Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.
{"title":"Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions","authors":"Gerardo Campos-Villalobos, Rodolfo Subert, Giuliana Giunta, Marjolein Dijkstra","doi":"10.1038/s41524-024-01405-4","DOIUrl":"https://doi.org/10.1038/s41524-024-01405-4","url":null,"abstract":"<p>Computational investigations of biological and soft-matter systems governed by strongly anisotropic interactions typically require resource-demanding methods such as atomistic simulations. However, these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-length scales inherent to such systems. Conversely, coarse-grained models offer a computationally efficient alternative. Nonetheless, models of this type have seldom been developed to accurately represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-grained potentials relies on particle-centered descriptors of local structure that effectively encode dependencies on rotational degrees of freedom in the interactions. By using these descriptors as regressors in a linear model and employing a simple feature selection scheme, we construct single-site coarse-grained potentials for particles with anisotropic interactions, including surface-patterned particles and colloidal superballs in the presence of non-adsorbing polymers. We validate the efficacy of our models by accurately capturing the intricacies of the potential-energy surfaces from the underlying fine-grained models. Additionally, we demonstrate that this simple approach can accurately represent the contact function (shape) of non-spherical particles, which may be leveraged to construct continuous potentials suitable for large-scale simulations.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"22 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s41524-024-01392-6
Damdae Park, Wonsuk Chung, Byoung Koun Min, Ung Lee, Seungho Yu, Kyeongsu Kim
All-solid-state Na-ion batteries have emerged as alternatives to all-solid-state Li-ion batteries owing to the global abundance of Na element. However, finding a commercially viable Na-ion solid-state electrolyte (SSE) remains challenging due to the relatively poor understanding of the structures effective for conduction compared to those for Li-ion SSE. In this study, we develop a screening framework based on an unsupervised machine learning technique to characterize Na-ion SSEs according to their lattice structures. Specifically, we evaluate feature vectors encoding 180 structural properties for 12,670 materials containing Na ions. Subsequently, the resulting feature vectors are clustered using hierarchical density-based spatial clustering of applications with noise (HDBSCAN), leading to the discovery of 12 groups including those with experimentally proven Na-ion superionic conductors such as NASICONs and sodium chalcogenides. Post hoc analysis of these clusters reveals that the groups with high conductivity share similar characteristics, including the existence of ion channels for Na ions and the weak interactions between Na ions and the proximate atoms. Ab initio molecular dynamics simulations confirm that the promising groups exhibit exceptional ion diffusivity compared to other groups. By employing decision tree classifiers trained to screen promising groups, we demonstrate the rapid assessment of the potential of a given material. Finally, we offer perspectives and insights for the development of novel Na-ion SSEs for all-solid-state Na-ion batteries.
由于 Na 元素在全球范围内的丰富性,全固态 Na 离子电池已成为全固态锂离子电池的替代品。然而,与锂离子固态电解质相比,由于对有效传导结构的了解相对较少,因此寻找商业上可行的瑙离子固态电解质(SSE)仍然具有挑战性。在本研究中,我们开发了一种基于无监督机器学习技术的筛选框架,可根据氖离子固态电解质的晶格结构对其进行表征。具体来说,我们评估了 12,670 种含 Na 离子材料的 180 种结构特性的特征向量。随后,利用基于密度的分层空间聚类应用(HDBSCAN)对得到的特征向量进行聚类,从而发现了 12 个组,其中包括那些经实验证明的纳离子超离子导体,如 NASICONs 和钠瑀。对这些群组的事后分析表明,具有高电导率的群组具有相似的特征,包括 Na 离子通道的存在以及 Na 离子与邻近原子之间的微弱相互作用。Ab initio 分子动力学模拟证实,与其他基团相比,有希望的基团表现出卓越的离子扩散性。通过使用经过训练的决策树分类器来筛选有潜力的基团,我们展示了对特定材料潜力的快速评估。最后,我们为开发用于全固态钠离子电池的新型钠离子 SSE 提出了展望和见解。
