首页 > 最新文献

npj Computational Materials最新文献

英文 中文
Flat-band mechanism for strongly bound dark excitons in two-dimensional magnetic semiconductors 二维磁性半导体中强束缚暗激子的平带机制
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41524-025-01949-z
Zhong Meng, Xirui Tian, Aolei Wang, Weibin Chu, Qijing Zheng, Jin Zhao
{"title":"Flat-band mechanism for strongly bound dark excitons in two-dimensional magnetic semiconductors","authors":"Zhong Meng, Xirui Tian, Aolei Wang, Weibin Chu, Qijing Zheng, Jin Zhao","doi":"10.1038/s41524-025-01949-z","DOIUrl":"https://doi.org/10.1038/s41524-025-01949-z","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"4 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A crystal graph convolutional neural network framework for predicting stacking fault energy in concentrated alloys 一种预测合金层错能的晶体图卷积神经网络框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-08 DOI: 10.1038/s41524-025-01915-9
Youheng Chen, Jiajia Han, Chen Yang, Cuiping Wang, Xingjun Liu
The stacking fault energy (SFE) in concentrated alloys is highly sensitive to the local atomic environment. Understanding this relationship necessitates extensive sampling of configurations, which significantly increases computational demands. To address this challenge, we propose a graph neural network (GNN)-based framework utilizing unrelaxed bulk and stacking fault structures as inputs to directly predict SFE. We first investigate two key extrapolation capabilities for bulk formation energy prediction: scale extrapolation (predicting formation energy in larger supercells) and compositional extrapolation (predicting formation energy for compositions beyond the training set). Leveraging the validated model, we concurrently predict formation energies of both bulk and stacking fault configurations to compute the SFE. The structural similarity between these configurations enables efficient parameter sharing, accelerating model convergence. The framework demonstrates excellent interpretability and robust compositional extrapolation capabilities in predicting SFEs. Furthermore, leveraging its exceptional compositional extrapolation, we integrate the model with Monte Carlo simulations to successfully predict ordering behavior and solute segregation at stacking faults. Finally, we introduce a hierarchical training strategy that further reduces data requirements. Collectively, our work establishes a unified and efficient framework for robust prediction of planar fault energies in complex concentrated alloys.
高浓度合金的层错能对局部原子环境高度敏感。要理解这种关系,就需要对配置进行大量采样,这大大增加了计算需求。为了解决这一挑战,我们提出了一个基于图神经网络(GNN)的框架,利用非松弛体和堆叠断层结构作为输入直接预测SFE。我们首先研究了两种用于整体地层能量预测的关键外推能力:尺度外推(预测较大超单元中的地层能量)和成分外推(预测超出训练集的成分的地层能量)。利用验证过的模型,我们同时预测了块断层和层错构型的地层能量,从而计算了SFE。这些配置之间的结构相似性使得有效的参数共享,加速模型收敛。该框架在预测sfe方面具有出色的可解释性和强大的成分外推能力。此外,利用其独特的成分外推,我们将模型与蒙特卡罗模拟相结合,成功地预测了层错处的有序行为和溶质偏析。最后,我们引入了一种分层训练策略,进一步降低了数据需求。总的来说,我们的工作为复杂浓缩合金的平面断层能量的鲁棒预测建立了一个统一和有效的框架。
{"title":"A crystal graph convolutional neural network framework for predicting stacking fault energy in concentrated alloys","authors":"Youheng Chen, Jiajia Han, Chen Yang, Cuiping Wang, Xingjun Liu","doi":"10.1038/s41524-025-01915-9","DOIUrl":"https://doi.org/10.1038/s41524-025-01915-9","url":null,"abstract":"The stacking fault energy (SFE) in concentrated alloys is highly sensitive to the local atomic environment. Understanding this relationship necessitates extensive sampling of configurations, which significantly increases computational demands. To address this challenge, we propose a graph neural network (GNN)-based framework utilizing unrelaxed bulk and stacking fault structures as inputs to directly predict SFE. We first investigate two key extrapolation capabilities for bulk formation energy prediction: scale extrapolation (predicting formation energy in larger supercells) and compositional extrapolation (predicting formation energy for compositions beyond the training set). Leveraging the validated model, we concurrently predict formation energies of both bulk and stacking fault configurations to compute the SFE. The structural similarity between these configurations enables efficient parameter sharing, accelerating model convergence. The framework demonstrates excellent interpretability and robust compositional extrapolation capabilities in predicting SFEs. Furthermore, leveraging its exceptional compositional extrapolation, we integrate the model with Monte Carlo simulations to successfully predict ordering behavior and solute segregation at stacking faults. Finally, we introduce a hierarchical training strategy that further reduces data requirements. Collectively, our work establishes a unified and efficient framework for robust prediction of planar fault energies in complex concentrated alloys.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145919889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating electron diffraction analysis using graph neural networks and attention mechanisms 利用图神经网络和注意机制加速电子衍射分析
