-strain fiber Bragg grating (FBG) sensors are developed. A theoretical model of the sensors is established. The surface morphology, material composition, pore structure, temperature, pH, and micro-strain of sandstone corroded by oxalic acid solutions of different concentrations are investigated. The experimental results show that the higher the concentration of oxalic acid, the stronger the corrosiveness of the sandstone. Ferrous oxalate and calcium oxalate produced by corrosion continuously precipitate from the inside of the rock, and the dual reaction of crystallization and dissolution occurs, reducing the proportion of fine pores in the rock pore suction and gravity. The oxalic acid solution is transported to the middle of the sandstone (3 cm) and undergoes the strongest chemical reaction with ore particles and debris, resulting in the maximum wavelength drift of the temperature, pH, and micro-strain sensors. The results of this study provide important support for analyzing the acid dissolution mechanism of stone cultural relics and the preventive protection of cultural relics.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":5.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00438-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1038/s41529-024-00450-0
Yihao Tang, Yuxing Guo, Pengfei Ji, Bo Li, Chaoqun Xia, Shuzhi Zhang, Junsong Zhang, Xinyu Zhang, Riping Liu
In this study, the corrosion behavior of AlMn lightweight weathering steel (LWS) in the simulated marine atmosphere was investigated by means of the dry/wet corrosion cycle test. The results showed that Al was present as FeAl2O4 and enriched in the inner layer, which significantly optimizes the rust layer in terms of compactness, elemental distribution, phase constitution, and electrochemical properties. The Mn oxides promoted the formation of FeAl2O4 and enhanced the anti–rupture ability of the LWS’s rust layer.
{"title":"Optimizing the corrosion performance of rust layers: role of Al and Mn in lightweight weathering steel","authors":"Yihao Tang, Yuxing Guo, Pengfei Ji, Bo Li, Chaoqun Xia, Shuzhi Zhang, Junsong Zhang, Xinyu Zhang, Riping Liu","doi":"10.1038/s41529-024-00450-0","DOIUrl":"10.1038/s41529-024-00450-0","url":null,"abstract":"In this study, the corrosion behavior of AlMn lightweight weathering steel (LWS) in the simulated marine atmosphere was investigated by means of the dry/wet corrosion cycle test. The results showed that Al was present as FeAl2O4 and enriched in the inner layer, which significantly optimizes the rust layer in terms of compactness, elemental distribution, phase constitution, and electrochemical properties. The Mn oxides promoted the formation of FeAl2O4 and enhanced the anti–rupture ability of the LWS’s rust layer.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-17"},"PeriodicalIF":5.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00450-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1038/s41529-024-00448-8
Guoyong Ran, Wenrui Tu, Haopeng Dong, Yiming Jiang, Jin Li, Kezhao Liu, Yangting Sun
The inherent variability of pitting poses challenges in accurately evaluating the pitting resistance due to potential disparities in test results. This study compares the pitting resistance of two commercial 2205 duplex stainless steels. Counterintuitively, the variant with higher Pitting Resistance Equivalent Number, exhibits a lower Critical Pitting Temperature. Through the potentiostatic pulse test and potentiostatic polarization, this variant is observed to have a greater number of pitting initiation sites. Further investigation, using SEM inclusion statistics, reveals an increased presence of inclusions rich in calcium oxides as the underlying cause of this unexpected phenomenon.
{"title":"Comparative statistical analysis of pitting in Two 2205 duplex stainless steel variants","authors":"Guoyong Ran, Wenrui Tu, Haopeng Dong, Yiming Jiang, Jin Li, Kezhao Liu, Yangting Sun","doi":"10.1038/s41529-024-00448-8","DOIUrl":"10.1038/s41529-024-00448-8","url":null,"abstract":"The inherent variability of pitting poses challenges in accurately evaluating the pitting resistance due to potential disparities in test results. This study compares the pitting resistance of two commercial 2205 duplex stainless steels. Counterintuitively, the variant with higher Pitting Resistance Equivalent Number, exhibits a lower Critical Pitting Temperature. Through the potentiostatic pulse test and potentiostatic polarization, this variant is observed to have a greater number of pitting initiation sites. Further investigation, using SEM inclusion statistics, reveals an increased presence of inclusions rich in calcium oxides as the underlying cause of this unexpected phenomenon.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-16"},"PeriodicalIF":5.1,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00448-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}