首页 > 最新文献

npj Computational Materials最新文献

英文 中文
Noise2Void for denoising atomic resolution scanning transmission electron microscopy images Noise2Void用于原子分辨率扫描透射电子显微镜图像去噪
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-13 DOI: 10.1038/s41524-025-01939-1
William Thornley, Sam Sullivan-Allsop, Rongsheng Cai, Nick Clark, Roman Gorbachev, Sarah J. Haigh
The Noise2Void technique is demonstrated for successful denoising of atomic resolution scanning transmission electron microscopy (STEM) images. The technique is applied to denoising atomic resolution images and videos of gold adatoms on a graphene surface within a graphene liquid-cell, with the denoised experimental data qualitatively demonstrating improved visibility of both the Au adatoms and the graphene lattice. The denoising performance is quantified by comparison to similar simulated data and the approach is found to significantly outperform both total variation and simple Gaussian blurring. Compared to other denoising methods, the Noise2Void technique has the combined advantages that it requires no manual intervention during training or denoising, no prior knowledge of the sample and is compatible with real-time data acquisition rates of at least 45 frames per second.
Noise2Void技术用于原子分辨率扫描透射电子显微镜(STEM)图像的成功去噪。该技术被用于去噪石墨烯液体电池中石墨烯表面上金原子的原子分辨率图像和视频,去噪后的实验数据定性地证明了金原子和石墨烯晶格的可见性得到了提高。通过与类似模拟数据的比较,量化了该方法的降噪性能,发现该方法的降噪性能明显优于总变差和简单高斯模糊。与其他去噪方法相比,Noise2Void技术的综合优势在于,它在训练或去噪过程中不需要人工干预,不需要对样本的先验知识,并且与至少45帧/秒的实时数据采集速率兼容。
{"title":"Noise2Void for denoising atomic resolution scanning transmission electron microscopy images","authors":"William Thornley, Sam Sullivan-Allsop, Rongsheng Cai, Nick Clark, Roman Gorbachev, Sarah J. Haigh","doi":"10.1038/s41524-025-01939-1","DOIUrl":"https://doi.org/10.1038/s41524-025-01939-1","url":null,"abstract":"The Noise2Void technique is demonstrated for successful denoising of atomic resolution scanning transmission electron microscopy (STEM) images. The technique is applied to denoising atomic resolution images and videos of gold adatoms on a graphene surface within a graphene liquid-cell, with the denoised experimental data qualitatively demonstrating improved visibility of both the Au adatoms and the graphene lattice. The denoising performance is quantified by comparison to similar simulated data and the approach is found to significantly outperform both total variation and simple Gaussian blurring. Compared to other denoising methods, the Noise2Void technique has the combined advantages that it requires no manual intervention during training or denoising, no prior knowledge of the sample and is compatible with real-time data acquisition rates of at least 45 frames per second.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"52 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physically interpretable interatomic potentials via symbolic regression and reinforcement learning 物理上可解释的原子间势通过符号回归和强化学习
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-13 DOI: 10.1038/s41524-025-01952-4
Bilvin Varughese, Troy D. Loeffler, Suvo Banik, Aditya Koneru, Sukriti Manna, Karthik Balasubramanian, Rohit Batra, Mathew J. Cherukara, Orcun Yildiz, Tom Peterka, Bobby G. Sumpter, Subramanian K.R.S. Sankaranarayanan
The development of next-generation molecular simulation models requires moving beyond predefined functional forms toward machine learning (ML) techniques that directly capture multiscale physics. Here, we demonstrate such an approach using symbolic regression (SR) with equation learner networks and a reinforcement learning search engine to derive interpretable equations for interatomic interactions. Training data were generated through nested ensemble sampling with density functional theory (DFT) energetics, spanning crystalline to highly disordered states. The optimization of the learner network employed continuous-action Monte Carlo Tree Search (MCTS) combined with gradient descent, enabling efficient exploration of function space. For copper as a representative transition metal, an unconstrained search produced models that outperformed fixed-form Sutton–Chen EAM potentials. The SR-derived models (SR1 and SR2) reproduced key material properties—lattice constants, cohesive energies, equations of state, elastic constants, phonon dispersion, defect formation energies, surface/bulk energetics, and phase transformation with significantly improved accuracy. Furthermore, stringent melting simulations using two-phase solid-amorphous interfaces confirmed that SR models accurately capture the interplay of vibrational entropy, cohesive energy, and structural dynamics, surpassing SC-EAM in both qualitative and quantitative predictions. This highlights the potential of SR to deliver fast, accurate, flexible, and physically meaningful potentials, advancing predictive modeling across scales.
