Pub Date : 2024-12-01Epub Date: 2024-10-02DOI: 10.1002/nbm.5269
Mark Bydder, Fadil Ali, Paul Condron, Daniel M Cornfeld, Gil Newburn, Eryn E Kwon, Maryam Tayebi, Miriam Scadeng, Tracy R Melzer, Samantha J Holdsworth, Graeme M Bydder
The divided subtracted inversion recovery (dSIR) is a high T1 contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T1; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T1 phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.
{"title":"Validation of an ultrahigh contrast divided subtracted inversion recovery technique using a standard T<sub>1</sub> phantom.","authors":"Mark Bydder, Fadil Ali, Paul Condron, Daniel M Cornfeld, Gil Newburn, Eryn E Kwon, Maryam Tayebi, Miriam Scadeng, Tracy R Melzer, Samantha J Holdsworth, Graeme M Bydder","doi":"10.1002/nbm.5269","DOIUrl":"10.1002/nbm.5269","url":null,"abstract":"<p><p>The divided subtracted inversion recovery (dSIR) is a high T<sub>1</sub> contrast technique that shows changes in white matter in patients with traumatic brain injury and hypoxic injury. The changes can be explained by small differences in T<sub>1</sub>; however, to date, there has been no independent validation of the technique using a standard reference. The present study develops the theory of the dSIR signal and performs validation using the NIST/ISMRM T<sub>1</sub> phantom. Non-idealities are explored, including the influence of noise bias and finite repetition time (TR), which leads to the introduction of an optimally efficient TR for inversion recovery acquisitions. Results show excellent agreement with theoretical calculations.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5269"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-27DOI: 10.1002/nbm.5229
Malwina Molendowska, Marco Palombo, Kieran G Foley, Krishna Narahari, Fabrizio Fasano, Derek K Jones, Daniel C Alexander, Eleftheria Panagiotaki, Chantal M W Tax
Diffusion-weighted MRI (dMRI) is universally recommended for the detection and classification of prostate cancer (PCa), with PI-RADS recommendations to acquire b-values of ≥1.4 ms/μm2. However, clinical dMRI suffers from a low signal-to-noise ratio (SNR) as the consequence of prolonged echo times (TEs) attributable to the limited gradient power in the range of 40-80 mT/m. To overcome this, MRI systems with strong gradients have been designed but so far have mainly been applied in the brain. The aim of this work was to assess the feasibility, data quality, SNR and contrast-to-noise ratio (CNR) of measurements in PCa with a 300 mT/m whole-body system. A cohort of men without and with diagnosed PCa were imaged on a research-only 3T Connectom Siemens MRI system equipped with a gradient amplitude of 300 mT/m. dMRI at high b-values were acquired using high gradient amplitudes and compared with gradient capabilities mimicking clinical systems. Data artefacts typically amplified with stronger gradients were assessed and their correction evaluated. The SNR gains and lesion-to-healthy tissue CNR were statistically tested investigating the effect of protocol and b-value. The diagnostic quality of the images for different dMRI protocols was assessed by an experienced radiologist using a 5-point Likert scale and an adapted PI-QUAL scoring system. The strong gradients for prostate dMRI allowed a significant gain in SNR per unit time compared with clinical gradients. Furthermore, a 1.6-2.1-fold increase in CNR was observed. Despite the more pronounced artefacts typically associated with strong gradients, a satisfactory correction could be achieved. Smoother and less biased parameter maps were obtained with protocols at shorter TEs. The results of this study show that dMRI in PCa with a whole-body 300-mT/m scanner is feasible without a report of physiological effects, SNR and CNR can be improved compared with lower gradient strengths, and artefacts do not negate the benefits of strong gradients and can be ameliorated. This assessment provides the first essential step towards unveiling the full potential of cutting-edge scanners, now increasingly becoming available, to advance early detection and diagnostic precision.