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-07 DOI: 10.1038/s41524-025-01927-5
Anvesh Nathani, Arthur RC McCray, Yingtao Liu, Hanping Ding, Pejman Kazempoor, Shuozhi Xu, Colin Ophus, Iman Ghamarian
Electron diffraction(ED) often used to solve for unknown structures or refine existing ones. Existing methods for automated ED analysis often struggle with challenges such as computational expense and experimental noise. This study introduces a deep learning framework to accelerate and improve crystal structure determination from diffraction patterns. The methodology treats each diffraction pattern as a relational graph of Bragg spots. Spot features are encoded using a 1D convolutional network, from which a relational attention aggregator constructs an orientation-agnostic graph. This graph is processed by a Graphormer encoder enhanced with Mixture-of-Experts layers, allowing the model to learn complex crystallographic relationships efficiently. Trained and tested on a large dataset of simulated diffraction patterns, the model achieved a crystal system classification accuracy of 89.2% and a space group accuracy of 70.2% from single patterns, significantly outperforming a state-of-the-art random forest baseline (74.2% and 57.8%, respectively). By aggregating predictions across multiple zone axes, these accuracies improved to 96.5% and 79.5%. The model also demonstrated robust performance on experimental data of gold nanoparticles, producing plausible classifications consistent with known orientation degeneracies. By unifying relational graph reasoning with specialized expert networks, this work presents a robust and automated framework for high-throughput materials characterization.
电子衍射(ED)常用于求解未知结构或改进现有结构。现有的自动化ED分析方法经常面临计算费用和实验噪声等挑战。本研究引入了一个深度学习框架来加速和改进从衍射图样中确定晶体结构。该方法将每个衍射图样视为布拉格斑的关系图。使用一维卷积网络对斑点特征进行编码,关系注意力聚合器从中构建方向不可知图。该图由graphhormer编码器处理,增强了mix -of- experts层,使模型能够有效地学习复杂的晶体关系。在模拟衍射图案的大型数据集上进行训练和测试,该模型在单个图案上实现了89.2%的晶体系统分类准确率和70.2%的空间组准确率,显著优于最先进的随机森林基线(分别为74.2%和57.8%)。通过聚合跨多个区域轴的预测,这些精度提高到96.5%和79.5%。该模型在金纳米颗粒的实验数据上也表现出了稳健的性能,产生了与已知取向简并相一致的合理分类。通过将关系图推理与专门的专家网络统一起来,这项工作为高通量材料表征提供了一个强大的自动化框架。
{"title":"Accelerating electron diffraction analysis using graph neural networks and attention mechanisms","authors":"Anvesh Nathani, Arthur RC McCray, Yingtao Liu, Hanping Ding, Pejman Kazempoor, Shuozhi Xu, Colin Ophus, Iman Ghamarian","doi":"10.1038/s41524-025-01927-5","DOIUrl":"https://doi.org/10.1038/s41524-025-01927-5","url":null,"abstract":"Electron diffraction(ED) often used to solve for unknown structures or refine existing ones. Existing methods for automated ED analysis often struggle with challenges such as computational expense and experimental noise. This study introduces a deep learning framework to accelerate and improve crystal structure determination from diffraction patterns. The methodology treats each diffraction pattern as a relational graph of Bragg spots. Spot features are encoded using a 1D convolutional network, from which a relational attention aggregator constructs an orientation-agnostic graph. This graph is processed by a Graphormer encoder enhanced with Mixture-of-Experts layers, allowing the model to learn complex crystallographic relationships efficiently. Trained and tested on a large dataset of simulated diffraction patterns, the model achieved a crystal system classification accuracy of 89.2% and a space group accuracy of 70.2% from single patterns, significantly outperforming a state-of-the-art random forest baseline (74.2% and 57.8%, respectively). By aggregating predictions across multiple zone axes, these accuracies improved to 96.5% and 79.5%. The model also demonstrated robust performance on experimental data of gold nanoparticles, producing plausible classifications consistent with known orientation degeneracies. By unifying relational graph reasoning with specialized expert networks, this work presents a robust and automated framework for high-throughput materials characterization.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"391 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating deep-learning-based magnetic model and non-collinear spin-constrained method: methodology, implementation and application 基于深度学习的磁模型与非共线自旋约束方法的集成:方法、实现与应用
