首页 > 最新文献

npj Materials Degradation最新文献

英文 中文
Influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments Nb/V 对海洋环境中高强度抗震钢筋腐蚀行为的影响
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-22 DOI: 10.1038/s41529-024-00493-3
Zeyun Zeng, Shangjun Gu, Jie Wang, Fulong Wei, Zhiying Li, Hui Yang, Changrong Li
In this study, the immersion test, surface analysis, cross-section analysis, quantitative analysis and electrochemical analysis were used to study the influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments. The corrosion results clarified that the addition of Nb/V improved the corrosion resistance of the rebar, thereby reducing the corrosion rate of the rebar and improving the stability of corrosion layers. Firstly, the addition of Nb/V promoted the transformation of unstable Fe oxyhydroxides to stable Fe oxyhydroxides in the surface corrosion layers of the rebar, thus increasing the α/(β + γ) ratio, corrosion potential and total impedance value. Secondly, the addition of Nb/V induced the formation of Nb oxides and V oxides in the surface corrosion layers of the rebar, and the existence of these oxides repaired the surface defects of corrosion layers, thus enhancing the corrosion resistance performance of surface corrosion layers of the rebar.
本研究采用浸泡试验、表面分析、截面分析、定量分析和电化学分析等方法,研究了 Nb/V 对海洋环境中高强度抗震钢筋腐蚀行为的影响。腐蚀结果表明,添加 Nb/V 提高了螺纹钢的耐腐蚀性,从而降低了螺纹钢的腐蚀速率,提高了腐蚀层的稳定性。首先,Nb/V 的添加促进了钢筋表面腐蚀层中不稳定的铁氧氢氧化物向稳定的铁氧氢氧化物转化,从而提高了 α/(β + γ)比值、腐蚀电位和总阻抗值。其次,Nb/V 的加入诱导了钢筋表面腐蚀层中 Nb 氧化物和 V 氧化物的形成,这些氧化物的存在修复了腐蚀层的表面缺陷,从而提高了钢筋表面腐蚀层的耐腐蚀性能。
{"title":"Influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments","authors":"Zeyun Zeng, Shangjun Gu, Jie Wang, Fulong Wei, Zhiying Li, Hui Yang, Changrong Li","doi":"10.1038/s41529-024-00493-3","DOIUrl":"10.1038/s41529-024-00493-3","url":null,"abstract":"In this study, the immersion test, surface analysis, cross-section analysis, quantitative analysis and electrochemical analysis were used to study the influence of Nb/V on the corrosion behavior of high-strength anti-seismic rebar in marine environments. The corrosion results clarified that the addition of Nb/V improved the corrosion resistance of the rebar, thereby reducing the corrosion rate of the rebar and improving the stability of corrosion layers. Firstly, the addition of Nb/V promoted the transformation of unstable Fe oxyhydroxides to stable Fe oxyhydroxides in the surface corrosion layers of the rebar, thus increasing the α/(β + γ) ratio, corrosion potential and total impedance value. Secondly, the addition of Nb/V induced the formation of Nb oxides and V oxides in the surface corrosion layers of the rebar, and the existence of these oxides repaired the surface defects of corrosion layers, thus enhancing the corrosion resistance performance of surface corrosion layers of the rebar.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-20"},"PeriodicalIF":6.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00493-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralogical and geochemical composition of a cementitious grout and its evolution during interaction with water 水泥基灌浆料的矿物学和地球化学组成及其与水作用过程中的演变
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-17 DOI: 10.1038/s41529-024-00488-0
Sylvain Grangeon, Mathieu Debure, Valerie Montouillout, Erik Elkaim, Catherine Lerouge, Nicolas Maubec, Nicolas Michau, Xavier Bourbon, Christelle Martin, Benoit Cochepin, Nicolas Marty
In the present study, the chemical composition, mineralogy, and mechanisms of alteration of a cementitious grout based on a CEM III/C with addition of smectite, hydrotalcite, and silica fume, are studied using a combination of chemical and physical methods. This material was designed in the context of geological repository of radioactive wastes, with a twofold aim: first, to fill the technical voids left by drilling operations at the interface between the geological formation and the disposal galleries. Second, to neutralize a potential acidic transient due to pyrite oxidation, and to create an environment that favors low corrosion rates of carbon steels. The grout is mainly composed of calcium silicate hydrates having a Ca/Si ratio of ~0.8, incorporating Al in the bridging site of the Si chains (C-A-S-H), and accounting for 29–36 wt.% of the sample. It also contains silica fume (38–48 wt.%), smectite with interlayer Na (11–17 wt.%), hydrotalcite with interlayer CO32− (3–4 wt.%), and lower amounts of portlandite, calcite, and possibly gibbsite and gypsum. Upon alteration by water in a flow-through reactor, the main modifications affecting the sample are calcite and gypsum dissolution, hence releasing aqueous Ca2+ that is adsorbed in smectite interlayer by replacing Na+, and stoichiometric C-A-S-H dissolution. The evolution of solution chemistry and of the solid phase composition are reproduced successfully using a thermokinetic model.
