Pub Date : 2025-01-01Epub Date: 2024-10-24DOI: 10.1002/nbm.5279
Adrian Alexander Marth, Stefan Sommer, Thorsten Feiweier, Reto Sutter, Daniel Nanz, Constantin von Deuster
Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.5 ± 4.7 years; five females) underwent 3-Tesla STEAM and SE-DTI of the shoulder in three sessions. STEAM was acquired with Δ of 100/200/400/600 ms. The diffusion encoding time in SE scans was 19 ms (b = 500 s/mm2). Region of interest-based measurement of fractional anisotropy (FA), mean diffusivity (MD), and SNR was performed. Intraclass correlation coefficients (ICCs) were computed to assess test-retest reliability. ANOVA with post-hoc pairwise tests was used to compare measures between different Δ of STEAM as well as STEAM and SE, respectively. FA was significantly higher (FASTEAM: 0.38-0.46 vs. FASE: 0.26) and MD significantly lower (MDSTEAM: 1.20-1.33 vs. MDSE: 1.62 × 10-3 mm2/s) in STEAM compared to SE (p < 0.001, respectively). SNR was significantly higher for SE (72.3 ± 8.7) than for STEAM (p < 0.001). ICCs were excellent for FA in STEAM (≥0.911) and SE (0.960). For MD, ICCs were good for STEAM100ms-600ms (≥0.759) and SE (0.752). STEAM and SE exhibited excellent reliability for FA and good reliability for MD in the supraspinatus muscle. SNR was significantly higher in SE compared to STEAM.
弥散张量成像(DTI)有助于深入了解骨骼肌的微观结构,可采用基于刺激回波采集模式(STEAM)的方法来量化随时间变化的组织弥散。本研究考察了使用不同扩散编码时间(Δ)的 STEAM-DTI 序列获得的冈上肌扩散指标和信噪比(SNR),并将其与自旋回波(SE)序列的测量结果进行了比较。十名健康受试者(平均年龄 31.5 ± 4.7 岁;五名女性)分三次接受了肩部的 3-Tesla STEAM 和 SE-DTI 检查。STEAM的Δ为100/200/400/600 ms。SE 扫描的扩散编码时间为 19 ms(b = 500 s/mm2)。对分数各向异性(FA)、平均扩散率(MD)和信噪比进行了基于感兴趣区的测量。计算类内相关系数(ICC)以评估测试-再测试的可靠性。方差分析和事后配对检验分别用于比较 STEAM 不同 Δ 之间以及 STEAM 和 SE 之间的测量结果。与 SE(p 100ms-600ms (≥0.759) 和 SE (0.752))相比,STEAM 的 FA 明显更高(FASTEAM: 0.38-0.46 vs. FASE: 0.26),MD 明显更低(MDSTEAM: 1.20-1.33 vs. MDSE: 1.62 × 10-3 mm2/s)。STEAM 和 SE 对冈上肌的 FA 显示出极佳的可靠性,对冈上肌的 MD 显示出良好的可靠性。与 STEAM 相比,SE 的信噪比明显更高。
{"title":"Stimulated echo acquisition mode (STEAM) diffusion tensor imaging with different diffusion encoding times in the supraspinatus muscle: Test-retest reliability and comparison to spin echo diffusion tensor imaging.","authors":"Adrian Alexander Marth, Stefan Sommer, Thorsten Feiweier, Reto Sutter, Daniel Nanz, Constantin von Deuster","doi":"10.1002/nbm.5279","DOIUrl":"10.1002/nbm.5279","url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.5 ± 4.7 years; five females) underwent 3-Tesla STEAM and SE-DTI of the shoulder in three sessions. STEAM was acquired with Δ of 100/200/400/600 ms. The diffusion encoding time in SE scans was 19 ms (b = 500 s/mm<sup>2</sup>). Region of interest-based measurement of fractional anisotropy (FA), mean diffusivity (MD), and SNR was performed. Intraclass correlation coefficients (ICCs) were computed to assess test-retest reliability. ANOVA with post-hoc pairwise tests was used to compare measures between different Δ of STEAM as well as STEAM and SE, respectively. FA was significantly higher (FA<sub>STEAM</sub>: 0.38-0.46 vs. FA<sub>SE</sub>: 0.26) and MD significantly lower (MD<sub>STEAM</sub>: 1.20-1.33 vs. MD<sub>SE</sub>: 1.62 × 10<sup>-3</sup> mm<sup>2</sup>/s) in STEAM compared to SE (p < 0.001, respectively). SNR was significantly higher for SE (72.3 ± 8.7) than for STEAM (p < 0.001). ICCs were excellent for FA in STEAM (≥0.911) and SE (0.960). For MD, ICCs were good for STEAM<sub>100ms-600ms</sub> (≥0.759) and SE (0.752). STEAM and SE exhibited excellent reliability for FA and good reliability for MD in the supraspinatus muscle. SNR was significantly higher in SE compared to STEAM.