首页 > 最新文献

NMR in Biomedicine最新文献

英文 中文
Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat. 饱和转移(CEST 和 MT)磁共振成像用于描述大鼠 U-87 MG 胶质瘤的特征。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1002/nbm.5282
Wilfred W Lam, Agata Chudzik, Natalia Lehman, Artur Łazorczyk, Paulina Kozioł, Anna Niedziałek, Athavan Gananathan, Anna Orzyłowska, Radosław Rola, Greg J Stanisz

The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T1-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T1 and T2 maps were also acquired. The MT and WASSR Z-spectra and T1 map were fitted to a two-pool quantitative MT model to estimate the T2 of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M0, MT), and the magnetization exchange rate from the macromolecular pool to the free pool (RMT). The T1-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M0, MT and AREX maps with a B1 of 2 μT best matched the hyperintensity on the post-contrast T1-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M0, MT were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B1 = 2 μT at 3.6 ppm and relative macromolecular pool size (M0, MT) images over entire period of 3-13 days after cancer cell implantation.

这项工作的重点是确定正位 U-87 MG 肿瘤与正常大脑之间的最佳磁共振成像(MRI)对比度,最终目的是监测治疗反应。将 U-87 MG 人胶质母细胞瘤细胞注射到 RNU 裸鼠(n = 9)的大脑中。在植入后 3-5、7-9 和 11-13 天三个时间点对所有动物进行 7 T 成像。进行了全脑 T1 加权(钆造影剂注射前后)、弥散和液体衰减反转恢复扫描。此外,还采集了单片饱和转移加权化学交换饱和转移(CEST)、磁化转移(MT)和水饱和转移参照(WASSR)对比 Z 谱以及 T1 和 T2 图。将 MT 和 WASSR Z 光谱及 T1 图拟合到双池定量 MT 模型中,以估算自由水分子和与大分子结合的水分子的 T2、大分子池的相对大小(M0,MT)以及从大分子池到自由池的磁化交换率(RMT)。此外,还计算了 T1 校正表观交换依赖性弛豫(AREX)指标,以分离 CEST 贡献。B1为2 μT的M0、MT和AREX图上的病灶与对比后T1加权图像上的高密度最为匹配。在所有时间点的 2-μT CEST、3-和 5-μT MT Z 频谱上,病变和对侧皮层之间的 Z 频谱也有很好的分离。在癌细胞植入后的整个 3-13 天期间,2μT 饱和、3.6 ppm 频率偏移的 MT 比值(对应于酰胺化学组)和 M0、MT 图像在增强病变区和对侧皮层之间的差异都非常显著(P 1 = 2 μT at 3.6 ppm 和相对大分子池大小(M0、MT))。
{"title":"Saturation transfer (CEST and MT) MRI for characterization of U-87 MG glioma in the rat.","authors":"Wilfred W Lam, Agata Chudzik, Natalia Lehman, Artur Łazorczyk, Paulina Kozioł, Anna Niedziałek, Athavan Gananathan, Anna Orzyłowska, Radosław Rola, Greg J Stanisz","doi":"10.1002/nbm.5282","DOIUrl":"10.1002/nbm.5282","url":null,"abstract":"<p><p>The focus of this work was to identify the optimal magnetic resonance imaging (MRI) contrast between orthotopic U-87 MG tumours and normal appearing brain with the eventual goal of treatment response monitoring. U-87 MG human glioblastoma cells were injected into the brain of RNU nude rats (n = 9). The rats were imaged at 7 T at three timepoints for all animals: 3-5, 7-9, and 11-13 days after implantation. Whole-brain T<sub>1</sub>-weighted (before and after gadolinium contrast agent injection), diffusion, and fluid-attenuated inversion recovery scans were performed. In addition, single-slice saturation-transfer-weighted chemical exchange saturation transfer (CEST), magnetization transfer (MT), and water saturation shift referencing (WASSR) contrast Z-spectra and T<sub>1</sub> and T<sub>2</sub> maps were also acquired. The MT and WASSR Z-spectra and T<sub>1</sub> map were fitted to a two-pool quantitative MT model to estimate the T<sub>2</sub> of the free and macromolecular-bound water molecules, the relative macromolecular pool size (M<sub>0, MT</sub>), and the magnetization exchange rate from the macromolecular pool to the free pool (R<sub>MT</sub>). The T<sub>1</sub>-corrected apparent exchange-dependent relaxation (AREX) metric to isolate the CEST contributions was also calculated. The lesion on M<sub>0, MT</sub> and AREX maps with a B<sub>1</sub> of 2 μT best matched the hyperintensity on the post-contrast T<sub>1</sub>-weighted image. There was also good separation in Z-spectra between the lesion and contralateral cortex in the 2-μT CEST and 3- and 5-μT MT Z-spectra at all time points. A pairwise Wilcoxon signed-rank tests with Holm-Bonferroni adjustment on MRI parameters was performed and the differences between enhancing lesion and contralateral cortex for the MT ratio with 2 μT saturation at 3.6 ppm frequency offset (corresponding to the amide chemical group) and M<sub>0, MT</sub> were both strongly significant (p < 0.001) at all time points. This work has identified that differences between enhancing lesion and contralateral cortex are strongest in MTR with B<sub>1</sub> = 2 μT at 3.6 ppm and relative macromolecular pool size (M<sub>0, MT</sub>) images over entire period of 3-13 days after cancer cell implantation.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5282"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Float solenoid balun for MRI. 用于核磁共振成像的浮动电磁平衡器。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI: 10.1002/nbm.5292
Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan

Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.

平衡器在核磁共振射频线圈中至关重要,对于最大限度地减少共模电流、保持信噪比和确保患者安全至关重要。本文介绍了基于著名的螺线管电缆陷波器的创新型浮子螺线管平衡器,并与广泛使用的浮子巴祖卡平衡器进行了比较分析。浮控电磁平衡器利用电缆屏蔽和浮控谐振器之间强大的电感耦合,尺寸紧凑,安装后可调。通过静态场(1.5、3 和 7 T)的电磁仿真和台架测试,浮子螺线管平衡器与浮子巴祖卡平衡器相比,具有更出色的共模抑制比。值得注意的是,其浮动设计便于安装后调整,无需在电缆屏蔽上进行焊接,从而提高了可用性并降低了风险。此外,螺线管平衡器占地面积小,满足了线圈阵列更密集的现代核磁共振扫描仪对小型平衡器日益增长的需求。浮动螺线管平衡器提供了一种有前途的解决方案,它节省了射频线圈内的宝贵空间,简化了实际硬件实施和电缆布线,并可在射频阵列中容纳更多元件,在提高磁共振成像性能方面具有巨大潜力。
{"title":"Float solenoid balun for MRI.","authors":"Ming Lu, Yijin Yang, Shuyang Chai, Xinqiang Yan","doi":"10.1002/nbm.5292","DOIUrl":"10.1002/nbm.5292","url":null,"abstract":"<p><p>Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability. Through electromagnetic simulations and bench testing across static fields (1.5, 3, and 7 T), the float solenoid balun demonstrates superior common-mode rejection ratios compared to the float bazooka balun. Notably, its float design facilitates easy post-installation adjustment and eliminates the need for soldering on the cable shield, enhancing usability and reducing risks. Furthermore, the solenoid balun's compact footprint addresses the increasing demand for smaller baluns in modern MRI scanners with denser coil arrays. The float solenoid balun offers a promising solution by conserving valuable space within the RF coil, simplifying practical hardware implementation and cable routing, and accommodating more elements in RF arrays, with great potential for enhancing MRI performance.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5292"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Water Relaxation Atlas for Age- and Region-Specific Metabolite Concentration Correction at 3 T. 年龄和区域特异性代谢物浓度校正的水松弛图谱。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 DOI: 10.1002/nbm.5300
Gizeaddis Lamesgin Simegn, Yulu Song, Saipavitra Murali-Manohar, Helge J Zöllner, Christopher W Davies-Jenkins, Dunja Simicic, Kathleen E Hupfeld, Aaron T Gudmundson, Emlyn Muska, Emily Carter, Steve C N Hui, Vivek Yedavalli, Georg Oeltzschner, Douglas C Dean, Can Ceritoglu, J Tilak Ratnanather, Eric Porges, Richard Edden