本研究采用化学和物理相结合的方法,研究了基于 CEM III/C 的水泥基灌浆料的化学成分、矿物学和变化机理,并添加了埃克石、水滑石和硅灰。这种材料是在放射性废物地质处置库的背景下设计的,有两个目的:第一,填补地质构造和处置廊道之间的界面上钻孔作业留下的技术空隙。其次,中和黄铁矿氧化可能产生的瞬时酸性,并创造有利于降低碳钢腐蚀率的环境。灌浆料主要由硅酸钙水合物组成,Ca/Si 比约为 0.8,在硅链(C-A-S-H)的桥接部位含有 Al,占样品的 29-36%。它还含有硅灰(38-48 重量%)、含层间 Na 的闪长岩(11-17 重量%)、含层间 CO32- 的水滑石(3-4 重量%),以及较少量的波长岩、方解石,可能还有辉绿岩和石膏。水在流动反应器中改变样品时,影响样品的主要变化是方解石和石膏的溶解,从而释放出水溶液中的 Ca2+,Ca2+通过取代 Na+吸附在辉绿岩夹层中,以及化学计量的 C-A-S-H 溶解。利用热动力学模型成功地再现了溶液化学和固相组成的演变过程。
{"title":"Mineralogical and geochemical composition of a cementitious grout and its evolution during interaction with water","authors":"Sylvain Grangeon, Mathieu Debure, Valerie Montouillout, Erik Elkaim, Catherine Lerouge, Nicolas Maubec, Nicolas Michau, Xavier Bourbon, Christelle Martin, Benoit Cochepin, Nicolas Marty","doi":"10.1038/s41529-024-00488-0","DOIUrl":"10.1038/s41529-024-00488-0","url":null,"abstract":"In the present study, the chemical composition, mineralogy, and mechanisms of alteration of a cementitious grout based on a CEM III/C with addition of smectite, hydrotalcite, and silica fume, are studied using a combination of chemical and physical methods. This material was designed in the context of geological repository of radioactive wastes, with a twofold aim: first, to fill the technical voids left by drilling operations at the interface between the geological formation and the disposal galleries. Second, to neutralize a potential acidic transient due to pyrite oxidation, and to create an environment that favors low corrosion rates of carbon steels. The grout is mainly composed of calcium silicate hydrates having a Ca/Si ratio of ~0.8, incorporating Al in the bridging site of the Si chains (C-A-S-H), and accounting for 29–36 wt.% of the sample. It also contains silica fume (38–48 wt.%), smectite with interlayer Na (11–17 wt.%), hydrotalcite with interlayer CO32− (3–4 wt.%), and lower amounts of portlandite, calcite, and possibly gibbsite and gypsum. Upon alteration by water in a flow-through reactor, the main modifications affecting the sample are calcite and gypsum dissolution, hence releasing aqueous Ca2+ that is adsorbed in smectite interlayer by replacing Na+, and stoichiometric C-A-S-H dissolution. The evolution of solution chemistry and of the solid phase composition are reproduced successfully using a thermokinetic model.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00488-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient behavior of oxide fuels with controlled microstructure and Cr2O3 additive 具有可控微观结构和 Cr2O3 添加剂的氧化物燃料的瞬态行为
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1038/s41529-024-00486-2
Dong Zhao, Heng Ban, Kun Yang, Andre Broussard, Mingxin Li, Edward J. Lahoda, Jie Lian
Microstructure and Cr2O3 doping profoundly impact the thermal-mechanical properties and fracture of oxides fuels. It is a challenge to study the transient behavior of nuclear fuels under loss-of-coolant-event (LOCA). In this study, the crack behavior of UO2 pellets with controlled grain structure and Cr2O3 doping was tested with rapid power ramping (300−900 °C per min) mimicking a prototypical LOCA heating profile. Dense micron-sized UO2 pellets display well-maintained integrity without cracking with the