{"title":"Computational screening of sodium solid electrolytes through unsupervised learning","authors":"Damdae Park, Wonsuk Chung, Byoung Koun Min, Ung Lee, Seungho Yu, Kyeongsu Kim","doi":"10.1038/s41524-024-01392-6","DOIUrl":"https://doi.org/10.1038/s41524-024-01392-6","url":null,"abstract":"<p>All-solid-state Na-ion batteries have emerged as alternatives to all-solid-state Li-ion batteries owing to the global abundance of Na element. However, finding a commercially viable Na-ion solid-state electrolyte (SSE) remains challenging due to the relatively poor understanding of the structures effective for conduction compared to those for Li-ion SSE. In this study, we develop a screening framework based on an unsupervised machine learning technique to characterize Na-ion SSEs according to their lattice structures. Specifically, we evaluate feature vectors encoding 180 structural properties for 12,670 materials containing Na ions. Subsequently, the resulting feature vectors are clustered using hierarchical density-based spatial clustering of applications with noise (HDBSCAN), leading to the discovery of 12 groups including those with experimentally proven Na-ion superionic conductors such as NASICONs and sodium chalcogenides. <i>Post hoc</i> analysis of these clusters reveals that the groups with high conductivity share similar characteristics, including the existence of ion channels for Na ions and the weak interactions between Na ions and the proximate atoms. Ab initio molecular dynamics simulations confirm that the promising groups exhibit exceptional ion diffusivity compared to other groups. By employing decision tree classifiers trained to screen promising groups, we demonstrate the rapid assessment of the potential of a given material. Finally, we offer perspectives and insights for the development of novel Na-ion SSEs for all-solid-state Na-ion batteries.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"12 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1038/s41524-024-01365-9
Nina Andrejevic, Tao Zhou, Qingteng Zhang, Suresh Narayanan, Mathew J. Cherukara, Maria K. Y. Chan
Coherent X-ray scattering (CXS) techniques are capable of interrogating dynamics of nano- to mesoscale materials systems at time scales spanning several orders of magnitude. However, obtaining accurate theoretical descriptions of complex dynamics is often limited by one or more factors—the ability to visualize dynamics in real space, computational cost of high-fidelity simulations, and effectiveness of approximate or phenomenological models. In this work, we develop a data-driven framework to uncover mechanistic models of dynamics directly from time-resolved CXS measurements without solving the phase reconstruction problem for the entire time series of diffraction patterns. Our approach uses neural differential equations to parameterize unknown real-space dynamics and implements a computational scattering forward model to relate real-space predictions to reciprocal-space observations. This method is shown to recover the dynamics of several computational model systems under various simulated conditions of measurement resolution and noise. Moreover, the trained model enables estimation of long-term dynamics well beyond the maximum observation time, which can be used to inform and refine experimental parameters in practice. Finally, we demonstrate an experimental proof-of-concept by applying our framework to recover the probe trajectory from a ptychographic scan. Our proposed framework bridges the wide existing gap between approximate models and complex data.
相干 X 射线散射(CXS)技术能够在跨越几个数量级的时间尺度上探测纳米到中尺度材料系统的动态。然而,获得复杂动力学的精确理论描述往往受到一个或多个因素的限制--真实空间中可视化动力学的能力、高保真模拟的计算成本以及近似或现象模型的有效性。在这项工作中,我们开发了一种数据驱动框架,可直接从时间分辨 CXS 测量中发现动力学机理模型,而无需解决整个衍射图样时间序列的相位重建问题。我们的方法使用神经微分方程对未知实空间动力学进行参数化,并实施计算散射前向模型,将实空间预测与倒易空间观测联系起来。结果表明,这种方法能在各种测量分辨率和噪声模拟条件下恢复多个计算模型系统的动态。此外,训练有素的模型能够估算出远超过最长观测时间的长期动态,可用于在实践中提供信息和完善实验参数。最后,我们通过应用我们的框架来恢复探针的轨迹,展示了一个实验性的概念验证。我们提出的框架弥补了近似模型与复杂数据之间的巨大差距。