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5279"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-12DOI: 10.1002/nbm.5294
Gizeaddis Lamesgin Simegn, Phillip Zhe Sun, Jinyuan Zhou, Mina Kim, Ravinder Reddy, Zhongliang Zu, Moritz Zaiss, Nirbhay Narayan Yadav, Richard A E Edden, Peter C M van Zijl, Linda Knutsson
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1+) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1+ inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1+ inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
化学交换饱和转移(CEST)磁共振成像(MRI)已成为一种强大的成像技术,对组织分子成分、pH 值和原位代谢过程非常敏感。CEST 磁共振成像能独特地探测组织内水和特定分子之间质子的物理交换,为了解标准磁共振成像看不到的生理现象提供了一个窗口。然而,由于 CEST 化合物的浓度非常低(在毫摩尔范围内),所测得的效果通常只有水信号的百分之几。因此,为了充分释放 CEST MRI 的潜力,必须解决一些关键难题,包括纠正运动伪影和磁场(B0 和 B1 +)不均匀性。运动,无论是患者的移动还是固有的生理脉动,都会扭曲 CEST 信号,阻碍精确量化。扫描仪硬件缺陷导致的 B0 和 B1 + 不均匀性会在信号强度中引入虚假变化,从而使数据解读更加复杂。如果不对这些干扰因素进行适当的校正,CEST MRI 的可靠分析和临床应用仍然具有挑战性。运动校正方法旨在补偿患者在图像采集期间(前瞻性)或采集之后(回顾性)的运动,从而减少伪影并保持数据质量。同样,B0 和 B1 + 不均匀性校正技术可提高 CEST MRI 的空间和频谱精度。本文旨在全面回顾目前 CEST MRI 中运动和磁场不均匀校正方法的现状。所讨论的方法一般适用于饱和转移(ST)磁共振成像,包括半固体磁化转移对比(MTC)和中继核奥豪斯增强(rNOE)研究。
{"title":"Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review.","authors":"Gizeaddis Lamesgin Simegn, Phillip Zhe Sun, Jinyuan Zhou, Mina Kim, Ravinder Reddy, Zhongliang Zu, Moritz Zaiss, Nirbhay Narayan Yadav, Richard A E Edden, Peter C M van Zijl, Linda Knutsson","doi":"10.1002/nbm.5294","DOIUrl":"10.1002/nbm.5294","url":null,"abstract":"<p><p>Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B<sub>0</sub> and B<sub>1</sub> <sup>+</sup>) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B<sub>0</sub> and B<sub>1</sub> <sup>+</sup> inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5294"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-29DOI: 10.1002/nbm.5282
Wilfred W Lam, Agata Chudzik, Natalia Lehman, Artur Łazorczyk, Paulina Kozioł, Anna Niedziałek, Athavan Gananathan, Anna Orzyłowska, Radosław Rola, Greg J Stanisz
The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T1-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T1 and T2 maps were also acquired. The MT and WASSR Z-spectra and T1 map were fitted to a two-pool quantitative MT model to estimate the T2 of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M0, MT), and the magnetization exchange rate from the macromolecular pool to the free pool (RMT). The T1-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M0, MT and AREX maps with a B1 of 2 μT best matched the hyperintensity on the post-contrast T1-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M0, MT were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B1 = 2 μT at 3.6 ppm and relative macromolecular pool size (M0, MT) images over entire period of 3-13 days after cancer cell implantation.