ramping up to 1500 °C at a heating rate of 8 °C per second. Fracture occurs in both pure and Cr2O3-doped dense nano-sized UO2 pellets. The Cr2O3 doped oxide fuel pellet with a larger grain size (~ 22.2 μm) displays the best performance under LOCA testing due to its highest thermal conductivity under high temperature. FEA calculations suggest a temperature gradient across the fuel pellet during transient testing, resulting in residual stress and cracking, which can be correlated with their thermal-mechanical properties.
微观结构和 Cr2O3 掺杂对氧化物燃料的热机械性能和断裂有深远影响。研究失芯事件(LOCA)下核燃料的瞬态行为是一项挑战。在这项研究中,模拟原型 LOCA 加热曲线,测试了具有受控晶粒结构和掺杂 Cr2O3 的二氧化铀球团在快速功率斜坡(每分钟 300-900°C )下的裂纹行为。以每秒 8 ℃ 的升温速度升温到 1500 ℃ 时,致密的微米级二氧化铀球团显示出良好的完整性,没有出现裂纹。纯的和掺杂Cr2O3的致密纳米级二氧化铀颗粒都会发生断裂。晶粒尺寸较大(约 22.2 μm)的掺杂 Cr2O3 氧化物燃料颗粒在 LOCA 试验中表现最佳,因为它在高温下具有最高的热导率。有限元分析计算表明,在瞬态测试期间,燃料芯块上会出现温度梯度,从而导致残余应力和裂纹,这与其热机械性能有关。
{"title":"Transient behavior of oxide fuels with controlled microstructure and Cr2O3 additive","authors":"Dong Zhao, Heng Ban, Kun Yang, Andre Broussard, Mingxin Li, Edward J. Lahoda, Jie Lian","doi":"10.1038/s41529-024-00486-2","DOIUrl":"10.1038/s41529-024-00486-2","url":null,"abstract":"Microstructure and Cr2O3 doping profoundly impact the thermal-mechanical properties and fracture of oxides fuels. It is a challenge to study the transient behavior of nuclear fuels under loss-of-coolant-event (LOCA). In this study, the crack behavior of UO2 pellets with controlled grain structure and Cr2O3 doping was tested with rapid power ramping (300−900 °C per min) mimicking a prototypical LOCA heating profile. Dense micron-sized UO2 pellets display well-maintained integrity without cracking with the ramping up to 1500 °C at a heating rate of 8 °C per second. Fracture occurs in both pure and Cr2O3-doped dense nano-sized UO2 pellets. The Cr2O3 doped oxide fuel pellet with a larger grain size (~ 22.2 μm) displays the best performance under LOCA testing due to its highest thermal conductivity under high temperature. FEA calculations suggest a temperature gradient across the fuel pellet during transient testing, resulting in residual stress and cracking, which can be correlated with their thermal-mechanical properties.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00486-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the crystallographic orientation dependent electrochemical corrosion rates of aluminum and its binary alloys 铝及其二元合金的电化学腐蚀率与晶体取向有关的研究
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1038/s41529-024-00490-6
Haini Jin, Yudong Sui, Xiaohua Yu, Hao Zhou, Jing Feng, Yehua Jiang
This paper provides a study for crystallographic orientation-dependent corrosion rate of aluminum employing an ab initio model with inputs from first-principles calculations. Results showed that the sequence of corrosion rate is in the order of (111) < (410) < (331) < (221) < (321) < (211) < (110) < (100) < (210) < (320) < (310) < (311) for aluminum. The predicted corrosion current densities for (111), (110), and (100) surfaces are in general agreement with the experimental results. The alloying effects were further investigated employing this model with results validated via the polarization curves of alloyed aluminum.