下一代分子模拟模型的发展需要超越预定义的功能形式,转向直接捕获多尺度物理的机器学习(ML)技术。在这里,我们展示了这样一种方法,使用符号回归(SR)与方程学习网络和强化学习搜索引擎来推导原子间相互作用的可解释方程。训练数据通过密度泛函理论(DFT)能量学的嵌套集合采样生成,从晶体态到高度无序态。学习网络的优化采用连续动作蒙特卡罗树搜索(MCTS)与梯度下降相结合,实现了对函数空间的高效探索。对于铜作为代表性过渡金属,无约束搜索产生的模型优于固定形式的Sutton-Chen EAM电位。sr衍生的模型(SR1和SR2)以显著提高的精度再现了关键的材料性质——晶格常数、内聚能、状态方程、弹性常数、声子色散、缺陷形成能、表面/体能量和相变。此外,采用两相固体-非晶态界面进行的严格熔融模拟证实,SR模型准确地捕获了振动熵、内聚能和结构动力学的相互作用,在定性和定量预测方面都优于SC-EAM。这凸显了SR在提供快速、准确、灵活和物理上有意义的电位方面的潜力,推动了跨尺度的预测建模。
{"title":"Physically interpretable interatomic potentials via symbolic regression and reinforcement learning","authors":"Bilvin Varughese, Troy D. Loeffler, Suvo Banik, Aditya Koneru, Sukriti Manna, Karthik Balasubramanian, Rohit Batra, Mathew J. Cherukara, Orcun Yildiz, Tom Peterka, Bobby G. Sumpter, Subramanian K.R.S. Sankaranarayanan","doi":"10.1038/s41524-025-01952-4","DOIUrl":"https://doi.org/10.1038/s41524-025-01952-4","url":null,"abstract":"The development of next-generation molecular simulation models requires moving beyond predefined functional forms toward machine learning (ML) techniques that directly capture multiscale physics. Here, we demonstrate such an approach using symbolic regression (SR) with equation learner networks and a reinforcement learning search engine to derive interpretable equations for interatomic interactions. Training data were generated through nested ensemble sampling with density functional theory (DFT) energetics, spanning crystalline to highly disordered states. The optimization of the learner network employed continuous-action Monte Carlo Tree Search (MCTS) combined with gradient descent, enabling efficient exploration of function space. For copper as a representative transition metal, an unconstrained search produced models that outperformed fixed-form Sutton–Chen EAM potentials. The SR-derived models (SR1 and SR2) reproduced key material properties—lattice constants, cohesive energies, equations of state, elastic constants, phonon dispersion, defect formation energies, surface/bulk energetics, and phase transformation with significantly improved accuracy. Furthermore, stringent melting simulations using two-phase solid-amorphous interfaces confirmed that SR models accurately capture the interplay of vibrational entropy, cohesive energy, and structural dynamics, surpassing SC-EAM in both qualitative and quantitative predictions. This highlights the potential of SR to deliver fast, accurate, flexible, and physically meaningful potentials, advancing predictive modeling across scales.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"52 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145956350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating contact-limited scaling in sub-15-nm TMD FETs from first-principles 从第一性原理研究sub- 15nm TMD fet的接触限制缩放
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-10 DOI: 10.1038/s41524-025-01947-1
Kuan-Bo Lin, Hui-Ting Liu, Shin-Yuan Wang, Shu-Jui Chang, Chao-Cheng Kaun, Chenming Hu