{"title":"Data-driven discovery of dynamics from time-resolved coherent scattering","authors":"Nina Andrejevic, Tao Zhou, Qingteng Zhang, Suresh Narayanan, Mathew J. Cherukara, Maria K. Y. Chan","doi":"10.1038/s41524-024-01365-9","DOIUrl":"https://doi.org/10.1038/s41524-024-01365-9","url":null,"abstract":"<p>Coherent X-ray scattering (CXS) techniques are capable of interrogating dynamics of nano- to mesoscale materials systems at time scales spanning several orders of magnitude. However, obtaining accurate theoretical descriptions of complex dynamics is often limited by one or more factors—the ability to visualize dynamics in real space, computational cost of high-fidelity simulations, and effectiveness of approximate or phenomenological models. In this work, we develop a data-driven framework to uncover mechanistic models of dynamics directly from time-resolved CXS measurements without solving the phase reconstruction problem for the entire time series of diffraction patterns. Our approach uses neural differential equations to parameterize unknown real-space dynamics and implements a computational scattering forward model to relate real-space predictions to reciprocal-space observations. This method is shown to recover the dynamics of several computational model systems under various simulated conditions of measurement resolution and noise. Moreover, the trained model enables estimation of long-term dynamics well beyond the maximum observation time, which can be used to inform and refine experimental parameters in practice. Finally, we demonstrate an experimental proof-of-concept by applying our framework to recover the probe trajectory from a ptychographic scan. Our proposed framework bridges the wide existing gap between approximate models and complex data.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"14 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1038/s41524-024-01414-3
Timothy Yoo, Eitan Hershkovitz, Yang Yang, Flávia da Cruz Gallo, Michele V. Manuel, Honggyu Kim
Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.
{"title":"Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys","authors":"Timothy Yoo, Eitan Hershkovitz, Yang Yang, Flávia da Cruz Gallo, Michele V. Manuel, Honggyu Kim","doi":"10.1038/s41524-024-01414-3","DOIUrl":"https://doi.org/10.1038/s41524-024-01414-3","url":null,"abstract":"<p>Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1038/s41524-024-01413-4
Jun Luo, Omar Ben Said, Peigen Xie, Marco Gibaldi, Jake Burner, Cécile Pereira, Tom K. Woo
Accurate computation of the gas adsorption properties of MOFs is usually bottlenecked by the DFT calculations required to generate partial atomic charges. Therefore, large virtual screenings of MOFs often use the QEq method which is rapid, but of limited accuracy. Recently, machine learning (ML) models have been trained to generate charges in much better agreement with DFT-derived charges compared to the QEq models. Previous ML charge models for MOFs have all used training sets with less than 3000 MOFs obtained from the CoRE MOF database, which has recently been shown to have high structural error rates. In this work, we developed a graph attention network model for predicting DFT-derived charges in MOFs where the model was developed with the ARC-MOF database that contains 279,632 MOFs and over 40 million charges. This model, which we call MEPO-ML, predicts charges with a mean absolute error of 0.025e on our test set of over 27 K MOFs. Other ML models reported in the literature were also trained using the same dataset and descriptors, and MEPO-ML was shown to give the lowest errors. The gas adsorption properties evaluated using MEPO-ML charges are found to be in significantly better agreement with the reference DFT-derived charges compared to the empirical charges, for both polar and non-polar gases. Using only a single CPU core on our benchmark computer, MEPO-ML charges can be generated in less than two seconds on average (including all computations required to apply the model) for MOFs in the test set of 27 K MOFs.