本文利用第一性原理计算的输入建立了一个原子序数模型,对铝的晶体学取向依赖性腐蚀速率进行了研究。结果表明,铝的腐蚀速率顺序为 (111) < (410) < (331) < (221) < (321) < (211) < (110) < (100) < (210) < (320) < (310) < (311) 。预测的 (111)、(110) 和 (100) 表面的腐蚀电流密度与实验结果基本一致。利用该模型进一步研究了合金效应,并通过合金铝的极化曲线验证了结果。
{"title":"Study on the crystallographic orientation dependent electrochemical corrosion rates of aluminum and its binary alloys","authors":"Haini Jin,&nbsp;Yudong Sui,&nbsp;Xiaohua Yu,&nbsp;Hao Zhou,&nbsp;Jing Feng,&nbsp;Yehua Jiang","doi":"10.1038/s41529-024-00490-6","DOIUrl":"10.1038/s41529-024-00490-6","url":null,"abstract":"This paper provides a study for crystallographic orientation-dependent corrosion rate of aluminum employing an ab initio model with inputs from first-principles calculations. Results showed that the sequence of corrosion rate is in the order of (111) &lt; (410) &lt; (331) &lt; (221) &lt; (321) &lt; (211) &lt; (110) &lt; (100) &lt; (210) &lt; (320) &lt; (310) &lt; (311) for aluminum. The predicted corrosion current densities for (111), (110), and (100) surfaces are in general agreement with the experimental results. The alloying effects were further investigated employing this model with results validated via the polarization curves of alloyed aluminum.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00490-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular modeling applied to corrosion inhibition: a critical review 应用于缓蚀的分子建模:重要综述
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1038/s41529-024-00478-2
José María Castillo-Robles, Ernane de Freitas Martins, Pablo Ordejón, Ivan Cole
In the last few years, organic corrosion inhibitors have been used as a green alternative to toxic inorganic compounds to prevent corrosion in materials. Nonetheless, the fundamental mechanisms determining their inhibition performance are still far from understood. Molecular modeling can provide important insights into those mechanisms, allowing for a detailed analysis of the corrosion inhibition (CI) process. However, CI modeling is frequently underexplored and commonly used in a standardized way following a pre-determined recipe to support experimental data. We highlight six fundamental aspects (A) that one should consider when modeling CI: (A1) the electronic properties of isolated inhibitors, (A2) the interaction of the inhibitor with the surface, (A3) the surface model, (A4) the effect of the anodic and cathodic zones on the surface, (A5) the solvent effects, and (A6) the electrodes’ potential effects. While A1-A3 are more frequently investigated, A4-A6 and some more complex surface models from A3 are usually not considered and represent gaps in the CI modeling literature. In this review, we discuss the main features of molecular modeling applied to CI, considering the aforementioned key aspects and focusing on the gaps that the emerging approaches aim to fill. Filling these gaps will allow performing more detailed simulations of the CI process, which, coupled with artificial intelligence (AI) methods and multiscale approaches, might construct the bridge between the nanoscale CI modeling and the continuum scale of the CI processes.