In this article, we present a first-principles field-effect transistors (FETs) contact study based on density functional theory and the non-equilibrium Green’s function method. We estimate device performance for three transition-metal-dichalcogenide (TMD) channel materials (WSe 2 , WS 2 , and MoS 2 ), including metal contacts (Ni) at source and drain for the first time. The results show that the variation in R c has less impact on I ON and I OFF at a given V DD than the variation in subthreshold swing ( SS ; with differences exceeding 30 mV/dec), suggesting SS may be more sensitive to the contacting material choice than previously realized at gate lengths below 15 nm. Among the channel and contact material combinations studied, Ni/WSe 2 FET leads to the best short-channel device performance. The quantum transport calculation shows the highest density of charge accumulation at the Ni/WSe 2 contact edge. Inspired by this first-principles study, we performed X-ray photoelectron spectroscopy and verified the bonding strength at the Ni/WSe 2 contact to be stronger than Ni/WS 2 and Ni/MoS 2 contacts. This supports the theoretical finding that the contact/channel materials need to be chosen to optimize SS and I ON in short-channel TMD FETs.
本文提出了一种基于密度泛函理论和非平衡格林函数方法的第一原理场效应晶体管(fet)接触研究方法。我们首次评估了三种过渡金属-二硫化物(TMD)通道材料(WSe 2、WS 2和MoS 2)的器件性能,包括源极和漏极的金属触点(Ni)。结果表明,在给定的电压DD下,R c的变化对I on和I OFF的影响小于亚阈值摆幅(SS,差异超过30 mV/dec)的变化,这表明SS对接触材料的选择可能比之前在小于15 nm的栅极长度下实现的更敏感。在所研究的沟道和触点材料组合中,Ni/ wse2 FET具有最佳的短沟道器件性能。量子输运计算表明,Ni/ wse2接触边的电荷积累密度最高。受这一第一性原理研究的启发,我们进行了x射线光电子能谱分析,并验证了Ni/WSe 2接触点的键合强度比Ni/WS 2和Ni/MoS 2接触点强。这支持了理论发现,即需要选择接触/沟道材料来优化短沟道TMD fet中的SS和I - ON。
{"title":"Investigating contact-limited scaling in sub-15-nm TMD FETs from first-principles","authors":"Kuan-Bo Lin, Hui-Ting Liu, Shin-Yuan Wang, Shu-Jui Chang, Chao-Cheng Kaun, Chenming Hu","doi":"10.1038/s41524-025-01947-1","DOIUrl":"https://doi.org/10.1038/s41524-025-01947-1","url":null,"abstract":"In this article, we present a first-principles field-effect transistors (FETs) contact study based on density functional theory and the non-equilibrium Green’s function method. We estimate device performance for three transition-metal-dichalcogenide (TMD) channel materials (WSe <jats:sub>2</jats:sub> , WS <jats:sub>2</jats:sub> , and MoS <jats:sub>2</jats:sub> ), including metal contacts (Ni) at source and drain for the first time. The results show that the variation in <jats:italic>R</jats:italic> <jats:sub> <jats:italic>c</jats:italic> </jats:sub> has less impact on <jats:italic>I</jats:italic> <jats:sub> <jats:italic>ON</jats:italic> </jats:sub> and <jats:italic>I</jats:italic> <jats:sub> <jats:italic>OFF</jats:italic> </jats:sub> at a given V <jats:sub>DD</jats:sub> than the variation in subthreshold swing ( <jats:italic>SS</jats:italic> ; with differences exceeding 30 mV/dec), suggesting <jats:italic>SS</jats:italic> may be more sensitive to the contacting material choice than previously realized at gate lengths below 15 nm. Among the channel and contact material combinations studied, Ni/WSe <jats:sub>2</jats:sub> FET leads to the best short-channel device performance. The quantum transport calculation shows the highest density of charge accumulation at the Ni/WSe <jats:sub>2</jats:sub> contact edge. Inspired by this first-principles study, we performed X-ray photoelectron spectroscopy and verified the bonding strength at the Ni/WSe <jats:sub>2</jats:sub> contact to be stronger than Ni/WS <jats:sub>2</jats:sub> and Ni/MoS <jats:sub>2</jats:sub> contacts. This supports the theoretical finding that the contact/channel materials need to be chosen to optimize <jats:italic>SS</jats:italic> and <jats:italic>I</jats:italic> <jats:sub> <jats:italic>ON</jats:italic> </jats:sub> in short-channel TMD FETs.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"47 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTST: a polar topological structure toolkit and database PTST:一个极拓扑结构工具包和数据库