{"title":"Diffusion MRI in prostate cancer with ultra-strong whole-body gradients.","authors":"Malwina Molendowska, Marco Palombo, Kieran G Foley, Krishna Narahari, Fabrizio Fasano, Derek K Jones, Daniel C Alexander, Eleftheria Panagiotaki, Chantal M W Tax","doi":"10.1002/nbm.5229","DOIUrl":"10.1002/nbm.5229","url":null,"abstract":"<p><p>Diffusion-weighted MRI (dMRI) is universally recommended for the detection and classification of prostate cancer (PCa), with PI-RADS recommendations to acquire b-values of ≥1.4 ms/μm<sup>2</sup>. However, clinical dMRI suffers from a low signal-to-noise ratio (SNR) as the consequence of prolonged echo times (TEs) attributable to the limited gradient power in the range of 40-80 mT/m. To overcome this, MRI systems with strong gradients have been designed but so far have mainly been applied in the brain. The aim of this work was to assess the feasibility, data quality, SNR and contrast-to-noise ratio (CNR) of measurements in PCa with a 300 mT/m whole-body system. A cohort of men without and with diagnosed PCa were imaged on a research-only 3T Connectom Siemens MRI system equipped with a gradient amplitude of 300 mT/m. dMRI at high b-values were acquired using high gradient amplitudes and compared with gradient capabilities mimicking clinical systems. Data artefacts typically amplified with stronger gradients were assessed and their correction evaluated. The SNR gains and lesion-to-healthy tissue CNR were statistically tested investigating the effect of protocol and b-value. The diagnostic quality of the images for different dMRI protocols was assessed by an experienced radiologist using a 5-point Likert scale and an adapted PI-QUAL scoring system. The strong gradients for prostate dMRI allowed a significant gain in SNR per unit time compared with clinical gradients. Furthermore, a 1.6-2.1-fold increase in CNR was observed. Despite the more pronounced artefacts typically associated with strong gradients, a satisfactory correction could be achieved. Smoother and less biased parameter maps were obtained with protocols at shorter TEs. The results of this study show that dMRI in PCa with a whole-body 300-mT/m scanner is feasible without a report of physiological effects, SNR and CNR can be improved compared with lower gradient strengths, and artefacts do not negate the benefits of strong gradients and can be ameliorated. This assessment provides the first essential step towards unveiling the full potential of cutting-edge scanners, now increasingly becoming available, to advance early detection and diagnostic precision.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5229"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-08DOI: 10.1002/nbm.5252
Jordan Charest, Mathieu Walsh, Élie Genois, Emmanuelle Sévigny, Pierre-Olivier Schwarz, Louis Gagnon, Michèle Desjardins
Blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) arises from a physiological and physical cascade of events taking place at the level of the cortical microvasculature which constitutes a medium with complex geometry. Several analytical models of the BOLD contrast have been developed, but these have not been compared directly against detailed bottom-up modeling methods. Using a 3D modeling method based on experimentally measured images of mice microvasculature and Monte Carlo simulations, we quantified the accuracy of two analytical models to predict the amplitude of the BOLD response from 1.5 to 7 T, for different echo time (TE) and for both gradient echo and spin echo acquisition protocols. We also showed that accounting for the tridimensional structure of the microvasculature results in more accurate prediction of the BOLD amplitude, even if the values for SO2 were averaged across individual vascular compartments. A secondary finding is that modeling the venous compartment as two individual compartments results in more accurate prediction of the BOLD amplitude compared with standard homogenous venous modeling, arising from the bimodal distribution of venous SO2 across the microvasculature in our data.