在过去几年中,有机缓蚀剂已被用作有毒无机化合物的绿色替代品,以防止材料腐蚀。尽管如此,人们对决定其缓蚀性能的基本机制仍知之甚少。分子建模可以提供对这些机理的重要见解,从而对缓蚀(CI)过程进行详细分析。然而,CI 建模往往未得到充分探索,通常是按照预先确定的配方以标准化方式使用,以支持实验数据。我们强调了建立 CI 模型时应考虑的六个基本方面 (A):(A1) 隔离抑制剂的电子特性;(A2) 抑制剂与表面的相互作用;(A3) 表面模型;(A4) 表面阳极区和阴极区的影响;(A5) 溶剂影响;(A6) 电极电位影响。虽然 A1-A3 的研究较多,但 A4-A6 以及 A3 中一些更复杂的表面模型通常未被考虑,是 CI 建模文献中的空白。在本综述中,我们将讨论应用于 CI 的分子建模的主要特点,考虑上述关键方面,并重点关注新兴方法旨在填补的空白。填补这些空白将允许对 CI 过程进行更详细的模拟,再加上人工智能(AI)方法和多尺度方法,可能会在纳米级 CI 建模和连续级 CI 过程之间架起一座桥梁。
{"title":"Molecular modeling applied to corrosion inhibition: a critical review","authors":"José María Castillo-Robles,&nbsp;Ernane de Freitas Martins,&nbsp;Pablo Ordejón,&nbsp;Ivan Cole","doi":"10.1038/s41529-024-00478-2","DOIUrl":"10.1038/s41529-024-00478-2","url":null,"abstract":"In the last few years, organic corrosion inhibitors have been used as a green alternative to toxic inorganic compounds to prevent corrosion in materials. Nonetheless, the fundamental mechanisms determining their inhibition performance are still far from understood. Molecular modeling can provide important insights into those mechanisms, allowing for a detailed analysis of the corrosion inhibition (CI) process. However, CI modeling is frequently underexplored and commonly used in a standardized way following a pre-determined recipe to support experimental data. We highlight six fundamental aspects (A) that one should consider when modeling CI: (A1) the electronic properties of isolated inhibitors, (A2) the interaction of the inhibitor with the surface, (A3) the surface model, (A4) the effect of the anodic and cathodic zones on the surface, (A5) the solvent effects, and (A6) the electrodes’ potential effects. While A1-A3 are more frequently investigated, A4-A6 and some more complex surface models from A3 are usually not considered and represent gaps in the CI modeling literature. In this review, we discuss the main features of molecular modeling applied to CI, considering the aforementioned key aspects and focusing on the gaps that the emerging approaches aim to fill. Filling these gaps will allow performing more detailed simulations of the CI process, which, coupled with artificial intelligence (AI) methods and multiscale approaches, might construct the bridge between the nanoscale CI modeling and the continuum scale of the CI processes.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-20"},"PeriodicalIF":6.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00478-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensor degradation in nuclear reactor pressure vessels: the overlooked factor in remaining useful life prediction 核反应堆压力容器中的传感器退化:剩余使用寿命预测中被忽视的因素
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-12 DOI: 10.1038/s41529-024-00484-4
Raisa Bentay Hossain, Kazuma Kobayashi, Syed Bahauddin Alam
Sensor degradation poses a critical yet ‘often overlooked’ challenge in accurately predicting the remaining useful life (RUL) of nuclear reactor pressure vessels (RPVs), hindering safe and efficient plant operation. This paper introduces an approach to RUL estimation that explicitly addresses sensor degradation, a significant departure from conventional methods. We model neutron embrittlement, a dominant degradation process in RPV steel, as a Wiener process and leverage real-world surveillance capsule data for insightful parameterization. Maximum likelihood estimation is utilized to characterize the degradation dynamics in the model. A Kalman filter then seamlessly integrates the degradation model with sensor measurements, effectively compensating for degradation-induced errors and providing refined state estimates. These estimates power a robust RUL prediction framework. Our results expose the profound impact of sensor degradation on conventional RUL predictions. By directly confronting sensor degradation, our method yields substantially more accurate and reliable RUL estimates. This work marks a significant advancement in the field of materials degradation, offering a powerful tool to optimize nuclear power plant safety and longevity.