Metabolite concentration estimates from magnetic resonance spectroscopy (MRS) are typically quantified using water referencing, correcting for relaxation-time differences between metabolites and water. One common approach is to correct the reference signal for differential relaxation within three tissue compartments (gray matter, white matter, and cerebrospinal fluid) using fixed literature values. However, water relaxation times (T1 and T2) vary between brain locations and with age. MRS studies, even those measuring metabolite levels across the lifespan, often ignore these effects, because of a lack of reference data. The purpose of this study is to develop a water relaxometry atlas and to integrate location- and age-appropriate relaxation values into the MRS analysis workflow. One hundred one volunteers (51 men, 50 women; ~10 male, and 10 female participants per decade from the 20s to 60s) were recruited. T1-weighted MPRAGE images ((1-mm)3 isotropic resolution) were acquired. Whole-brain water T1 and T2 measurements were made with DESPOT ((1.4 mm)3 isotropic resolution) at 3T. T1 and T2 maps were registered to the JHU MNI-SS/EVE atlas using affine and LDDMM transformation. The atlas's 268 parcels were reduced to 130 by combining homologous parcels. Mean T1 and T2 values were calculated for each parcel in each subject. Linear models of T1 and T2 as functions of age were computed, using age - 30 as the predictor. Reference atlases of "age-30-intercept" and age-slope for T1 and T2 were generated. The atlas-based workflow was integrated into Osprey, which co-registers MRS voxels to the atlas and calculates location- and age-appropriate water relaxation parameters for quantification. The water relaxation aging atlas revealed significant regional and tissue differences in water relaxation behavior across adulthood. Using location- and subject-appropriate reference values in the MRS analysis workflow removes a current methodological limitation and is expected to reduce quantification biases associated with water-referenced tissue correction, especially for studies of aging.

磁共振波谱(MRS)的代谢物浓度估计通常使用水参照来量化,纠正代谢物和水之间的松弛时间差异。一种常见的方法是使用固定的文献值来校正三个组织区(灰质、白质和脑脊液)内的微分松弛参考信号。然而,水松弛时间(T1和T2)因大脑位置和年龄而异。由于缺乏参考数据,即使是那些测量整个生命周期中代谢物水平的MRS研究,也经常忽略这些影响。本研究的目的是开发一个水松弛测量图谱,并将适合位置和年龄的松弛值整合到MRS分析工作流程中。101名志愿者(51名男性,50名女性;(男性10名,女性10名,年龄从20岁到60岁)。获得t1加权MPRAGE图像((1-mm)3各向同性分辨率)。在3T时用DESPOT ((1.4 mm)3各向同性分辨率)测量全脑水T1和T2。T1和T2图谱通过仿射和LDDMM变换注册到JHU mini - ss /EVE图谱中。通过合并同源包裹,地图集的268个包裹减少到130个。计算每位受试者每个包裹的平均T1和T2值。以年龄- 30岁为预测因子,计算T1和T2作为年龄函数的线性模型。生成T1和T2的“年龄-30岁截距”和年龄-斜率参考地图集。基于地图集的工作流程集成到Osprey中,它将MRS体素共同注册到地图集中,并计算适合位置和年龄的水松弛参数以进行量化。水松弛老化图谱揭示了成年期水松弛行为的显著区域和组织差异。在MRS分析工作流程中使用位置和受试者合适的参考值消除了当前方法学上的限制,并有望减少与水参考组织校正相关的量化偏差,特别是在衰老研究中。
{"title":"A Water Relaxation Atlas for Age- and Region-Specific Metabolite Concentration Correction at 3 T.","authors":"Gizeaddis Lamesgin Simegn, Yulu Song, Saipavitra Murali-Manohar, Helge J Zöllner, Christopher W Davies-Jenkins, Dunja Simicic, Kathleen E Hupfeld, Aaron T Gudmundson, Emlyn Muska, Emily Carter, Steve C N Hui, Vivek Yedavalli, Georg Oeltzschner, Douglas C Dean, Can Ceritoglu, J Tilak Ratnanather, Eric Porges, Richard Edden","doi":"10.1002/nbm.5300","DOIUrl":"10.1002/nbm.5300","url":null,"abstract":"<p><p>Metabolite concentration estimates from magnetic resonance spectroscopy (MRS) are typically quantified using water referencing, correcting for relaxation-time differences between metabolites and water. One common approach is to correct the reference signal for differential relaxation within three tissue compartments (gray matter, white matter, and cerebrospinal fluid) using fixed literature values. However, water relaxation times (T<sub>1</sub> and T<sub>2</sub>) vary between brain locations and with age. MRS studies, even those measuring metabolite levels across the lifespan, often ignore these effects, because of a lack of reference data. The purpose of this study is to develop a water relaxometry atlas and to integrate location- and age-appropriate relaxation values into the MRS analysis workflow. One hundred one volunteers (51 men, 50 women; ~10 male, and 10 female participants per decade from the 20s to 60s) were recruited. T<sub>1</sub>-weighted MPRAGE images ((1-mm)<sup>3</sup> isotropic resolution) were acquired. Whole-brain water T<sub>1</sub> and T<sub>2</sub> measurements were made with DESPOT ((1.4 mm)<sup>3</sup> isotropic resolution) at 3T. T<sub>1</sub> and T<sub>2</sub> maps were registered to the JHU MNI-SS/EVE atlas using affine and LDDMM transformation. The atlas's 268 parcels were reduced to 130 by combining homologous parcels. Mean T<sub>1</sub> and T<sub>2</sub> values were calculated for each parcel in each subject. Linear models of T<sub>1</sub> and T<sub>2</sub> as functions of age were computed, using age - 30 as the predictor. Reference atlases of \"age-30-intercept\" and age-slope for T<sub>1</sub> and T<sub>2</sub> were generated. The atlas-based workflow was integrated into Osprey, which co-registers MRS voxels to the atlas and calculates location- and age-appropriate water relaxation parameters for quantification. The water relaxation aging atlas revealed significant regional and tissue differences in water relaxation behavior across adulthood. Using location- and subject-appropriate reference values in the MRS analysis workflow removes a current methodological limitation and is expected to reduce quantification biases associated with water-referenced tissue correction, especially for studies of aging.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5300"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo rat brain mapping of multiple gray matter water populations using nonparametric D(ω)-R1-R2 distributions MRI. 利用非参数 D(ω)-R1-R2 分布核磁共振成像绘制体内大鼠大脑多个灰质水群图。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-24 DOI: 10.1002/nbm.5286
Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra

Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm2 enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.

大规模多维弥散磁共振成像结合了张量值编码、振荡梯度和弥散-松弛相关性,以提供描绘某些组织微观结构特征的多组分子体参数。这种方法已在微成像系统和临床条件下成功实施,其张量值梯度波形持续时间可变,可进入较窄的扩散频率(ω)范围。我们在这里展示了其临床前体内应用,通过使用调制梯度波形,结合多片高分辨率和低失真回波平面成像采集,以及分段和全反向相位编码采集,在 18 到 92 Hz 的宽扩散频率范围内探测了 389 幅对比图像,b 值高达 2.1 ms/μm2。该框架可识别大鼠小脑和嗅球灰质(GM)中的扩散ω依赖性,其参数分布可解析小脑GM中的两个水池,这两个水池具有不同的扩散系数、形状、ω依赖性、弛豫速率和空间分布,其与特定微观结构的关系可改变目前对GM中限制起源的理解。
{"title":"In vivo rat brain mapping of multiple gray matter water populations using nonparametric D(ω)-R<sub>1</sub>-R<sub>2</sub> distributions MRI.","authors":"Maxime Yon, Omar Narvaez, Daniel Topgaard, Alejandra Sierra","doi":"10.1002/nbm.5286","DOIUrl":"10.1002/nbm.5286","url":null,"abstract":"<p><p>Massively multidimensional diffusion magnetic resonance imaging combines tensor-valued encoding, oscillating gradients, and diffusion-relaxation correlation to provide multicomponent subvoxel parameters depicting some tissue microstructural features. This method was successfully implemented ex vivo in microimaging systems and clinical conditions with tensor-valued gradient waveform of variable duration giving access to a narrow diffusion frequency (ω) range. We demonstrate here its preclinical in vivo implementation with a protocol of 389 contrast images probing a wide diffusion frequency range of 18 to 92 Hz at b-values up to 2.1 ms/μm<sup>2</sup> enabled by the use of modulated gradient waveforms and combined with multislice high-resolution and low-distortion echo planar imaging acquisition with segmented and full reversed phase-encode acquisition. This framework allows the identification of diffusion ω-dependence in the rat cerebellum and olfactory bulb gray matter (GM), and the parameter distributions are shown to resolve two water pools in the cerebellum GM with different diffusion coefficients, shapes, ω-dependence, relaxation rates, and spatial repartition whose attribution to specific microstructure could modify the current understanding of the origin of restriction in GM.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5286"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes. 利用化学位移编码核磁共振成像评估腹部脂肪组织的脂肪酸组成:与糖尿病的关系
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1002/nbm.5290
Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao

This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.