{"title":"MEPO-ML: a robust graph attention network model for rapid generation of partial atomic charges in metal-organic frameworks","authors":"Jun Luo, Omar Ben Said, Peigen Xie, Marco Gibaldi, Jake Burner, Cécile Pereira, Tom K. Woo","doi":"10.1038/s41524-024-01413-4","DOIUrl":"https://doi.org/10.1038/s41524-024-01413-4","url":null,"abstract":"<p>Accurate computation of the gas adsorption properties of MOFs is usually bottlenecked by the DFT calculations required to generate partial atomic charges. Therefore, large virtual screenings of MOFs often use the QEq method which is rapid, but of limited accuracy. Recently, machine learning (ML) models have been trained to generate charges in much better agreement with DFT-derived charges compared to the QEq models. Previous ML charge models for MOFs have all used training sets with less than 3000 MOFs obtained from the CoRE MOF database, which has recently been shown to have high structural error rates. In this work, we developed a graph attention network model for predicting DFT-derived charges in MOFs where the model was developed with the ARC-MOF database that contains 279,632 MOFs and over 40 million charges. This model, which we call <i>MEPO-ML</i>, predicts charges with a mean absolute error of 0.025e on our test set of over 27 K MOFs. Other ML models reported in the literature were also trained using the same dataset and descriptors, and MEPO-ML was shown to give the lowest errors. The gas adsorption properties evaluated using MEPO-ML charges are found to be in significantly better agreement with the reference DFT-derived charges compared to the empirical charges, for both polar and non-polar gases. Using only a single CPU core on our benchmark computer, MEPO-ML charges can be generated in less than two seconds on average (including all computations required to apply the model) for MOFs in the test set of 27 K MOFs.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s41524-024-01412-5
Mirko Vanzan, Margherita Marsili
Plasmonic-driven photocatalysis is one of the most vibrant and promising field in nanoscience. Out of the various mechanisms known to activate chemical reactions in molecules interacting with optically excited nanostructures, the one involving production and transfer of Hot Carriers (HCs) is among the most relevant. Over the past decade, along with stunning advances on HCs control and manipulation, a variety of theoretical and computational strategies have been developed to model this phenomenon and explore its underlying physics. These techniques have provided comprehensive understandings of HCs life stages and dynamics, and allowed valuable insights on their role in photocatalysis. However, to date it is hard to extricate within the plethora of methods developed and the growing number of applications they found. The purpose of this review is to survey the approaches employed so far to model HCs photophysics, rationalizing and classifying the different studies in terms of modelization, theoretical approaches, and approximations.
{"title":"Theoretical approaches for the description of plasmon generated hot carriers phenomena","authors":"Mirko Vanzan, Margherita Marsili","doi":"10.1038/s41524-024-01412-5","DOIUrl":"https://doi.org/10.1038/s41524-024-01412-5","url":null,"abstract":"<p>Plasmonic-driven photocatalysis is one of the most vibrant and promising field in nanoscience. Out of the various mechanisms known to activate chemical reactions in molecules interacting with optically excited nanostructures, the one involving production and transfer of Hot Carriers (HCs) is among the most relevant. Over the past decade, along with stunning advances on HCs control and manipulation, a variety of theoretical and computational strategies have been developed to model this phenomenon and explore its underlying physics. These techniques have provided comprehensive understandings of HCs life stages and dynamics, and allowed valuable insights on their role in photocatalysis. However, to date it is hard to extricate within the plethora of methods developed and the growing number of applications they found. The purpose of this review is to survey the approaches employed so far to model HCs photophysics, rationalizing and classifying the different studies in terms of modelization, theoretical approaches, and approximations.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"471 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s41524-024-01406-3
Huan Ma, Honghui Shang, Jinlong Yang
The neural-network quantum states (NNQS) method is rapidly emerging as a powerful tool in quantum mechanisms. While significant advancements have been achieved in simulating simple molecules using NNQS, the ab initio simulation of complex solid-state materials remains challenging. Here in this work, we have adopted the periodic density matrix embedding theory to extend the NNQS method to deal with complex solid-state systems. Our approach notably reduces the computational problem size while maintaining high accuracy. We have validated the accuracy and efficiency of our method against traditional methodologies and experimental data in extended systems, and have investigated the magnetic ordering and charge density wave state in transition metal compounds. The findings from our research indicate that the integration of quantum embedding with intuitive chemical fragmentation can significantly enhance the NNQS simulation of realistic materials.