这项工作的重点是确定正位 U-87 MG 肿瘤与正常大脑之间的最佳磁共振成像(MRI)对比度,最终目的是监测治疗反应。将 U-87 MG 人胶质母细胞瘤细胞注射到 RNU 裸鼠(n = 9)的大脑中。在植入后 3-5、7-9 和 11-13 天三个时间点对所有动物进行 7 T 成像。进行了全脑 T1 加权(钆造影剂注射前后)、弥散和液体衰减反转恢复扫描。此外,还采集了单片饱和转移加权化学交换饱和转移(CEST)、磁化转移(MT)和水饱和转移参照(WASSR)对比 Z 谱以及 T1 和 T2 图。将 MT 和 WASSR Z 光谱及 T1 图拟合到双池定量 MT 模型中,以估算自由水分子和与大分子结合的水分子的 T2、大分子池的相对大小(M0,MT)以及从大分子池到自由池的磁化交换率(RMT)。此外,还计算了 T1 校正表观交换依赖性弛豫(AREX)指标,以分离 CEST 贡献。B1为2 μT的M0、MT和AREX图上的病灶与对比后T1加权图像上的高密度最为匹配。在所有时间点的 2-μT CEST、3-和 5-μT MT Z 频谱上,病变和对侧皮层之间的 Z 频谱也有很好的分离。在癌细胞植入后的整个 3-13 天期间,2μT 饱和、3.6 ppm 频率偏移的 MT 比值(对应于酰胺化学组)和 M0、MT 图像在增强病变区和对侧皮层之间的差异都非常显著(P 1 = 2 μT at 3.6 ppm 和相对大分子池大小(M0、MT))。
{"title":"Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat.","authors":"Wilfred W Lam, Agata Chudzik, Natalia Lehman, Artur Łazorczyk, Paulina Kozioł, Anna Niedziałek, Athavan Gananathan, Anna Orzyłowska, Radosław Rola, Greg J Stanisz","doi":"10.1002/nbm.5282","DOIUrl":"10.1002/nbm.5282","url":null,"abstract":"<p><p>The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T<sub>1</sub>-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T<sub>1</sub> and T<sub>2</sub> maps were also acquired. The MT and WASSR Z-spectra and T<sub>1</sub> map were fitted to a two-pool quantitative MT model to estimate the T<sub>2</sub> of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M<sub>0, MT</sub>), and the magnetization exchange rate from the macromolecular pool to the free pool (R<sub>MT</sub>). The T<sub>1</sub>-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M<sub>0, MT</sub> and AREX maps with a B<sub>1</sub> of 2 μT best matched the hyperintensity on the post-contrast T<sub>1</sub>-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M<sub>0, MT</sub> were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B<sub>1</sub> = 2 μT at 3.6 ppm and relative macromolecular pool size (M<sub>0, MT</sub>) images over entire period of 3-13 days after cancer cell implantation.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5282"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-08DOI: 10.1002/nbm.5292
Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan
Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.
{"title":"Float solenoid balun for MRI.","authors":"Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan","doi":"10.1002/nbm.5292","DOIUrl":"10.1002/nbm.5292","url":null,"abstract":"<p><p>Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5292"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gizeaddis Lamesgin Simegn, Yulu Song, Saipavitra Murali-Manohar, Helge J Zöllner, Christopher W Davies-Jenkins, Dunja Simicic, Kathleen E Hupfeld, Aaron T Gudmundson, Emlyn Muska, Emily Carter, Steve C N Hui, Vivek Yedavalli, Georg Oeltzschner, Douglas C Dean, Can Ceritoglu, J Tilak Ratnanather, Eric Porges, Richard Edden
Metabolite concentration estimates from magnetic resonance spectroscopy (MRS) are typically quantified using water referencing, correcting for relaxation-time differences between metabolites and water. One common approach is to correct the reference signal for differential relaxation within three tissue compartments (gray matter, white matter, and cerebrospinal fluid) using fixed literature values. However, water relaxation times (T1 and T2) vary between brain locations and with age. MRS studies, even those measuring metabolite levels across the lifespan, often ignore these effects, because of a lack of reference data. The purpose of this study is to develop a water relaxometry atlas and to integrate location- and age-appropriate relaxation values into the MRS analysis workflow. One hundred one volunteers (51 men, 50 women; ~10 male, and 10 female participants per decade from the 20s to 60s) were recruited. T1-weighted MPRAGE images ((1-mm)3 isotropic resolution) were acquired. Whole-brain water T1 and T2 measurements were made with DESPOT ((1.4 mm)3 isotropic resolution) at 3T. T1 and T2 maps were registered to the JHU MNI-SS/EVE atlas using affine and LDDMM transformation. The atlas's 268 parcels were reduced to 130 by combining homologous parcels. Mean T1 and T2 values were calculated for each parcel in each subject. Linear models of T1 and T2 as functions of age were computed, using age - 30 as the predictor. Reference atlases of "age-30-intercept" and age-slope for T1 and T2 were generated. The atlas-based workflow was integrated into Osprey, which co-registers MRS voxels to the atlas and calculates location- and age-appropriate water relaxation parameters for quantification. The water relaxation aging atlas revealed significant regional and tissue differences in water relaxation behavior across adulthood. Using location- and subject-appropriate reference values in the MRS analysis workflow removes a current methodological limitation and is expected to reduce quantification biases associated with water-referenced tissue correction, especially for studies of aging.