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-07 DOI: 10.1038/s41524-025-01923-9
Daye Zheng, Xingliang Peng, Yike Huang, Yinan Wang, Duo Zhang, Zhengtao Huang, Zefeng Cai, Linfeng Zhang, Mohan Chen, Ben Xu, Weiqing Zhou
We propose a non-collinear spin-constrained method that generates training data for deep-learning-based magnetic model, which provides a powerful tool for studying complex magnetic phenomena that requires large-scale simulations at the atomic level. First, we propose a basis-independent projection method for calculating atomic magnetic moments by applying a radial truncation to numerical atomic orbitals. A double-loop Lagrange multiplier method is utilized to ensure the satisfaction of constraint conditions while achieving accurate magnetic torque. The method is implemented in ABACUS with both plane wave basis and numerical atomic orbital basis. We benchmark the iron (Fe) systems and analyze differences from calculations with the plane wave basis and numerical atomic orbitals basis in describing magnetic energy barriers. Based on an automated workflow composed of first-principles calculations, magnetic model, active learning, and dynamics simulation, more than 30,000 first-principles data with the information of magnetic torque are generated to train a deep-learning-based magnetic model DeePSPIN for the Fe system. By utilizing the model in large-scale molecular dynamics simulations, we successfully predict Curie temperatures of α-Fe close to experimental values.
我们提出了一种非共线自旋约束方法,为基于深度学习的磁模型生成训练数据,为研究需要在原子水平上进行大规模模拟的复杂磁现象提供了有力的工具。首先,我们提出了一种与基无关的投影方法,通过对数值原子轨道应用径向截断来计算原子磁矩。采用双环拉格朗日乘子法,在满足约束条件的同时获得精确的磁转矩。该方法采用平面波基和数值原子轨道基在ABACUS中实现。我们对铁(Fe)体系进行了基准测试,并分析了平面波基和数值原子轨道基在描述磁能势垒方面的计算差异。基于第一性原理计算、磁模型、主动学习和动力学仿真组成的自动化工作流程,生成3万多个带有磁转矩信息的第一性原理数据,训练基于深度学习的Fe系统磁模型DeePSPIN。通过大规模分子动力学模拟,我们成功地预测了α-Fe的居里温度接近实验值。
{"title":"Integrating deep-learning-based magnetic model and non-collinear spin-constrained method: methodology, implementation and application","authors":"Daye Zheng, Xingliang Peng, Yike Huang, Yinan Wang, Duo Zhang, Zhengtao Huang, Zefeng Cai, Linfeng Zhang, Mohan Chen, Ben Xu, Weiqing Zhou","doi":"10.1038/s41524-025-01923-9","DOIUrl":"https://doi.org/10.1038/s41524-025-01923-9","url":null,"abstract":"We propose a non-collinear spin-constrained method that generates training data for deep-learning-based magnetic model, which provides a powerful tool for studying complex magnetic phenomena that requires large-scale simulations at the atomic level. First, we propose a basis-independent projection method for calculating atomic magnetic moments by applying a radial truncation to numerical atomic orbitals. A double-loop Lagrange multiplier method is utilized to ensure the satisfaction of constraint conditions while achieving accurate magnetic torque. The method is implemented in ABACUS with both plane wave basis and numerical atomic orbital basis. We benchmark the iron (Fe) systems and analyze differences from calculations with the plane wave basis and numerical atomic orbitals basis in describing magnetic energy barriers. Based on an automated workflow composed of first-principles calculations, magnetic model, active learning, and dynamics simulation, more than 30,000 first-principles data with the information of magnetic torque are generated to train a deep-learning-based magnetic model DeePSPIN for the Fe system. By utilizing the model in large-scale molecular dynamics simulations, we successfully predict Curie temperatures of α-Fe close to experimental values.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"28 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the role of interface disorder in modulating critical current density of Josephson junctions 揭示界面无序在调制约瑟夫逊结临界电流密度中的作用
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01941-7
Chuanbing Han, Huihui Sun, Yonglong Shen, Junling Qiu, Peng Xu, Fudong Liu, Bo Zhao, Xiaohan Yu, Weilong Wang, Shuya Wang, Qing Mu, Benzheng Yuan, Lixin Wang, Chaofeng Hou, Zheng Shan