{"title":"Comparison of compartmental analytical Blood-Oxygen-Level-Dependent functional Magnetic Resonance Imaging models against Monte Carlo simulations performed over cortical micro-angiograms.","authors":"Jordan Charest, Mathieu Walsh, Élie Genois, Emmanuelle Sévigny, Pierre-Olivier Schwarz, Louis Gagnon, Michèle Desjardins","doi":"10.1002/nbm.5252","DOIUrl":"10.1002/nbm.5252","url":null,"abstract":"<p><p>Blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) arises from a physiological and physical cascade of events taking place at the level of the cortical microvasculature which constitutes a medium with complex geometry. Several analytical models of the BOLD contrast have been developed, but these have not been compared directly against detailed bottom-up modeling methods. Using a 3D modeling method based on experimentally measured images of mice microvasculature and Monte Carlo simulations, we quantified the accuracy of two analytical models to predict the amplitude of the BOLD response from 1.5 to 7 T, for different echo time (TE) and for both gradient echo and spin echo acquisition protocols. We also showed that accounting for the tridimensional structure of the microvasculature results in more accurate prediction of the BOLD amplitude, even if the values for SO<sub>2</sub> were averaged across individual vascular compartments. A secondary finding is that modeling the venous compartment as two individual compartments results in more accurate prediction of the BOLD amplitude compared with standard homogenous venous modeling, arising from the bimodal distribution of venous SO<sub>2</sub> across the microvasculature in our data.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5252"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-06DOI: 10.1002/nbm.5225
Chih-Hsien Tseng, Martijn A Nagtegaal, Matthias J P van Osch, Jaap Jaspers, Alejandra Mendez Romero, Piotr Wielopolski, Marion Smits, Frans M Vos
Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.
{"title":"Arterial input function estimation compensating for inflow and partial voluming in dynamic contrast-enhanced MRI.","authors":"Chih-Hsien Tseng, Martijn A Nagtegaal, Matthias J P van Osch, Jaap Jaspers, Alejandra Mendez Romero, Piotr Wielopolski, Marion Smits, Frans M Vos","doi":"10.1002/nbm.5225","DOIUrl":"10.1002/nbm.5225","url":null,"abstract":"<p><p>Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5225"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-20DOI: 10.1002/nbm.5222
Ramy Ayoub, Sabrina Yang, Helen Ji, Lloyd Fan, Steven De Michino, Donald J Mabbott, Brian J Nieman
Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.
{"title":"Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment.","authors":"Ramy Ayoub, Sabrina Yang, Helen Ji, Lloyd Fan, Steven De Michino, Donald J Mabbott, Brian J Nieman","doi":"10.1002/nbm.5222","DOIUrl":"10.1002/nbm.5222","url":null,"abstract":"<p><p>Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5222"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-03DOI: 10.1002/nbm.5255
Alexs A Matias, Corinna F Serviente, Stephen T Decker, Muhammet Enes Erol, Gaia Giuriato, Yann Le Fur, Rajakumar Nagarajan, David Bendahan, Gwenael Layec
The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.
{"title":"Repeatability of alkaline inorganic phosphate quantification in the skeletal muscle using <sup>31</sup>P-magnetic resonance spectroscopy at 3 T.","authors":"Alexs A Matias, Corinna F Serviente, Stephen T Decker, Muhammet Enes Erol, Gaia Giuriato, Yann Le Fur, Rajakumar Nagarajan, David Bendahan, Gwenael Layec","doi":"10.1002/nbm.5255","DOIUrl":"10.1002/nbm.5255","url":null,"abstract":"<p><p>The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (<sup>31</sup>P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pi<sub>alk</sub>) using with <sup>31</sup>P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting <sup>31</sup>P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. <sup>31</sup>P-MRS data were acquired with a <sup>31</sup>P/-proton (<sup>1</sup>H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pi<sub>alk</sub> demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pi<sub>alk</sub> quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pi<sub>alk</sub> measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pi<sub>alk</sub> in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5255"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-25DOI: 10.1002/nbm.5262
Jingjia Chen, Chenchan Huang, Krishna Shanbhogue, Ding Xia, Mary Bruno, Yuhui Huang, Kai Tobias Block, Hersh Chandarana, Li Feng
Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.