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-10 DOI: 10.1038/s41524-025-01951-5
Guanshihan Du, Yuanyuan Yao, Linming Zhou, Yuhui Huang, Mohit Tanwani, He Tian, Yu Chen, Kaishi Song, Juan Li, Yunjun Gao, Sujit Das, Yongjun Wu, Lu Chen, Zijian Hong
Ferroelectric oxide superlattices with complex topological structures, such as vortices, skyrmions, and flux-closure domains, have garnered significant attention due to their fascinating properties and wide potential applications. However, progress in this field is often impeded by challenges such as limited data-sharing mechanisms, redundant data generation efforts, high barriers between simulations and experiments, and the underutilization of existing datasets. To address these challenges, we have created the “Polar Topological Structure Toolkit and Database” (PTST). This community-driven repository compiles both standard datasets from high-throughput phase-field simulations and user-submitted nonstandard datasets. The PTST utilizes a Global–Local Transformer (GL-Transformer) to classify polarization states by dividing each sample into spatial sub-blocks and extracting hierarchical features, resulting in ten different polar structure categories. Through the PTST web interface, users can easily retrieve polarization data based on specific parameters or by matching experimental images. Additionally, a Binary Phase Diagram Generator allows users to create strain and electric field phase diagrams within seconds. By providing ready-to-use configurations and integrated machine-learning workflows, PTST significantly reduces computational load, streamlines reproducible research, and promotes deeper insights into ferroelectric topological transitions.
具有复杂拓扑结构的铁电氧化物超晶格,如涡旋、skyrmions和通量闭合域,由于其迷人的性质和广泛的潜在应用而引起了人们的极大关注。然而,这一领域的进展往往受到诸如有限的数据共享机制、冗余的数据生成工作、模拟和实验之间的高障碍以及现有数据集利用不足等挑战的阻碍。为了应对这些挑战,我们创建了“极地拓扑结构工具包和数据库”(PTST)。这个社区驱动的存储库编译来自高通量相场模拟的标准数据集和用户提交的非标准数据集。PTST利用全局-局部变压器(GL-Transformer)将每个样本划分为空间子块并提取层次特征,从而对极化状态进行分类,得到10种不同的极性结构类别。通过PTST网络界面,用户可以根据特定参数或通过匹配实验图像轻松检索极化数据。此外,二进制相位图生成器允许用户在几秒钟内创建应变和电场相位图。通过提供现成的配置和集成的机器学习工作流程,PTST显着降低了计算负载,简化了可重复的研究,并促进了对铁电拓扑转变的更深入了解。
{"title":"PTST: a polar topological structure toolkit and database","authors":"Guanshihan Du, Yuanyuan Yao, Linming Zhou, Yuhui Huang, Mohit Tanwani, He Tian, Yu Chen, Kaishi Song, Juan Li, Yunjun Gao, Sujit Das, Yongjun Wu, Lu Chen, Zijian Hong","doi":"10.1038/s41524-025-01951-5","DOIUrl":"https://doi.org/10.1038/s41524-025-01951-5","url":null,"abstract":"Ferroelectric oxide superlattices with complex topological structures, such as vortices, skyrmions, and flux-closure domains, have garnered significant attention due to their fascinating properties and wide potential applications. However, progress in this field is often impeded by challenges such as limited data-sharing mechanisms, redundant data generation efforts, high barriers between simulations and experiments, and the underutilization of existing datasets. To address these challenges, we have created the “Polar Topological Structure Toolkit and Database” (PTST). This community-driven repository compiles both standard datasets from high-throughput phase-field simulations and user-submitted nonstandard datasets. The PTST utilizes a Global–Local Transformer (GL-Transformer) to classify polarization states by dividing each sample into spatial sub-blocks and extracting hierarchical features, resulting in ten different polar