磁共振波谱(MRS)的代谢物浓度估计通常使用水参照来量化,纠正代谢物和水之间的松弛时间差异。一种常见的方法是使用固定的文献值来校正三个组织区(灰质、白质和脑脊液)内的微分松弛参考信号。然而,水松弛时间(T1和T2)因大脑位置和年龄而异。由于缺乏参考数据,即使是那些测量整个生命周期中代谢物水平的MRS研究,也经常忽略这些影响。本研究的目的是开发一个水松弛测量图谱,并将适合位置和年龄的松弛值整合到MRS分析工作流程中。101名志愿者(51名男性,50名女性;(男性10名,女性10名,年龄从20岁到60岁)。获得t1加权MPRAGE图像((1-mm)3各向同性分辨率)。在3T时用DESPOT ((1.4 mm)3各向同性分辨率)测量全脑水T1和T2。T1和T2图谱通过仿射和LDDMM变换注册到JHU mini - ss /EVE图谱中。通过合并同源包裹,地图集的268个包裹减少到130个。计算每位受试者每个包裹的平均T1和T2值。以年龄- 30岁为预测因子,计算T1和T2作为年龄函数的线性模型。生成T1和T2的“年龄-30岁截距”和年龄-斜率参考地图集。基于地图集的工作流程集成到Osprey中,它将MRS体素共同注册到地图集中,并计算适合位置和年龄的水松弛参数以进行量化。水松弛老化图谱揭示了成年期水松弛行为的显著区域和组织差异。在MRS分析工作流程中使用位置和受试者合适的参考值消除了当前方法学上的限制,并有望减少与水参考组织校正相关的量化偏差,特别是在衰老研究中。
{"title":"A Water Relaxation Atlas for Age- and Region-Specific Metabolite Concentration Correction at 3 T.","authors":"Gizeaddis Lamesgin Simegn, Yulu Song, Saipavitra Murali-Manohar, Helge J Zöllner, Christopher W Davies-Jenkins, Dunja Simicic, Kathleen E Hupfeld, Aaron T Gudmundson, Emlyn Muska, Emily Carter, Steve C N Hui, Vivek Yedavalli, Georg Oeltzschner, Douglas C Dean, Can Ceritoglu, J Tilak Ratnanather, Eric Porges, Richard Edden","doi":"10.1002/nbm.5300","DOIUrl":"10.1002/nbm.5300","url":null,"abstract":"<p><p>Metabolite concentration estimates from magnetic resonance spectroscopy (MRS) are typically quantified using water referencing, correcting for relaxation-time differences between metabolites and water. One common approach is to correct the reference signal for differential relaxation within three tissue compartments (gray matter, white matter, and cerebrospinal fluid) using fixed literature values. However, water relaxation times (T<sub>1</sub> and T<sub>2</sub>) vary between brain locations and with age. MRS studies, even those measuring metabolite levels across the lifespan, often ignore these effects, because of a lack of reference data. The purpose of this study is to develop a water relaxometry atlas and to integrate location- and age-appropriate relaxation values into the MRS analysis workflow. One hundred one volunteers (51 men, 50 women; ~10 male, and 10 female participants per decade from the 20s to 60s) were recruited. T<sub>1</sub>-weighted MPRAGE images ((1-mm)<sup>3</sup> isotropic resolution) were acquired. Whole-brain water T<sub>1</sub> and T<sub>2</sub> measurements were made with DESPOT ((1.4 mm)<sup>3</sup> isotropic resolution) at 3T. T<sub>1</sub> and T<sub>2</sub> maps were registered to the JHU MNI-SS/EVE atlas using affine and LDDMM transformation. The atlas's 268 parcels were reduced to 130 by combining homologous parcels. Mean T<sub>1</sub> and T<sub>2</sub> values were calculated for each parcel in each subject. Linear models of T<sub>1</sub> and T<sub>2</sub> as functions of age were computed, using age - 30 as the predictor. Reference atlases of \"age-30-intercept\" and age-slope for T<sub>1</sub> and T<sub>2</sub> were generated. The atlas-based workflow was integrated into Osprey, which co-registers MRS voxels to the atlas and calculates location- and age-appropriate water relaxation parameters for quantification. The water relaxation aging atlas revealed significant regional and tissue differences in water relaxation behavior across adulthood. Using location- and subject-appropriate reference values in the MRS analysis workflow removes a current methodological limitation and is expected to reduce quantification biases associated with water-referenced tissue correction, especially for studies of aging.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5300"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-24DOI: 10.1002/nbm.5286
Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra
Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm2 enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.