{"title":"Quantum embedding method with transformer neural network quantum states for strongly correlated materials","authors":"Huan Ma, Honghui Shang, Jinlong Yang","doi":"10.1038/s41524-024-01406-3","DOIUrl":"https://doi.org/10.1038/s41524-024-01406-3","url":null,"abstract":"<p>The neural-network quantum states (NNQS) method is rapidly emerging as a powerful tool in quantum mechanisms. While significant advancements have been achieved in simulating simple molecules using NNQS, the ab initio simulation of complex solid-state materials remains challenging. Here in this work, we have adopted the periodic density matrix embedding theory to extend the NNQS method to deal with complex solid-state systems. Our approach notably reduces the computational problem size while maintaining high accuracy. We have validated the accuracy and efficiency of our method against traditional methodologies and experimental data in extended systems, and have investigated the magnetic ordering and charge density wave state in transition metal compounds. The findings from our research indicate that the integration of quantum embedding with intuitive chemical fragmentation can significantly enhance the NNQS simulation of realistic materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1038/s41524-024-01408-1
Samuel P. Gleason, Deyu Lu, Jim Ciston
Electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) provide detailed information about bonding, distributions and locations of atoms, and their coordination numbers and oxidation states. However, analysis of XAS/EELS data often relies on matching an unknown experimental sample to a series of simulated or experimental standard samples. This limits analysis throughput and the ability to extract quantitative information from a sample. In this work, we have trained a random forest model capable of predicting the oxidation state of copper based on its L-edge spectrum. Our model attains an R2 score of 0.85 and a root mean square error of 0.24 on simulated data. It has also successfully predicted experimental L-edge EELS spectra taken in this work and XAS spectra extracted from the literature. We further demonstrate the utility of this model by predicting simulated and experimental spectra of mixed valence samples generated by this work. This model can be integrated into a real-time EELS/XAS analysis pipeline on mixtures of copper-containing materials of unknown composition and oxidation state. By expanding the training data, this methodology can be extended to data-driven spectral analysis of a broad range of materials.
电子能量损失光谱(EELS)和 X 射线吸收光谱(XAS)可提供有关成键、原子分布和位置及其配位数和氧化态的详细信息。然而,XAS/EELS 数据分析通常依赖于将未知实验样品与一系列模拟或实验标准样品进行匹配。这限制了分析吞吐量和从样品中提取定量信息的能力。在这项工作中,我们训练了一个随机森林模型,该模型能够根据铜的 L 边光谱预测铜的氧化态。我们的模型在模拟数据上的 R2 得分为 0.85,均方根误差为 0.24。它还成功地预测了本研究中的实验 L 边 EELS 光谱和从文献中提取的 XAS 光谱。我们通过预测本研究中生成的混合价样品的模拟和实验光谱,进一步证明了该模型的实用性。该模型可集成到实时 EELS/XAS 分析管道中,用于分析成分和氧化态未知的含铜混合物。通过扩展训练数据,该方法可扩展到对多种材料进行数据驱动的光谱分析。
{"title":"Prediction of the Cu oxidation state from EELS and XAS spectra using supervised machine learning","authors":"Samuel P. Gleason, Deyu Lu, Jim Ciston","doi":"10.1038/s41524-024-01408-1","DOIUrl":"https://doi.org/10.1038/s41524-024-01408-1","url":null,"abstract":"<p>Electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) provide detailed information about bonding, distributions and locations of atoms, and their coordination numbers and oxidation states. However, analysis of XAS/EELS data often relies on matching an unknown experimental sample to a series of simulated or experimental standard samples. This limits analysis throughput and the ability to extract quantitative information from a sample. In this work, we have trained a random forest model capable of predicting the oxidation state of copper based on its L-edge spectrum. Our model attains an <i>R</i><sup>2</sup> score of 0.85 and a root mean square error of 0.24 on simulated data. It has also successfully predicted experimental L-edge EELS spectra taken in this work and XAS spectra extracted from the literature. We further demonstrate the utility of this model by predicting simulated and experimental spectra of mixed valence samples generated by this work. This model can be integrated into a real-time EELS/XAS analysis pipeline on mixtures of copper-containing materials of unknown composition and oxidation state. By expanding the training data, this methodology can be extended to data-driven spectral analysis of a broad range of materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1038/s41524-024-01394-4
Yifeng Tian, Soumendu Bagchi, Liam Myhill, Giacomo Po, Enrique Martinez, Yen Ting Lin, Nithin Mathew, Danny Perez
Dislocation mobility, which dictates the response of dislocations to an applied stress, is a fundamental property of crystalline materials that governs the evolution of plastic deformation. Traditional approaches for deriving mobility laws rely on phenomenological models of the underlying physics, whose free parameters are in turn fitted to a small number of intuition-driven atomic scale simulations under varying conditions of temperature and stress. This tedious and time-consuming approach becomes particularly cumbersome for materials with complex dependencies on stress, temperature, and local environment, such as body-centered cubic crystals (BCC) metals and alloys. In this paper, we present a novel, uncertainty quantification-driven active learning paradigm for learning dislocation mobility laws from automated high-throughput large-scale molecular dynamics simulations, using Graph Neural Networks (GNN) with a physics-informed architecture. We demonstrate that this Physics-informed Graph Neural Network (PI-GNN) framework captures the underlying physics more accurately compared to existing phenomenological mobility laws in BCC metals.