structure categories. Through the PTST web interface, users can easily retrieve polarization data based on specific parameters or by matching experimental images. Additionally, a Binary Phase Diagram Generator allows users to create strain and electric field phase diagrams within seconds. By providing ready-to-use configurations and integrated machine-learning workflows, PTST significantly reduces computational load, streamlines reproducible research, and promotes deeper insights into ferroelectric topological transitions.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"39 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for phase prediction of high entropy carbide ceramics from imbalanced data 基于不平衡数据的高熵碳化物陶瓷相预测的机器学习
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-10 DOI: 10.1038/s41524-025-01873-2
Xuemeng Zhang, Jia Sun, Yuyu Zhang, Kaifei Fan, Zhixiang Zhang, Yujia Zhang, Keke Wu, Laura Feldmann, Lianwei Wu, Ralf Riedel, Hejun Li
{"title":"Machine learning for phase prediction of high entropy carbide ceramics from imbalanced data","authors":"Xuemeng Zhang, Jia Sun, Yuyu Zhang, Kaifei Fan, Zhixiang Zhang, Yujia Zhang, Keke Wu, Laura Feldmann, Lianwei Wu, Ralf Riedel, Hejun Li","doi":"10.1038/s41524-025-01873-2","DOIUrl":"https://doi.org/10.1038/s41524-025-01873-2","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"264 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many-body perturbation theory vs. density functional theory: a systematic benchmark for band gaps of solids 多体微扰理论与密度泛函理论:固体带隙的系统基准
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-10 DOI: 10.1038/s41524-025-01855-4
Max Großmann, Marc Thieme, Malte Grunert, Erich Runge
We benchmark many-body perturbation theory against density functional theory (DFT) for the band gaps of solids. We systematically compare four G W variants— G 0 W 0 using the Godby-Needs plasmon-pole approximation ( G 0 W 0 -PPA), full-frequency quasiparticle G 0 W 0 (QP G 0 W 0 ), full-frequency quasiparticle self-consistent G W (QS G W ), and QS G W augmented with vertex corrections in W (QS $$Ghat{W}$$ G W ̂ )—against the currently best-performing and popular density functionals mBJ and HSE06. Our results show that G 0 W 0 -PPA calculations offer only a marginal accuracy gain over the best DFT methods, however, at a higher cost. Replacing the PPA with a full-frequency integration of the dielectric screening improves the predictions dramatically, almost matching the accuracy of the QS $$Ghat{W}$$ G W ̂ . The QS G W removes starting-point bias, but systematically overestimates experimental gaps by about 15%. Adding vertex corrections to the screened Coulomb interaction, i.e., performing a QS $$Ghat{W}$$ G W ̂ calculation, eliminates the overestimation, producing band gaps that are so accurate that they even reliably flag questionable experimental measurements.
我们对固体带隙的多体微扰理论和密度泛函理论(DFT)进行了基准测试。我们系统地比较了四种gw变体-使用goby - needs等离子体极近似(g0w0 - ppa)的g0w0,全频率准粒子g0w0 (qpg0w0),全频率准粒子自一致gw (QS gw W),以及在W中增强顶点修正的QS gw (QS $$Ghat{W}$$ gw W) -与目前性能最好和最流行的密度泛函数mBJ和HSE06。我们的研究结果表明,g0 w0 -PPA计算只提供一个边际精度增益比最好的DFT方法,然而,在更高的成本。用电介质屏蔽的全频率集成取代PPA大大提高了预测精度,几乎与QS $$Ghat{W}$$ gw´的精度相匹配。QS gw消除了起点偏差,但系统地高估了实验差距约15%. Adding vertex corrections to the screened Coulomb interaction, i.e., performing a QS $$Ghat{W}$$ G W ̂ calculation, eliminates the overestimation, producing band gaps that are so accurate that they even reliably flag questionable experimental measurements.