Suppressing critical current density ( J c ) fluctuations in Josephson junctions is essential for improving the reproducibility and scalability of superconducting quantum processors. Despite many elucidations of microscopic mechanisms, the physical modulation of J c by atomic-scale disorder at the metal-insulator interface remains elusive. Here, we reveal that interfacial bonding topology distortions are the dominant source that regulates J c uniformity. We identify a new disorder metric, Interface Bonding Topology Factor (IBTF), that captures bond-angle fluctuations and oxygen-coordination heterogeneity within J c variations. Through multivariate analysis, J c is exponentially correlated with interface disorder and barrier thickness ( d ) by J ce −IBTF⋅ d , explaining 91.88% of the observed J c inhomogeneity. We establish IBTF as a tunable physical degree of freedom whose suppression efficacy enhances significantly with increasing d , and demonstrate its active modulation by twin boundary engineering in electrodes. This work provides a device-oriented strategy and a tunable physical metric beyond single-feature control for scalable high-performance quantum processors.
抑制约瑟夫森结的临界电流密度波动对于提高超导量子处理器的可重复性和可扩展性至关重要。尽管对微观机制有许多解释,但金属-绝缘体界面上原子尺度失序对jc的物理调制仍然难以捉摸。在这里,我们揭示了界面键合拓扑扭曲是调节jc均匀性的主要来源。我们确定了一个新的无序度量,界面键合拓扑因子(IBTF),捕捉键角波动和氧配位不均一在J c变化。通过多变量分析,jc与界面无序度和势垒厚度(d)呈指数相关(jc∝e−IBTF⋅d),解释了91.88%的jc不均匀性。我们建立了IBTF作为一个可调谐的物理自由度,其抑制效果随着d的增加而显著增强,并通过双边界工程在电极中证明了它的有源调制。这项工作为可扩展的高性能量子处理器提供了一种面向设备的策略和可调的物理度量,超出了单一特征控制。
{"title":"Revealing the role of interface disorder in modulating critical current density of Josephson junctions","authors":"Chuanbing Han, Huihui Sun, Yonglong Shen, Junling Qiu, Peng Xu, Fudong Liu, Bo Zhao, Xiaohan Yu, Weilong Wang, Shuya Wang, Qing Mu, Benzheng Yuan, Lixin Wang, Chaofeng Hou, Zheng Shan","doi":"10.1038/s41524-025-01941-7","DOIUrl":"https://doi.org/10.1038/s41524-025-01941-7","url":null,"abstract":"Suppressing critical current density ( <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> ) fluctuations in Josephson junctions is essential for improving the reproducibility and scalability of superconducting quantum processors. Despite many elucidations of microscopic mechanisms, the physical modulation of <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> by atomic-scale disorder at the metal-insulator interface remains elusive. Here, we reveal that interfacial bonding topology distortions are the dominant source that regulates <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> uniformity. We identify a new disorder metric, Interface Bonding Topology Factor (IBTF), that captures bond-angle fluctuations and oxygen-coordination heterogeneity within <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> variations. Through multivariate analysis, <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> is exponentially correlated with interface disorder and barrier thickness ( <jats:italic>d</jats:italic> ) by <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> ∝ <jats:italic>e</jats:italic> <jats:sup> −IBTF⋅ <jats:italic>d</jats:italic> </jats:sup> , explaining 91.88% of the observed <jats:italic>J</jats:italic> <jats:sub>c</jats:sub> inhomogeneity. We establish IBTF as a tunable physical degree of freedom whose suppression efficacy enhances significantly with increasing <jats:italic>d</jats:italic> , and demonstrate its active modulation by twin boundary engineering in electrodes. This work provides a device-oriented strategy and a tunable physical metric beyond single-feature control for scalable high-performance quantum processors.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"31 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting soft materials: how material differences shape the response 切割软质材料:材料差异如何形成反应
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01869-y
Miguel Angel Moreno-Mateos, Paul Steinmann
Cutting soft materials is a complex process governed by the interplay of bulk large deformation, interfacial soft fracture, and contact forces with the cutting tool. Existing experimental characterizations and numerical models often fail to capture the variety of observed cutting behaviors, especially the transition from indentation to cutting and the roles of dissipative mechanisms. Here, we combine novel experimental cutting tests on three representative materials—a soft hydrogel, an elastomer, and food materials—with a coupled computational model that integrates soft fracture, adhesion, and frictional interactions. Our experiments reveal material-dependent cutting behaviors, with abrupt or smooth transitions from indentation to crack initiation, followed by distinct steady cutting regimes. The computational model captures these behaviors and shows that adhesion and damping contributions in the cohesive forces dominate tangential stresses, while Coulomb friction plays a negligible role due to low contact pressures. Together, these results provide new mechanistic insights into the physics of soft cutting and offer a unified framework for soft cutting mechanics to guide the design of soft materials, cutting tools, and cutting protocols, with direct relevance to surgical dissection and the engineering of food textures optimized for mastication.