本研究利用化学位移编码磁共振成像技术研究了非酒精性脂肪肝患者腹部脂肪组织的脂肪酸组成与胰岛素抵抗和 T2DM 发生之间的关系。我们招募了 231 名同时接受腹部磁共振波谱和化学位移编码 MRI 检查的非酒精性脂肪肝患者:其中包括 49 名 T2DM 患者和 182 名非 T2DM 患者。基于磁共振成像和 MRS 的肝脏脂肪率是从肝脏右叶的圆形感兴趣区测量的。用化学位移编码核磁共振成像在脐部水平测量腹部脂肪酸组成。进行了Bland-Altman分析、Student's t检验、Mann-Whitney U检验和Spearman相关分析。采用逻辑回归确定 T2DM 的独立因素。然后,通过接收者工作特征曲线分析评估了预测性能。MRS和磁共振成像测量的肝脏脂肪率之间的一致性非常好(斜率=0.8;偏差=-0.92%)。与非 T2DM 患者相比,T2DM 患者内脏脂肪组织中单不饱和脂肪酸(Fmufa)含量较低(33.68 ± 10.62 vs 38.62 ± 12.21,P =.0089),饱和脂肪酸(Fsfa)含量较高(34.11 ± 9.746 vs 31.25 ± 8.66,P =.0351)。体重指数(BMI)、高密度脂蛋白胆固醇(HDL-c)、内脏脂肪的Fmufa和Fsfa是导致T2DM的独立因素。此外,Fsfa-S% 与肝酶水平呈正相关(P =.003 和 0.04)。然而,Fmufa-V% 与空腹血糖、HbA1c 和 HOMA-IR 呈负相关(分别为 P =.004、P =.001 和 P =.03)。因此,利用化学位移编码磁共振成像评估腹部脂肪组织的脂肪酸组成可能对非酒精性脂肪肝患者的 T2DM 具有预测价值。
{"title":"Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes.","authors":"Dingxia Liu, Minyan Yin, Jiejun Chen, Caixia Fu, Manuel Schneider, Dominik Nickel, Xiuzhong Yao","doi":"10.1002/nbm.5290","DOIUrl":"10.1002/nbm.5290","url":null,"abstract":"<p><p>This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (F<sub>mufa</sub>) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (F<sub>sfa</sub>) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, F<sub>mufa</sub> and F<sub>sfa</sub> of visceral fat were independent factors for T2DM. Furthermore, F<sub>sfa</sub>-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, F<sub>mufa</sub>-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5290"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading". 更正“基于u - net的脑脊液分布和心室反流分级预测”。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 DOI: 10.1002/nbm.70091
{"title":"Correction to \"U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading\".","authors":"","doi":"10.1002/nbm.70091","DOIUrl":"10.1002/nbm.70091","url":null,"abstract":"","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 8","pages":"e70091"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144369024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous assessment of cerebral glucose and oxygen metabolism and perfusion in rats using interleaved deuterium (2H) and oxygen-17 (17O) MRS. 利用交错氘(2H)和氧-17(17O)磁共振成像(MRS)同时评估大鼠的脑葡萄糖和氧代谢及灌注。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-06 DOI: 10.1002/nbm.5284
Guangle Zhang, Parker Jenkins, Wei Zhu, Wei Chen, Xiao-Hong Zhu

Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMRGlc) and oxygen (CMRO2) consumption, lactate formation (CMRLac), and tricarboxylic acid (TCA) cycle (VTCA); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (2H) and oxygen-17 (17O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (1H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei 2H and 17O MRS. By combining this RF coil with a modified MRS pulse sequence, 17O-isotope-labeled oxygen gas inhalation, and intravenous 2H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMRGlc, CMRO2, CMRLac, VTCA, CBF, and OEF, in rat brains at 16.4 T. The interleaved 2H-17O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.

脑葡萄糖和氧代谢以及血液灌注在神经能量和氧化磷酸化过程中发挥着关键作用,以产生三磷酸腺苷(ATP)能量分子,支持细胞活动和大脑功能。它们的损伤与许多脑部疾病有关。本研究旨在开发一种体内磁共振光谱(MRS)方法,能够同时评估和量化葡萄糖(CMRGlc)和氧(CMRO2)消耗、乳酸形成(CMRLac)和三羧酸(TCA)循环(VTCA)等主要脑代谢率;我们采用交错氘(2H)和氧-17(17O)MRS 方法,通过单次动态 MRS 测量获得了脑血流量(CBF)和氧萃取分数(OEF)。我们引入了一种单回路多频射频(RF)表面线圈,可用于获取质子(1H)磁共振成像(MRI)或交错低γ X核 2H和17O MRS。通过将这种射频线圈与改进的 MRS 脉冲序列、17O-同位素标记的氧气吸入和静脉注射 2H-同位素标记的葡萄糖相结合,我们首次证明了在 16.4 T 下同时定量测量大鼠大脑中 CMRGlc、CMRO2、CMRLac、VTCA、CBF 和 OEF 这六个重要生理参数的可行性。交错 2H-17O MRS 技术应能很容易地用于健康和患病大脑能量代谢和灌注的成像和研究。
{"title":"Simultaneous assessment of cerebral glucose and oxygen metabolism and perfusion in rats using interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS.","authors":"Guangle Zhang, Parker Jenkins, Wei Zhu, Wei Chen, Xiao-Hong Zhu","doi":"10.1002/nbm.5284","DOIUrl":"10.1002/nbm.5284","url":null,"abstract":"<p><p>Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMR<sub>Glc</sub>) and oxygen (CMRO<sub>2</sub>) consumption, lactate formation (CMR<sub>Lac</sub>), and tricarboxylic acid (TCA) cycle (V<sub>TCA</sub>); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (<sup>1</sup>H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei <sup>2</sup>H and <sup>17</sup>O MRS. By combining this RF coil with a modified MRS pulse sequence, <sup>17</sup>O-isotope-labeled oxygen gas inhalation, and intravenous <sup>2</sup>H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMR<sub>Glc</sub>, CMRO<sub>2</sub>, CMR<sub>Lac</sub>, V<sub>TCA</sub>, CBF, and OEF, in rat brains at 16.4 T. The interleaved <sup>2</sup>H-<sup>17</sup>O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5284"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive quantitative magnetic resonance imaging assessment of skeletal muscle pathophysiology in golden retriever muscular dystrophy: Insights from multicomponent water T2 and extracellular volume fraction. 金毛猎犬肌肉萎缩症骨骼肌病理生理学的全面定量磁共振成像评估:多成分水 T2 和细胞外体积分数的启示。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-10-21 DOI: 10.1002/nbm.5278
Ericky Caldas de Almeida Araujo, Inès Barthélémy, Yves Fromes, Pierre-Yves Baudin, Stéphane Blot, Harmen Reyngoudt, Benjamin Marty

Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2H2O) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2H2O, T1, ECV, and the relative fraction of the long-T2 component, A2, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2H2O, T1, ECV, A2, and the T2 of the shorter-T2 component, T21, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2H2O and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2H2O and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.

定量 MRI 和 MRS 已成为评估和管理神经肌肉疾病 (NMD) 患者的重要工具。尽管取得了重大进展,但仍需要新的客观测量方法,以提高对潜在病理生理学改变的特异性。这将提高我们描述疾病演变特征的能力,并改进治疗方法的开发。在本研究中,我们采用了在涉及 NMDs 的临床研究中常用的 qMRI 方法,如水 T2(T2H2O)和 T1 以及脂肪分数(FF)图谱,来评估金毛猎犬肌营养不良症(GRMD)犬骨骼肌的疾病活动和进展情况。此外,细胞外容积(ECV)分数和单象素双分量水 T2 弛豫测量也被列为组织内特定组织病理学变化的潜在标记。除了 FF 在 GRMD 犬和对照组犬之间无显著差异且无年龄变化趋势外,T2H2O、T1、ECV 和长 T2 成分 A2 的相对分数在 GRMD 犬的所有年龄范围内均显著升高。此外,从 2 个月大开始进行的纵向评估显示,对照组和 GRMD 犬在出生后第一年内的 T2H2O、T1、ECV、A2 和短 T2 成分 T2(T21)均显著下降。值得注意的是,ECV 和双组分水 T2 的研究结果表明:(I) 肌萎缩症肌肉中观察到的 T2H2O 和 T1 值升高主要是由细胞外空间的扩大引起的,这可能是由组织损伤的炎症反应中的水肿成分引起的;(II) 对照组和 GRMD 犬的 T2H2O 和 T1 随年龄的增长而显著下降,这主要反映了组织发育过程中纤维直径和蛋白质含量的逐渐增加。我们的研究强调了多成分水 T2 弛豫测量和 ECV 的潜力,可为 NMDs 肌肉病理学提供有价值的见解。
{"title":"Comprehensive quantitative magnetic resonance imaging assessment of skeletal muscle pathophysiology in golden retriever muscular dystrophy: Insights from multicomponent water T2 and extracellular volume fraction.","authors":"Ericky Caldas de Almeida Araujo, Inès Barthélémy, Yves Fromes, Pierre-Yves Baudin, Stéphane Blot, Harmen Reyngoudt, Benjamin Marty","doi":"10.1002/nbm.5278","DOIUrl":"10.1002/nbm.5278","url":null,"abstract":"<p><p>Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2<sub>H2O</sub>) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2<sub>H2O</sub>, T1, ECV, and the relative fraction of the long-T2 component, A<sub>2</sub>, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2<sub>H2O</sub>, T1, ECV, A<sub>2</sub>, and the T2 of the shorter-T2 component, T2<sub>1</sub>, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2<sub>H2O</sub> and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2<sub>H2O</sub> and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5278"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142471077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimulus-induced rotary saturation imaging of visually evoked response: A pilot study. 视觉诱发反应的刺激诱导旋转饱和成像:试点研究
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-04 DOI: 10.1002/nbm.5280
Milena Capiglioni, Roland Beisteiner, Pedro Lima Cardoso, Federico Turco, Baudouin Jin, Claus Kiefer, Simon Daniel Robinson, Andrea Federspiel, Siegfried Trattnig, Roland Wiest