{"title":"Many-body perturbation theory vs. density functional theory: a systematic benchmark for band gaps of solids","authors":"Max Großmann, Marc Thieme, Malte Grunert, Erich Runge","doi":"10.1038/s41524-025-01855-4","DOIUrl":"https://doi.org/10.1038/s41524-025-01855-4","url":null,"abstract":"We benchmark many-body perturbation theory against density functional theory (DFT) for the band gaps of solids. We systematically compare four <jats:italic>G</jats:italic> <jats:italic>W</jats:italic> variants— <jats:italic>G</jats:italic> <jats:sub>0</jats:sub> <jats:italic>W</jats:italic> <jats:sub>0</jats:sub> using the Godby-Needs plasmon-pole approximation ( <jats:italic>G</jats:italic> <jats:sub>0</jats:sub> <jats:italic>W</jats:italic> <jats:sub>0</jats:sub> -PPA), full-frequency quasiparticle <jats:italic>G</jats:italic> <jats:sub>0</jats:sub> <jats:italic>W</jats:italic> <jats:sub>0</jats:sub> (QP <jats:italic>G</jats:italic> <jats:sub>0</jats:sub> <jats:italic>W</jats:italic> <jats:sub>0</jats:sub> ), full-frequency quasiparticle self-consistent <jats:italic>G</jats:italic> <jats:italic>W</jats:italic> (QS <jats:italic>G</jats:italic> <jats:italic>W</jats:italic> ), and QS <jats:italic>G</jats:italic> <jats:italic>W</jats:italic> augmented with vertex corrections in <jats:italic>W</jats:italic> (QS <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$Ghat{W}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mi>W</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̂</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> )—against the currently best-performing and popular density functionals mBJ and HSE06. Our results show that <jats:italic>G</jats:italic> <jats:sub>0</jats:sub> <jats:italic>W</jats:italic> <jats:sub>0</jats:sub> -PPA calculations offer only a marginal accuracy gain over the best DFT methods, however, at a higher cost. Replacing the PPA with a full-frequency integration of the dielectric screening improves the predictions dramatically, almost matching the accuracy of the QS <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$Ghat{W}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mi>W</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̂</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> . The QS <jats:italic>G</jats:italic> <jats:italic>W</jats:italic> removes starting-point bias, but systematically overestimates experimental gaps by about 15%. Adding vertex corrections to the screened Coulomb interaction, i.e., performing a QS <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$Ghat{W}$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mover> <mml:mrow> <mml:mi>W</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̂</mml:mo> </mml:mrow> </mml:mover> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> calculation, eliminates the overestimation, producing band gaps that are so accurate that they even reliably flag questionable experimental measurements.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"5 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab-initio heat transport in defect-laden quasi-1D systems from a symmetry-adapted perspective 从对称自适应的角度研究含缺陷准一维系统的从头算热输运
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41524-025-01866-1
Yu-Jie Cen, Sandro Wieser, Georg K. H. Madsen, Jesús Carrete
Nanotubes, with their high aspect ratio and tunable thermal conductivities, are promising nanoscale heat-management components. However, their performance is often constrained by thermal resistance arising from structural defects or interfaces. Here, we examine how structural symmetry influences thermal transport through defect-laden sections. We introduce a framework that integrates representation theory with a mode-resolved Green’s function approach, enabling symmetry-resolved analysis of phonon transmission in quasi-1D systems. To capture the intrinsic symmetries of such systems and avoid artifacts, we employ line-group theory, which introduces quantum numbers that partition phonon branches into symmetry-defined subsets for clearer mode classification. Force constants and phonons are obtained using an Allegro-based machine-learning potential with near-ab initio accuracy. Applying this to single- and multi-wall MoS 2 -WS 2 nanotubes, we link transmission probabilities of individual modes to structural symmetry. Counterintuitively, strong symmetry breaking can enhance heat transport by relaxing selection rules and opening additional transmission channels. Molecular dynamics confirms that this behavior persists even when anharmonicity is considered. The fact that higher disorder introduced through defects can enhance thermal transport, and not just suppress it, demonstrates the critical role of symmetry in deciphering the nuances of nanoscale thermal transport.