{"title":"DCE-MRI of the liver with sub-second temporal resolution using GRASP-Pro with navi-stack-of-stars sampling.","authors":"Jingjia Chen, Chenchan Huang, Krishna Shanbhogue, Ding Xia, Mary Bruno, Yuhui Huang, Kai Tobias Block, Hersh Chandarana, Li Feng","doi":"10.1002/nbm.5262","DOIUrl":"10.1002/nbm.5262","url":null,"abstract":"<p><p>Respiratory motion-induced image blurring and artifacts can compromise image quality in dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Despite remarkable advances in respiratory motion detection and compensation in past years, these techniques have not yet seen widespread clinical adoption. The accuracy of image-based motion detection can be especially compromised in the presence of contrast enhancement and/or in situations involving deep and/or irregular breathing patterns. This work proposes a framework that combines GRASP-Pro (Golden-angle RAdial Sparse Parallel MRI with imProved performance) MRI with a new radial sampling scheme called navi-stack-of-stars for free-breathing DCE-MRI of the liver without the need for explicit respiratory motion compensation. A prototype 3D golden-angle radial sequence with a navi-stack-of-stars sampling scheme that intermittently acquires a 2D navigator was implemented. Free-breathing DCE-MRI of the liver was conducted in 24 subjects at 3T including 17 volunteers and 7 patients. GRASP-Pro reconstruction was performed with a temporal resolution of 0.34-0.45 s per volume, whereas standard GRASP reconstruction was performed with a temporal resolution of 15 s per volume. Motion compensation was not performed in all image reconstruction tasks. Liver images in different contrast phases from both GRASP and GRASP-Pro reconstructions were visually scored by two experienced abdominal radiologists for comparison. The nonparametric paired two-tailed Wilcoxon signed-rank test was used to compare image quality scores, and the Cohen's kappa coefficient was calculated to evaluate the inter-reader agreement. GRASP-Pro MRI with sub-second temporal resolution consistently received significantly higher image quality scores (P < 0.05) than standard GRASP MRI throughout all contrast enhancement phases and across all assessment categories. There was a substantial inter-reader agreement for all assessment categories (ranging from 0.67 to 0.89). The proposed technique using GRASP-Pro reconstruction with navi-stack-of-stars sampling holds great promise for free-breathing DCE-MRI of the liver without respiratory motion compensation.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5262"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-05DOI: 10.1002/nbm.5271
Alixander S Khan, Mary A McLean, Joshua D Kaggie, Ines Horvat-Menih, Tomasz Matys, Rolf F Schulte, Matthew J Locke, Ashley Grimmer, Pascal Wodtke, Elizabeth Latimer, Amy Frary, Martin J Graves, Ferdia A Gallagher
Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3-) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3- to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.
{"title":"Measuring cerebral enzymatic activity, brain pH and extracranial muscle metabolism with hyperpolarized <sup>13</sup>C-pyruvate.","authors":"Alixander S Khan, Mary A McLean, Joshua D Kaggie, Ines Horvat-Menih, Tomasz Matys, Rolf F Schulte, Matthew J Locke, Ashley Grimmer, Pascal Wodtke, Elizabeth Latimer, Amy Frary, Martin J Graves, Ferdia A Gallagher","doi":"10.1002/nbm.5271","DOIUrl":"10.1002/nbm.5271","url":null,"abstract":"<p><p>Hyperpolarized carbon-13 (<sup>13</sup>C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-<sup>13</sup>C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral <sup>13</sup>C-labelled carbon dioxide (<sup>13</sup>CO<sub>2</sub>), in addition to the <sup>13</sup>C-bicarbonate (H<sup>13</sup>CO<sub>3</sub> <sup>-</sup>) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H<sup>13</sup>CO<sub>3</sub> <sup>-</sup> to <sup>13</sup>CO<sub>2</sub> in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-<sup>13</sup>C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-<sup>13</sup>C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized <sup>13</sup>C-MRI to assess cerebral and extracerebral [1-<sup>13</sup>C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5271"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-08DOI: 10.1002/nbm.5243
Frances Daniels, Efraín Torres, Frances Lawrenz, Susan M Wolf, Francis X Shen
Deployment of new, more portable, and less costly neuroimaging technologies such as portable magnetoencephalography, electroencephalography, positron emission tomography, functional near-infrared spectroscopy, high-density diffuse optical tomography, and magnetic resonance imaging is advancing rapidly. Given this trajectory toward increasing use of neuroimaging outside the hospital, we sought to identify ethical, legal, and societal implications (ELSI) of these new technologies by understanding the perspectives of those scientists and engineers developing and implementing portable neuroimaging technologies in the United States, Europe, and Asia. Based on a literature review, we identified and contacted 19 potential interviewees and then conducted 11 semi-structured interviews in English by Zoom. Analysis of the interviews revealed key themes and ELSI issues. Developers reported that without proper ELSI guidance, portable and accessible neuroimaging technology could be misused, fail to comply with applicable regulation and policy, and ultimately fall short in its mission to provide neuroimaging for the world. Our interviews suggested that ELSI guidance should address differences between imaging modalities because they vary in capability, limitations, and likelihood of generating incidental findings.