{"title":"Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning","authors":"Yifeng Tian, Soumendu Bagchi, Liam Myhill, Giacomo Po, Enrique Martinez, Yen Ting Lin, Nithin Mathew, Danny Perez","doi":"10.1038/s41524-024-01394-4","DOIUrl":"https://doi.org/10.1038/s41524-024-01394-4","url":null,"abstract":"<p>Dislocation mobility, which dictates the response of dislocations to an applied stress, is a fundamental property of crystalline materials that governs the evolution of plastic deformation. Traditional approaches for deriving mobility laws rely on phenomenological models of the underlying physics, whose free parameters are in turn fitted to a small number of intuition-driven atomic scale simulations under varying conditions of temperature and stress. This tedious and time-consuming approach becomes particularly cumbersome for materials with complex dependencies on stress, temperature, and local environment, such as body-centered cubic crystals (BCC) metals and alloys. In this paper, we present a novel, uncertainty quantification-driven active learning paradigm for learning dislocation mobility laws from automated high-throughput large-scale molecular dynamics simulations, using Graph Neural Networks (GNN) with a physics-informed architecture. We demonstrate that this Physics-informed Graph Neural Network (PI-GNN) framework captures the underlying physics more accurately compared to existing phenomenological mobility laws in BCC metals.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"32 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1038/s41524-024-01393-5
Killian Sheriff, Yifan Cao, Rodrigo Freitas
Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry–microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren–Cowley parameters) make only partial use of the complete chemical and structural information contained in local chemical motifs. Here we introduce a framework based on E(3)-equivariant graph neural networks that is capable of completely identifying chemical motifs in arbitrary crystalline structures with any number of chemical elements. This approach naturally leads to a proper information-theoretic measure for quantifying chemical short-range order (SRO) in chemically complex materials and a reduced representation of the chemical motif space. Our framework enables the correlation of any per-atom property with their corresponding local chemical motif, thereby enabling the exploration of structure–property relationships in chemically complex materials. Using the MoTaNbTi high-entropy alloy as a test system, we demonstrate the versatility of this approach by evaluating the lattice strain associated with each chemical motif, and computing the temperature dependence of chemical-fluctuations length scale.
{"title":"Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks","authors":"Killian Sheriff, Yifan Cao, Rodrigo Freitas","doi":"10.1038/s41524-024-01393-5","DOIUrl":"https://doi.org/10.1038/s41524-024-01393-5","url":null,"abstract":"<p>Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry–microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren–Cowley parameters) make only partial use of the complete chemical and structural information contained in local chemical motifs. Here we introduce a framework based on E(3)-equivariant graph neural networks that is capable of completely identifying chemical motifs in arbitrary crystalline structures with any number of chemical elements. This approach naturally leads to a proper information-theoretic measure for quantifying chemical short-range order (SRO) in chemically complex materials and a reduced representation of the chemical motif space. Our framework enables the correlation of any per-atom property with their corresponding local chemical motif, thereby enabling the exploration of structure–property relationships in chemically complex materials. Using the MoTaNbTi high-entropy alloy as a test system, we demonstrate the versatility of this approach by evaluating the lattice strain associated with each chemical motif, and computing the temperature dependence of chemical-fluctuations length scale.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}