纳米管具有高宽高比和可调导热性,是一种很有前途的纳米级热管理元件。然而,它们的性能往往受到结构缺陷或界面产生的热阻的限制。在这里,我们研究了结构对称性如何影响通过缺陷加载截面的热传递。我们引入了一个框架,将表示理论与模式分辨格林函数方法相结合,实现了准一维系统中声子传输的对称分辨分析。为了捕捉这些系统的内在对称性并避免伪影,我们采用了线群理论,该理论引入了量子数,将声子分支划分为对称定义的子集,以便更清晰地进行模式分类。使用基于allegro的机器学习潜力获得力常数和声子,具有接近从头计算的精度。将其应用于单壁和多壁MoS 2 - ws 2纳米管,我们将单个模式的传输概率与结构对称性联系起来。与直觉相反,强对称性破缺可以通过放松选择规则和打开额外的传输通道来增强热传递。分子动力学证实,即使考虑到非谐性,这种行为仍然存在。通过缺陷引入的高无序可以增强热输运,而不仅仅是抑制它,这一事实证明了对称性在破译纳米尺度热输运的细微差别方面的关键作用。
{"title":"Ab-initio heat transport in defect-laden quasi-1D systems from a symmetry-adapted perspective","authors":"Yu-Jie Cen, Sandro Wieser, Georg K. H. Madsen, Jesús Carrete","doi":"10.1038/s41524-025-01866-1","DOIUrl":"https://doi.org/10.1038/s41524-025-01866-1","url":null,"abstract":"Nanotubes, with their high aspect ratio and tunable thermal conductivities, are promising nanoscale heat-management components. However, their performance is often constrained by thermal resistance arising from structural defects or interfaces. Here, we examine how structural symmetry influences thermal transport through defect-laden sections. We introduce a framework that integrates representation theory with a mode-resolved Green’s function approach, enabling symmetry-resolved analysis of phonon transmission in quasi-1D systems. To capture the intrinsic symmetries of such systems and avoid artifacts, we employ line-group theory, which introduces quantum numbers that partition phonon branches into symmetry-defined subsets for clearer mode classification. Force constants and phonons are obtained using an Allegro-based machine-learning potential with near-ab initio accuracy. Applying this to single- and multi-wall MoS <jats:sub>2</jats:sub> -WS <jats:sub>2</jats:sub> nanotubes, we link transmission probabilities of individual modes to structural symmetry. Counterintuitively, strong symmetry breaking can enhance heat transport by relaxing selection rules and opening additional transmission channels. Molecular dynamics confirms that this behavior persists even when anharmonicity is considered. The fact that higher disorder introduced through defects can enhance thermal transport, and not just suppress it, demonstrates the critical role of symmetry in deciphering the nuances of nanoscale thermal transport.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"3 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling reliable interatomic potentials to complex nuclear alloys via pretrained atomic models 通过预训练的原子模型缩放复杂核合金的可靠原子间电位
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41524-025-01950-6
Mingxuan Jiang, Biao Xu, Yixin Deng, Shihua Ma, Ji-Jung Kai, Fei Gao, Huiqiu Deng
Next-generation fission and fusion reactors impose unprecedented demands on structural materials, requiring simultaneous resistance to high temperatures, high-dose irradiation, and aggressive corrosion. Designing materials that harness the intrinsic properties of multiple elements and their synergistic interactions has emerged as a key strategy to achieve such integrated performance. To guide this design paradigm, a mechanistic understanding of chemically and structurally complex systems is essential. However, such understanding is currently constrained by the lack of high-fidelity interatomic potentials (IAPs) that enable predictive, large-scale atomistic simulations. Here, we employ, for the first time, a multi-task, physics-informed pretraining strategy with the large atomic model (LAM) to systematically evaluate the construction and predictive capability of IAPs for complex nuclear alloy systems. Using Ta-Nb-W-Mo-V as a representative case, the resulting DPA2-5E model—trained solely on the quinary dataset—significantly outperforms conventional machine learning IAPs, demonstrates superior transferability to lower-order subsystems, and accurately reproduces cascade damage and stress-strain behavior. Furthermore, this approach extends to nuclear-relevant structures and corrosive/oxide environments, enabling high-fidelity IAPs and large-scale simulations at reactor extremes.