Spin-lock (SL) pulses have been proposed to directly detect neuronal activity otherwise inaccessible through standard functional magnetic resonance imaging. However, the practical limits of this technique remain unexplored. Key challenges in SL-based detection include ultra-weak signal variations, sensitivity to magnetic field inhomogeneities, and potential contamination from blood oxygen level-dependent effects, all of which hinder the reliable isolation of neuronal signals. This pilot study evaluates the performance of the stimulus-induced rotary saturation (SIRS) technique to map visual stimulation response in the human cortex. A rotary echo spin-lock (RESL) preparation followed by a 2D echo planar imaging readout was used to investigate 12 healthy subjects at rest and during continuous exposure to 8 Hz flickering light. The SL amplitude was fixed to the target neuroelectric oscillations at that frequency. The signal variance was used as contrast metric, and two alternative post-processing pipelines (regression-filtering-rectification and normalized subtraction) were statistically evaluated. Higher variance in the SL signal was detected in four of the 12 subjects. Although group-level analysis indicated activation in the occipital pole, analysis of variance revealed that this difference was not statistically significant, highlighting the need for comparable control measures and more robust preparations. Further optimization in sensitivity and robustness is required to noninvasively detect physiological neuroelectric activity in the human brain.

有人提出用自旋锁定(SL)脉冲直接检测神经元活动,否则标准功能磁共振成像就无法检测到神经元活动。然而,这种技术的实际限制仍有待探索。基于锁相脉冲的检测所面临的主要挑战包括超弱信号变化、对磁场不均匀性的敏感性以及血氧水平相关效应的潜在污染,所有这些都阻碍了神经元信号的可靠分离。这项试验性研究评估了刺激诱导旋转饱和(SIRS)技术在绘制人体皮层视觉刺激反应图方面的性能。研究人员使用旋转回波自旋锁定(RESL)制备方法和二维回波平面成像读出方法,对 12 名健康受试者进行了静态和持续暴露于 8 赫兹闪烁光时的研究。SL振幅固定为该频率下的目标神经电振荡。使用信号方差作为对比度指标,并对两种可供选择的后处理管道(回归-过滤-校正和归一化减法)进行了统计评估。在 12 个受试者中,有 4 个受试者的 SL 信号方差较大。虽然组级分析表明枕极有激活现象,但方差分析显示这种差异在统计学上并不显著,这突出表明需要可比的控制措施和更稳健的制备方法。要想无创检测人脑中的生理神经电活动,还需要进一步优化灵敏度和稳健性。
{"title":"Stimulus-induced rotary saturation imaging of visually evoked response: A pilot study.","authors":"Milena Capiglioni, Roland Beisteiner, Pedro Lima Cardoso, Federico Turco, Baudouin Jin, Claus Kiefer, Simon Daniel Robinson, Andrea Federspiel, Siegfried Trattnig, Roland Wiest","doi":"10.1002/nbm.5280","DOIUrl":"10.1002/nbm.5280","url":null,"abstract":"<p><p>Spin-lock (SL) pulses have been proposed to directly detect neuronal activity otherwise inaccessible through standard functional magnetic resonance imaging. However, the practical limits of this technique remain unexplored. Key challenges in SL-based detection include ultra-weak signal variations, sensitivity to magnetic field inhomogeneities, and potential contamination from blood oxygen level-dependent effects, all of which hinder the reliable isolation of neuronal signals. This pilot study evaluates the performance of the stimulus-induced rotary saturation (SIRS) technique to map visual stimulation response in the human cortex. A rotary echo spin-lock (RESL) preparation followed by a 2D echo planar imaging readout was used to investigate 12 healthy subjects at rest and during continuous exposure to 8 Hz flickering light. The SL amplitude was fixed to the target neuroelectric oscillations at that frequency. The signal variance was used as contrast metric, and two alternative post-processing pipelines (regression-filtering-rectification and normalized subtraction) were statistically evaluated. Higher variance in the SL signal was detected in four of the 12 subjects. Although group-level analysis indicated activation in the occipital pole, analysis of variance revealed that this difference was not statistically significant, highlighting the need for comparable control measures and more robust preparations. Further optimization in sensitivity and robustness is required to noninvasively detect physiological neuroelectric activity in the human brain.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5280"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRI denoising with a non-blind deep complex-valued convolutional neural network. 利用非盲目深度复值卷积神经网络进行磁共振成像去噪。
IF 2.7 4区 医学 Q2 BIOPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-11-11 DOI: 10.1002/nbm.5291
Quan Dou, Zhixing Wang, Xue Feng, Adrienne E Campbell-Washburn, John P Mugler, Craig H Meyer