软质材料的切削是一个复杂的过程,受大块大变形、界面软断裂和刀具接触力等因素的共同作用。现有的实验表征和数值模型往往不能捕捉到观察到的各种切削行为,特别是从压痕到切削的转变和耗散机制的作用。在这里,我们将三种代表性材料(软水凝胶、弹性体和食品材料)的新型实验切割测试与集成软断裂、粘附和摩擦相互作用的耦合计算模型相结合。我们的实验揭示了材料依赖的切削行为,从压痕到裂纹萌生的突然或平滑过渡,随后是明显的稳定切削机制。计算模型捕获了这些行为,并表明粘聚力中的粘附和阻尼贡献主导了切向应力,而由于低接触压力,库仑摩擦的作用可以忽略不计。总之,这些结果为软切割的物理机理提供了新的见解,并为软切割力学提供了一个统一的框架,以指导软材料、切割工具和切割方案的设计,与外科解剖和优化咀嚼食物纹理的工程直接相关。
{"title":"Cutting soft materials: how material differences shape the response","authors":"Miguel Angel Moreno-Mateos, Paul Steinmann","doi":"10.1038/s41524-025-01869-y","DOIUrl":"https://doi.org/10.1038/s41524-025-01869-y","url":null,"abstract":"Cutting soft materials is a complex process governed by the interplay of bulk large deformation, interfacial soft fracture, and contact forces with the cutting tool. Existing experimental characterizations and numerical models often fail to capture the variety of observed cutting behaviors, especially the transition from indentation to cutting and the roles of dissipative mechanisms. Here, we combine novel experimental cutting tests on three representative materials—a soft hydrogel, an elastomer, and food materials—with a coupled computational model that integrates soft fracture, adhesion, and frictional interactions. Our experiments reveal material-dependent cutting behaviors, with abrupt or smooth transitions from indentation to crack initiation, followed by distinct steady cutting regimes. The computational model captures these behaviors and shows that adhesion and damping contributions in the cohesive forces dominate tangential stresses, while Coulomb friction plays a negligible role due to low contact pressures. Together, these results provide new mechanistic insights into the physics of soft cutting and offer a unified framework for soft cutting mechanics to guide the design of soft materials, cutting tools, and cutting protocols, with direct relevance to surgical dissection and the engineering of food textures optimized for mastication.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"34 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The properties, thermodynamics and application prospects of diamanes 金刚石的性质、热力学及应用前景
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01935-5
Pavel B. Sorokin, Boris I. Yakobson
{"title":"The properties, thermodynamics and application prospects of diamanes","authors":"Pavel B. Sorokin, Boris I. Yakobson","doi":"10.1038/s41524-025-01935-5","DOIUrl":"https://doi.org/10.1038/s41524-025-01935-5","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"43 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition-dependent dislocation mobility in FeNiCrCoCu high-entropy alloys based on atomistic simulations and machine learning analysis 基于原子模拟和机器学习分析的FeNiCrCoCu高熵合金中成分依赖的位错迁移率
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01942-6
Jingya Zhang, Yin Zhang
Solid solution strengthening is a key mechanism for enhancing the strength of high-entropy alloys (HEAs). However, conventional strengthening theories fail to capture the complex environments in HEAs. Here, we present a data-driven framework to investigate the composition-dependent intrinsic strength of FCC HEAs. Using large-scale molecular dynamics simulations, we compute dislocation mobility under various temperatures and compositions, revealing jerky and wavy glide behavior due to fluctuating local pinning. The critical resolved shear stress (CRSS) at 0 K is extracted from these data, and a linear correlation is revealed between CRSS and the standard deviation of atomic pinning strength. Then, we propose atomic features describing local structural and compositional fluctuations and construct a symbolic model to predict the atomic pinning strength variability from these features, using the Sure Independence Screening and Sparsifying Operator method. This framework provides both mechanistic insight and predictive capability for the design of strong, compositionally complex alloys.