在准确预测核反应堆压力容器(RPV)的剩余使用寿命(RUL)时,传感器退化是一个关键但 "经常被忽视 "的挑战,阻碍了核电站的安全高效运行。本文介绍了一种明确解决传感器退化问题的 RUL 估算方法,这与传统方法大相径庭。中子脆化是 RPV 钢的主要降解过程,我们将其建模为一个维纳过程,并利用真实世界的监控舱数据进行了深入的参数化。利用最大似然估计来描述模型中的降解动态。然后,卡尔曼滤波器将降解模型与传感器测量数据无缝整合,有效补偿降解引起的误差,并提供精细的状态估计值。这些估计值为稳健的 RUL 预测框架提供了动力。我们的研究结果揭示了传感器退化对传统 RUL 预测的深刻影响。通过直接面对传感器退化问题,我们的方法可以获得更加准确可靠的 RUL 估计值。这项工作标志着材料降解领域的重大进展,为优化核电站的安全性和寿命提供了强有力的工具。
{"title":"Sensor degradation in nuclear reactor pressure vessels: the overlooked factor in remaining useful life prediction","authors":"Raisa Bentay Hossain,&nbsp;Kazuma Kobayashi,&nbsp;Syed Bahauddin Alam","doi":"10.1038/s41529-024-00484-4","DOIUrl":"10.1038/s41529-024-00484-4","url":null,"abstract":"Sensor degradation poses a critical yet ‘often overlooked’ challenge in accurately predicting the remaining useful life (RUL) of nuclear reactor pressure vessels (RPVs), hindering safe and efficient plant operation. This paper introduces an approach to RUL estimation that explicitly addresses sensor degradation, a significant departure from conventional methods. We model neutron embrittlement, a dominant degradation process in RPV steel, as a Wiener process and leverage real-world surveillance capsule data for insightful parameterization. Maximum likelihood estimation is utilized to characterize the degradation dynamics in the model. A Kalman filter then seamlessly integrates the degradation model with sensor measurements, effectively compensating for degradation-induced errors and providing refined state estimates. These estimates power a robust RUL prediction framework. Our results expose the profound impact of sensor degradation on conventional RUL predictions. By directly confronting sensor degradation, our method yields substantially more accurate and reliable RUL estimates. This work marks a significant advancement in the field of materials degradation, offering a powerful tool to optimize nuclear power plant safety and longevity.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-10"},"PeriodicalIF":6.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00484-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion behavior of the second phase in Mg–9Gd–3Y–2Zn–0.5Zr alloy under simulated coastal storage environment 模拟沿海储藏环境下 Mg-9Gd-3Y-2Zn-0.5Zr 合金中第二相的腐蚀行为
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1038/s41529-024-00492-4
Junhang Chen, Chao Zhang, Zhihao Hu, Yao Tan, Shiwen Zou, Jin Gao, Xin Zhang, Kui Xiao
The Mg–9Gd–3Y–2Zn–0.5Zr alloy was studied for its long-term corrosion behavior in a simulated coastal storage environment. The results show that the Mg12 (Y, Gd) Zn phase in the Mg–9Gd–3Y–2Zn–0.5Zr alloy forms a galvanic couple with α-Mg, and the Mg12 (Y, Gd) Zn phase acts as a cathode to accelerate α-Mg during the corrosion initiation period. The corrosion of the anode is subsequently transformed into corrosive dissolution of the anode. With the dissolution of the Mg12 (Y, Gd) Zn phase, elements such as Gd and Y are gradually distributed into the entire corrosion product layer, improving the protective performance of the corrosion product layer by forming dense Gd2O3 and Y2O3.