MR images with high signal-to-noise ratio (SNR) provide more diagnostic information. Various methods for MRI denoising have been developed, but the majority of them operate on the magnitude image and neglect the phase information. Therefore, the goal of this work is to design and implement a complex-valued convolutional neural network (CNN) for MRI denoising. A complex-valued CNN incorporating the noise level map (non-blind $$ mathbb{C} $$ DnCNN) was trained with ground truth and simulated noise-corrupted image pairs. The proposed method was validated using both simulated and in vivo data collected from low-field scanners. Its denoising performance was quantitively and qualitatively evaluated, and it was compared with the real-valued CNN and several other algorithms. For the simulated noise-corrupted testing dataset, the complex-valued models had superior normalized root-mean-square error, peak SNR, structural similarity index, and phase ABSD. By incorporating the noise level map, the non-blind $$ mathbb{C} $$ DnCNN showed better performance in dealing with spatially varying parallel imaging noise. For in vivo low-field data, the non-blind $$ mathbb{C} $$ DnCNN significantly improved the SNR and visual quality of the image. The proposed non-blind $$ mathbb{C} $$ DnCNN provides an efficient and effective approach for MRI denoising. This is the first application of non-blind $$ mathbb{C} $$ DnCNN to medical imaging. The method holds the potential to enable improved low-field MRI, facilitating enhanced diagnostic imaging in under-resourced areas.

信噪比(SNR)高的磁共振图像能提供更多的诊断信息。目前已开发出多种磁共振成像去噪方法,但大多数方法都是针对幅值图像,而忽略了相位信息。因此,本研究的目标是设计并实现一种用于磁共振成像去噪的复值卷积神经网络(CNN)。利用地面实况和模拟噪声干扰图像对训练了一个包含噪声水平图(非盲ℂ $$ mathbb{C} $$ DnCNN)的复值卷积神经网络。利用从低场扫描仪收集的模拟数据和体内数据对所提出的方法进行了验证。对其去噪性能进行了定量和定性评估,并与实值 CNN 和其他几种算法进行了比较。对于模拟噪声干扰测试数据集,复值模型在归一化均方根误差、峰值信噪比、结构相似性指数和相位 ABSD 方面都更胜一筹。通过加入噪声水平图,非盲ℂ $$ mathbb{C} $$ DnCNN在处理空间变化的平行成像噪声时表现出更好的性能。对于体内低场数据,非盲ℂ $$ mathbb{C} $$ DnCNN 显著提高了信噪比和图像的视觉质量。所提出的非盲ℂ $$ mathbb{C} $$ DnCNN为磁共振成像去噪提供了一种高效的方法。这是非盲ℂ $$ mathbb{C} $$ DnCNN 在医学成像中的首次应用。该方法有望改善低场核磁共振成像,促进资源不足地区的诊断成像。
{"title":"MRI denoising with a non-blind deep complex-valued convolutional neural network.","authors":"Quan Dou, Zhixing Wang, Xue Feng, Adrienne E Campbell-Washburn, John P Mugler, Craig H Meyer","doi":"10.1002/nbm.5291","DOIUrl":"10.1002/nbm.5291","url":null,"abstract":"<p><p>MR images with high signal-to-noise ratio (SNR) provide more diagnostic information. Various methods for MRI denoising have been developed, but the majority of them operate on the magnitude image and neglect the phase information. Therefore, the goal of this work is to design and implement a complex-valued convolutional neural network (CNN) for MRI denoising. A complex-valued CNN incorporating the noise level map (non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN) was trained with ground truth and simulated noise-corrupted image pairs. The proposed method was validated using both simulated and in vivo data collected from low-field scanners. Its denoising performance was quantitively and qualitatively evaluated, and it was compared with the real-valued CNN and several other algorithms. For the simulated noise-corrupted testing dataset, the complex-valued models had superior normalized root-mean-square error, peak SNR, structural similarity index, and phase ABSD. By incorporating the noise level map, the non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN showed better performance in dealing with spatially varying parallel imaging noise. For in vivo low-field data, the non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN significantly improved the SNR and visual quality of the image. The proposed non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN provides an efficient and effective approach for MRI denoising. This is the first application of non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN to medical imaging. The method holds the potential to enable improved low-field MRI, facilitating enhanced diagnostic imaging in under-resourced areas.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5291"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
NMR in Biomedicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1