{"title":"In vivo rat brain mapping of multiple gray matter water populations using nonparametric D(ω)-R<sub>1</sub>-R<sub>2</sub> distributions MRI.","authors":"Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra","doi":"10.1002/nbm.5286","DOIUrl":"10.1002/nbm.5286","url":null,"abstract":"<p><p>Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm<sup>2</sup> enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5286"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-07DOI: 10.1002/nbm.5290
Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao
This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.
{"title":"Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes.","authors":"Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao","doi":"10.1002/nbm.5290","DOIUrl":"10.1002/nbm.5290","url":null,"abstract":"<p><p>This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (F<sub>mufa</sub>) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (F<sub>sfa</sub>) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, F<sub>mufa</sub> and F<sub>sfa</sub> of visceral fat were independent factors for T2DM. Furthermore, F<sub>sfa</sub>-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, F<sub>mufa</sub>-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5290"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading\".","authors":"","doi":"10.1002/nbm.70091","DOIUrl":"10.1002/nbm.70091","url":null,"abstract":"","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 8","pages":"e70091"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144369024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMRGlc) and oxygen (CMRO2) consumption, lactate formation (CMRLac), and tricarboxylic acid (TCA) cycle (VTCA); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (2H) and oxygen-17 (17O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (1H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei 2H and 17O MRS. By combining this RF coil with a modified MRS pulse sequence, 17O-isotope-labeled oxygen gas inhalation, and intravenous 2H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMRGlc, CMRO2, CMRLac, VTCA, CBF, and OEF, in rat brains at 16.4 T. The interleaved 2H-17O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.
{"title":"Simultaneous assessment of cerebral glucose and oxygen metabolism and perfusion in rats using interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS.","authors":"Guangle Zhang, Parker Jenkins, Wei Zhu, Wei Chen, Xiao-Hong Zhu","doi":"10.1002/nbm.5284","DOIUrl":"10.1002/nbm.5284","url":null,"abstract":"<p><p>Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMR<sub>Glc</sub>) and oxygen (CMRO<sub>2</sub>) consumption, lactate formation (CMR<sub>Lac</sub>), and tricarboxylic acid (TCA) cycle (V<sub>TCA</sub>); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (<sup>1</sup>H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei <sup>2</sup>H and <sup>17</sup>O MRS. By combining this RF coil with a modified MRS pulse sequence, <sup>17</sup>O-isotope-labeled oxygen gas inhalation, and intravenous <sup>2</sup>H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMR<sub>Glc</sub>, CMRO<sub>2</sub>, CMR<sub>Lac</sub>, V<sub>TCA</sub>, CBF, and OEF, in rat brains at 16.4 T. The interleaved <sup>2</sup>H-<sup>17</sup>O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5284"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-21DOI: 10.1002/nbm.5278
Ericky Caldas de Almeida Araujo, Inès Barthélémy, Yves Fromes, Pierre-Yves Baudin, Stéphane Blot, Harmen Reyngoudt, Benjamin Marty
Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2H2O) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2H2O, T1, ECV, and the relative fraction of the long-T2 component, A2, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2H2O, T1, ECV, A2, and the T2 of the shorter-T2 component, T21, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2H2O and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2H2O and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.
{"title":"Comprehensive quantitative magnetic resonance imaging assessment of skeletal muscle pathophysiology in golden retriever muscular dystrophy: Insights from multicomponent water T2 and extracellular volume fraction.","authors":"Ericky Caldas de Almeida Araujo, Inès Barthélémy, Yves Fromes, Pierre-Yves Baudin, Stéphane Blot, Harmen Reyngoudt, Benjamin Marty","doi":"10.1002/nbm.5278","DOIUrl":"10.1002/nbm.5278","url":null,"abstract":"<p><p>Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2<sub>H2O</sub>) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2<sub>H2O</sub>, T1, ECV, and the relative fraction of the long-T2 component, A<sub>2</sub>, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2<sub>H2O</sub>, T1, ECV, A<sub>2</sub>, and the T2 of the shorter-T2 component, T2<sub>1</sub>, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2<sub>H2O</sub> and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2<sub>H2O</sub> and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5278"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}