研究了 Mg-9Gd-3Y-2Zn-0.5Zr 合金在模拟沿海储存环境中的长期腐蚀行为。结果表明,Mg-9Gd-3Y-2Zn-0.5Zr 合金中的 Mg12 (Y, Gd) Zn 相与 α-Mg 形成电偶,Mg12 (Y, Gd) Zn 相作为阴极在腐蚀起始期加速了 α-Mg。阳极的腐蚀随后转化为阳极的腐蚀性溶解。随着 Mg12 (Y, Gd) Zn 相的溶解,Gd 和 Y 等元素逐渐分布到整个腐蚀产物层中,通过形成致密的 Gd2O3 和 Y2O3 提高了腐蚀产物层的保护性能。
{"title":"Corrosion behavior of the second phase in Mg–9Gd–3Y–2Zn–0.5Zr alloy under simulated coastal storage environment","authors":"Junhang Chen,&nbsp;Chao Zhang,&nbsp;Zhihao Hu,&nbsp;Yao Tan,&nbsp;Shiwen Zou,&nbsp;Jin Gao,&nbsp;Xin Zhang,&nbsp;Kui Xiao","doi":"10.1038/s41529-024-00492-4","DOIUrl":"10.1038/s41529-024-00492-4","url":null,"abstract":"The Mg–9Gd–3Y–2Zn–0.5Zr alloy was studied for its long-term corrosion behavior in a simulated coastal storage environment. The results show that the Mg12 (Y, Gd) Zn phase in the Mg–9Gd–3Y–2Zn–0.5Zr alloy forms a galvanic couple with α-Mg, and the Mg12 (Y, Gd) Zn phase acts as a cathode to accelerate α-Mg during the corrosion initiation period. The corrosion of the anode is subsequently transformed into corrosive dissolution of the anode. With the dissolution of the Mg12 (Y, Gd) Zn phase, elements such as Gd and Y are gradually distributed into the entire corrosion product layer, improving the protective performance of the corrosion product layer by forming dense Gd2O3 and Y2O3.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00492-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyepitaxial grain matching to study the oxidation of uranium dioxide 研究二氧化铀氧化的多外延晶粒匹配
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1038/s41529-024-00479-1
Jacek Wasik, Joseph Sutcliffe, Renaud Podor, Jarrod Lewis, James Edward Darnbrough, Sophie Rennie, Syed Akbar Hussain, Christopher Bell, Daniel Alexander Chaney, Gareth Griffiths, Lottie Mae Harding, Florence Legg, Eleanor Lawrence Bright, Rebecca Nicholls, Yadukrishnan Sasikumar, Angus Siberry, Philip Smith, Ross Springell
Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.
虽然一种材料的主要物理特性与其基本晶体结构有着内在联系,但在现实世界中观察到的特性往往是由微观结构驱动的,对于许多多晶材料来说,微观结构等同于组成晶体晶粒的大小和形状。在此,我们重点介绍一种尖端的合成方法,用于控制薄膜中的晶粒结构,并将相关的三维问题简化为不太复杂的二维问题。该方法已应用于锕系元素陶瓷二氧化铀,复制了核裂变燃料芯块中的典型结构,以研究立方氧化铀到正方氧化铀的氧化及随后的转化过程。这篇文章展示了如何利用这种合成方法来研究受晶粒形态影响的一系列现象,并重点介绍了二氧化铀氧化行为中有关向八氧化三铀相变的一些不寻常结果。
{"title":"Polyepitaxial grain matching to study the oxidation of uranium dioxide","authors":"Jacek Wasik,&nbsp;Joseph Sutcliffe,&nbsp;Renaud Podor,&nbsp;Jarrod Lewis,&nbsp;James Edward Darnbrough,&nbsp;Sophie Rennie,&nbsp;Syed Akbar Hussain,&nbsp;Christopher Bell,&nbsp;Daniel Alexander Chaney,&nbsp;Gareth Griffiths,&nbsp;Lottie Mae Harding,&nbsp;Florence Legg,&nbsp;Eleanor Lawrence Bright,&nbsp;Rebecca Nicholls,&nbsp;Yadukrishnan Sasikumar,&nbsp;Angus Siberry,&nbsp;Philip Smith,&nbsp;Ross Springell","doi":"10.1038/s41529-024-00479-1","DOIUrl":"10.1038/s41529-024-00479-1","url":null,"abstract":"Although the principal physical behaviour of a material is inherently connected to its fundamental crystal structure, the behaviours observed in the real-world are often driven by the microstructure, which for many polycrystalline materials, equates to the size and shape of the constituent crystal grains. Here we highlight a cutting edge synthesis route to the controlled engineering of grain structures in thin films and the simplification of associated 3-dimensional problems to less complex 2D ones. This has been applied to the actinide ceramic, uranium dioxide, to replicate structures typical in nuclear fission fuel pellets, in order to investigate the oxidation and subsequent transformation of cubic UO2 to orthorhombic U3O8. This article shows how this synthesis approach could be utilised to investigate a range of phenomena, affected by grain morphology, and highlights some unusual results in the oxidation behaviour of UO2, regarding the phase transition to U3O8.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-6"},"PeriodicalIF":6.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00479-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DATACORTECH: artificial intelligence platform for the virtual screen of aluminum corrosion inhibitors DATACORTECH:用于虚拟筛选铝腐蚀抑制剂的人工智能平台
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1038/s41529-024-00489-z
Tiago L. P. Galvão, Inês Ferreira, Frederico Maia, José R. B. Gomes, João Tedim
The machine learning framework reported herein can greatly accelerate the development of more effective and sustainable corrosion inhibitors for aluminum alloys, which still rely mostly on the experience of corrosion scientists, and trial and error laboratory testing. It can be used to design inhibitors for specific applications, which can be immobilized into nanocontainers or included directly into coatings in the search for less hazardous corrosion protective technologies. Therefore, a machine learning (ML) classification model that allows to identify promising compounds ( > 70% inhibitor efficiency) among less promising ones, and an online application ( https://datacor.shinyapps.io/datacortech/ ) were developed for the virtual screen (simulation) of potential inhibitors for aluminum alloys, capable of considering the molecular structure and the influence of pH as an input.