固溶体强化是提高高熵合金强度的关键机制。然而,传统的强化理论未能捕捉到高等教育机构的复杂环境。在这里,我们提出了一个数据驱动的框架来研究FCC HEAs的成分依赖的内在强度。通过大规模的分子动力学模拟,我们计算了位错在不同温度和成分下的迁移率,揭示了由于波动的局部钉住而导致的抖动和波浪滑动行为。从这些数据中提取了0 K时的临界分解剪切应力(CRSS), CRSS与原子钉钉强度的标准差呈线性相关。然后,我们提出了描述局部结构和成分波动的原子特征,并使用确定独立筛选和稀疏算子方法构建了一个符号模型来预测原子钉钉强度的变化。该框架为设计坚固、成分复杂的合金提供了机械洞察力和预测能力。
{"title":"Composition-dependent dislocation mobility in FeNiCrCoCu high-entropy alloys based on atomistic simulations and machine learning analysis","authors":"Jingya Zhang, Yin Zhang","doi":"10.1038/s41524-025-01942-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01942-6","url":null,"abstract":"Solid solution strengthening is a key mechanism for enhancing the strength of high-entropy alloys (HEAs). However, conventional strengthening theories fail to capture the complex environments in HEAs. Here, we present a data-driven framework to investigate the composition-dependent intrinsic strength of FCC HEAs. Using large-scale molecular dynamics simulations, we compute dislocation mobility under various temperatures and compositions, revealing jerky and wavy glide behavior due to fluctuating local pinning. The critical resolved shear stress (CRSS) at 0 K is extracted from these data, and a linear correlation is revealed between CRSS and the standard deviation of atomic pinning strength. Then, we propose atomic features describing local structural and compositional fluctuations and construct a symbolic model to predict the atomic pinning strength variability from these features, using the Sure Independence Screening and Sparsifying Operator method. This framework provides both mechanistic insight and predictive capability for the design of strong, compositionally complex alloys.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"30 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted rapid crystal structure generation towards a target local environment 人工智能辅助快速晶体结构生成的目标局部环境
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-06 DOI: 10.1038/s41524-025-01931-9
Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu
In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.