{"title":"Scientists' perspectives on ethical issues in research with emerging portable neuroimaging technology: The need for guidance on ethical, legal, and societal implications (ELSI).","authors":"Frances Daniels, Efraín Torres, Frances Lawrenz, Susan M Wolf, Francis X Shen","doi":"10.1002/nbm.5243","DOIUrl":"10.1002/nbm.5243","url":null,"abstract":"<p><p>Deployment of new, more portable, and less costly neuroimaging technologies such as portable magnetoencephalography, electroencephalography, positron emission tomography, functional near-infrared spectroscopy, high-density diffuse optical tomography, and magnetic resonance imaging is advancing rapidly. Given this trajectory toward increasing use of neuroimaging outside the hospital, we sought to identify ethical, legal, and societal implications (ELSI) of these new technologies by understanding the perspectives of those scientists and engineers developing and implementing portable neuroimaging technologies in the United States, Europe, and Asia. Based on a literature review, we identified and contacted 19 potential interviewees and then conducted 11 semi-structured interviews in English by Zoom. Analysis of the interviews revealed key themes and ELSI issues. Developers reported that without proper ELSI guidance, portable and accessible neuroimaging technology could be misused, fail to comply with applicable regulation and policy, and ultimately fall short in its mission to provide neuroimaging for the world. Our interviews suggested that ELSI guidance should address differences between imaging modalities because they vary in capability, limitations, and likelihood of generating incidental findings.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5243"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1002/nbm.5235
Pietro Bontempi, Sabrina Marangoni, Lucia Cazzoletti, Albulena Bajrami, Bruno Giometto, Paolo Farace, Umberto Rozzanigo
The purpose of this study is to demonstrate that T2-weighted imaging with very long echo time (TE > 300 ms) can provide relevant information in neurodegenerative/inflammatory disorder. Twenty patients affected by relapsing-remitting multiple sclerosis with stable disease course underwent 1.5 T 3D FLAIR, 3D T1-weighted, and a multi-echo sequence with 32 echoes (TE = 10-320 ms). Focal lesions (FL) were identified on FLAIR. T1-images were processed to segment deep gray matter (dGM), white matter (WM), FL sub-volumes with T1 hypo-intensity (T1FL), and dGM volumes (atrophy). Clinical-radiological parameters included Expanded Disability Status Scale (EDSS), disease duration, patient age, T1FL, and dGM atrophy. Correlation analysis was performed between the mean signal intensity (SI) computed on the non-lesional dGM and WM at different TE versus the clinical-radiological parameters. Multivariable linear regressions were fitted to the data to assess the association between the dependent variable EDSS and the independent variables obtained by T1FL lesion load and the mean SI of dGM and WM at the different TE. A clear trend is observed, with a systematic strengthening of the significance of the correlation at longer TE for all the relationships with the clinical-radiological parameters, becoming significant (p < 0.05) for EDSS, T1FL volumes, and dGM atrophy. Multivariable linear regressions show that at shorter TE, the SI of the T2-weighted sequences is not relevant for describing the EDSS variability while the T1FL volumes are relevant, and vice versa, at very-long TEs (around 300 ms); the SI of the T2-weighted sequences significantly (p < 0.05) describes the EDSS variability. By very long TE, the SI primarily originates from water with a T2 longer than 250 ms and/or free water, which may be arising from the perivascular space (PVS). Very-long T2-weighting might detect dilated PVS and represent an unexplored MR approach in neurofluid imaging of neurodegenerative/inflammatory diseases.