本文所报告的机器学习框架可大大加快更有效、更可持续的铝合金缓蚀剂的开发速度,而这些缓蚀剂的开发仍主要依赖于腐蚀科学家的经验以及实验室测试的反复试验。它可用于为特定应用设计抑制剂,这些抑制剂可固定在纳米容器中或直接加入涂层中,以寻求危害较小的腐蚀防护技术。因此,我们开发了一个机器学习(ML)分类模型,该模型可以从前景较差的化合物中识别出有潜力的化合物(抑制剂效率为 70%),并开发了一个在线应用程序(https://datacor.shinyapps.io/datacortech/),用于虚拟筛选(模拟)潜在的铝合金抑制剂,该应用程序可以将分子结构和 pH 值的影响作为输入。
{"title":"DATACORTECH: artificial intelligence platform for the virtual screen of aluminum corrosion inhibitors","authors":"Tiago L. P. Galvão,&nbsp;Inês Ferreira,&nbsp;Frederico Maia,&nbsp;José R. B. Gomes,&nbsp;João Tedim","doi":"10.1038/s41529-024-00489-z","DOIUrl":"10.1038/s41529-024-00489-z","url":null,"abstract":"The machine learning framework reported herein can greatly accelerate the development of more effective and sustainable corrosion inhibitors for aluminum alloys, which still rely mostly on the experience of corrosion scientists, and trial and error laboratory testing. It can be used to design inhibitors for specific applications, which can be immobilized into nanocontainers or included directly into coatings in the search for less hazardous corrosion protective technologies. Therefore, a machine learning (ML) classification model that allows to identify promising compounds ( &gt; 70% inhibitor efficiency) among less promising ones, and an online application ( https://datacor.shinyapps.io/datacortech/ ) were developed for the virtual screen (simulation) of potential inhibitors for aluminum alloys, capable of considering the molecular structure and the influence of pH as an input.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-9"},"PeriodicalIF":6.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00489-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Ion migration mechanisms in the early stages of drying and degradation of oil paint films 作者更正:油漆薄膜干燥和降解初期的离子迁移机制
IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-09 DOI: 10.1038/s41529-024-00491-5
Margherita Gnemmi, Laura Fuster-Lòpez, Marion Mecklenburg, Alison Murray, Sarah Sands, Greg Watson, Francesca Caterina Izzo
{"title":"Author Correction: Ion migration mechanisms in the early stages of drying and degradation of oil paint films","authors":"Margherita Gnemmi,&nbsp;Laura Fuster-Lòpez,&nbsp;Marion Mecklenburg,&nbsp;Alison Murray,&nbsp;Sarah Sands,&nbsp;Greg Watson,&nbsp;Francesca Caterina Izzo","doi":"10.1038/s41529-024-00491-5","DOIUrl":"10.1038/s41529-024-00491-5","url":null,"abstract":"","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-1"},"PeriodicalIF":6.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00491-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Materials Degradation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1