在材料设计中,传统的晶体结构预测方法是昂贵的,因为它们需要通过昂贵的能量最小化方法进行大量的结构采样。新兴的人工智能(AI)生成模型在快速生成现实晶体方面显示出巨大的希望,但它们通常每个单元只能处理几十个原子。为了克服这一限制,我们引入了一种对称信息方法,即局部环境几何定向晶体发生器(LEGO-xtal)。我们的方法使用在增强数据集上训练的人工智能模型生成初始结构,然后使用结构描述符而不是基于能量的优化来优化它们。我们证明了它的有效性,从25个已知的低能sp2碳同素异形体扩展到1700多个,所有这些都在石墨基态能量的0.5 eV/原子内。该框架为具有模块化构建块的材料的目标设计提供了一种通用策略,例如金属有机框架和电池材料。
{"title":"AI-assisted rapid crystal structure generation towards a target local environment","authors":"Osman Goni Ridwan, Sylvain Pitié, Monish Soundar Raj, Dong Dai, Gilles Frapper, Hongfei Xue, Qiang Zhu","doi":"10.1038/s41524-025-01931-9","DOIUrl":"https://doi.org/10.1038/s41524-025-01931-9","url":null,"abstract":"In material design, traditional crystal structure prediction approaches are expensive as they require extensive structural sampling through expensive energy minimization methods. Emerging artificial intelligence (AI) generative models have shown great promise in rapidly generating realistic crystals, but they typically handle only a few tens of atoms per unit cell. To overcome this limitation, we introduce a symmetry-informed approach, the Local Environment Geometry-Oriented Crystal Generator (LEGO-xtal). Our method generates initial structures using AI models trained on an augmented dataset, and then optimizes them using structure descriptors rather than energy-based optimization. We demonstrate its effectiveness by expanding from 25 known low-energy sp2 carbon allotropes to over 1700, all within 0.5 eV/atom of the ground-state energy of graphite. This framework offers a generalizable strategy for the targeted design of materials with modular building blocks, such as metal-organic frameworks and battery materials.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"18 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions 具有不同Dzyaloshinskii-Moriya相互作用的薄膜中锥形-螺旋织构的微磁学
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-05 DOI: 10.1038/s41524-025-01926-6
M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros
Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${mathcal{T}}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>T</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{nv}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , isotropic and anisotropic <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{2d}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>d</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{D}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>D</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{C}}}_{n}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> , and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$${{mathcal{S}}}_{4}$$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>S</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:math> </jats:alternatives> </jats:inline-formula> . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with
近年来,具有Dzyaloshinskii-Moriya相互作用的铁磁材料的手性自旋织构由于其在纳米器件中的潜在应用而引起了人们的极大兴趣。这项工作的重点是描述具有DMI和垂直各向异性的超薄膜中稳定的锥形螺旋结构。这些状态研究了不同类型的dmi,包括对称类$${mathcal{T}}$$ T, $${{mathcal{C}}}_{nv}$$ C n v,各向同性和各向异性$${{mathcal{D}}}_{2d}$$ d2 D, $${{mathcal{D}}}_{n}$$ D n, $${{mathcal{C}}}_{n}$$ C n和$${{mathcal{S}}}_{4}$$ s4。提出了这些构型的参数化分析模型,从而确定表征磁性织构的最佳参数,如节距矢量或成核场。为了证实结果,进行了微磁模拟,并与理论解进行了比较。数值解决方案是通过实现有限差分代码,使用下近邻和明确的罗宾边界条件源于对称交换和DMI优化。结果表明,这些数值增强降低了螺旋解的各向异性效应。本研究建立了一种分析具有任意DMI的薄膜系统中的锥形螺旋织构的方法,使用本文开发的开放获取代码可以以更高的精度模拟。
{"title":"Micromagnetics of conical-helix textures in thin films with different kinds of Dzyaloshinskii-Moriya interactions","authors":"M. Cepeda-Arancibia, F. Brevis, S. J. R. Holt, D. Cortés-Ortuño, H. Fangohr, P. Landeros","doi":"10.1038/s41524-025-01926-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01926-6","url":null,"abstract":"Chiral spin textures in ferromagnetic materials with Dzyaloshinskii-Moriya interactions (DMIs) have attracted significant interest in recent years owing to their potential applications in nanodevices. This work focuses on describing stable conical-helix configurations hosted in ultrathin films with DMI and perpendicular anisotropy. These states are studied for different kinds of DMIs, including symmetry classes &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${mathcal{T}}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mi&gt;T&lt;/mml:mi&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{nv}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mi&gt;v&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , isotropic and anisotropic &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{2d}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{D}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{C}}}_{n}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; , and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:tex-math&gt;$${{mathcal{S}}}_{4}$$&lt;/jats:tex-math&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;S&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;4&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; . A parameterised analytical model of these configurations is proposed, enabling the determination of optimal parameters characterising the magnetic texture, such as the pitch vector or nucleation field. To substantiate the results, micromagnetic simulations are developed for comparison with the theoretical solutions. Numerical solutions are optimised by implementing finite-difference codes that use next-nearest neighbours and explicit Robin boundary conditions stemming from symmetric exchange and DMI. It is shown that these numerical enhancements decrease anisotropic effects in helical solutions. This study establishes a method to analyse conical-helix textures in thin-film systems with ","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"27 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1