本研究旨在证明超长回波时间(TE > 300 ms)的 T2 加权成像可为神经退行性疾病/炎症性疾病提供相关信息。20名病程稳定的复发性多发性硬化症患者接受了1.5 T三维FLAIR、三维T1加权和32次回波(TE = 10-320毫秒)的多回波序列检查。在 FLAIR 上确定病灶(FL)。对T1图像进行处理,以分割深部灰质(dGM)、白质(WM)、T1低强度的FL亚体积(T1FL)和dGM体积(萎缩)。临床放射学参数包括残疾状况扩展量表(EDSS)、病程、患者年龄、T1FL和dGM萎缩。在不同TE下计算的非病变dGM和WM的平均信号强度(SI)与临床放射学参数之间进行了相关性分析。对数据进行了多变量线性回归拟合,以评估因变量 EDSS 与自变量 T1FL 病变负荷以及不同 TE 下 dGM 和 WM 的平均 SI 之间的关联。可以观察到一个明显的趋势,即在较长的 TE 下,所有临床放射学参数之间的相关性都有系统性的加强,变得显著(p
{"title":"Very-long T2-weighted imaging of the non-lesional brain tissue in multiple sclerosis patients.","authors":"Pietro Bontempi, Sabrina Marangoni, Lucia Cazzoletti, Albulena Bajrami, Bruno Giometto, Paolo Farace, Umberto Rozzanigo","doi":"10.1002/nbm.5235","DOIUrl":"10.1002/nbm.5235","url":null,"abstract":"<p><p>The purpose of this study is to demonstrate that T2-weighted imaging with very long echo time (TE > 300 ms) can provide relevant information in neurodegenerative/inflammatory disorder. Twenty patients affected by relapsing-remitting multiple sclerosis with stable disease course underwent 1.5 T 3D FLAIR, 3D T1-weighted, and a multi-echo sequence with 32 echoes (TE = 10-320 ms). Focal lesions (FL) were identified on FLAIR. T1-images were processed to segment deep gray matter (dGM), white matter (WM), FL sub-volumes with T1 hypo-intensity (T1FL), and dGM volumes (atrophy). Clinical-radiological parameters included Expanded Disability Status Scale (EDSS), disease duration, patient age, T1FL, and dGM atrophy. Correlation analysis was performed between the mean signal intensity (SI) computed on the non-lesional dGM and WM at different TE versus the clinical-radiological parameters. Multivariable linear regressions were fitted to the data to assess the association between the dependent variable EDSS and the independent variables obtained by T1FL lesion load and the mean SI of dGM and WM at the different TE. A clear trend is observed, with a systematic strengthening of the significance of the correlation at longer TE for all the relationships with the clinical-radiological parameters, becoming significant (p < 0.05) for EDSS, T1FL volumes, and dGM atrophy. Multivariable linear regressions show that at shorter TE, the SI of the T2-weighted sequences is not relevant for describing the EDSS variability while the T1FL volumes are relevant, and vice versa, at very-long TEs (around 300 ms); the SI of the T2-weighted sequences significantly (p < 0.05) describes the EDSS variability. By very long TE, the SI primarily originates from water with a T2 longer than 250 ms and/or free water, which may be arising from the perivascular space (PVS). Very-long T2-weighting might detect dilated PVS and represent an unexplored MR approach in neurofluid imaging of neurodegenerative/inflammatory diseases.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5235"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}