下一代裂变和聚变反应堆对结构材料提出了前所未有的要求,要求同时耐高温、高剂量辐射和腐蚀性。设计利用多种元素的内在特性及其协同作用的材料已经成为实现这种综合性能的关键策略。为了指导这种设计范式,对化学和结构复杂系统的机械理解是必不可少的。然而,这种理解目前受到缺乏高保真原子间势(IAPs)的限制,无法实现预测性的大规模原子模拟。在这里,我们首次采用多任务,物理信息预训练策略与大原子模型(LAM)来系统地评估复杂核合金系统的iap的构建和预测能力。以Ta-Nb-W-Mo-V为例,仅在五元数据集上训练得到的DPA2-5E模型显著优于传统的机器学习IAPs,具有向低阶子系统的优越可转移性,并能准确再现级联损伤和应力-应变行为。此外,这种方法可以扩展到核相关结构和腐蚀性/氧化物环境,实现高保真的内部应用程序和反应堆极端情况下的大规模模拟。
{"title":"Scaling reliable interatomic potentials to complex nuclear alloys via pretrained atomic models","authors":"Mingxuan Jiang, Biao Xu, Yixin Deng, Shihua Ma, Ji-Jung Kai, Fei Gao, Huiqiu Deng","doi":"10.1038/s41524-025-01950-6","DOIUrl":"https://doi.org/10.1038/s41524-025-01950-6","url":null,"abstract":"Next-generation fission and fusion reactors impose unprecedented demands on structural materials, requiring simultaneous resistance to high temperatures, high-dose irradiation, and aggressive corrosion. Designing materials that harness the intrinsic properties of multiple elements and their synergistic interactions has emerged as a key strategy to achieve such integrated performance. To guide this design paradigm, a mechanistic understanding of chemically and structurally complex systems is essential. However, such understanding is currently constrained by the lack of high-fidelity interatomic potentials (IAPs) that enable predictive, large-scale atomistic simulations. Here, we employ, for the first time, a multi-task, physics-informed pretraining strategy with the large atomic model (LAM) to systematically evaluate the construction and predictive capability of IAPs for complex nuclear alloy systems. Using Ta-Nb-W-Mo-V as a representative case, the resulting DPA2-5E model—trained solely on the quinary dataset—significantly outperforms conventional machine learning IAPs, demonstrates superior transferability to lower-order subsystems, and accurately reproduces cascade damage and stress-strain behavior. Furthermore, this approach extends to nuclear-relevant structures and corrosive/oxide environments, enabling high-fidelity IAPs and large-scale simulations at reactor extremes.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"85 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical transfer learning: an agile and equitable strategy for machine-learning interatomic models 分层迁移学习:机器学习原子间模型的敏捷和公平策略
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41524-025-01863-4
Rebecca K. Lindsey, Awwal D. Oladipupo, Sorin Bastea, Bradley A. Steele, I-Feng W. Kuo, Nir Goldman
{"title":"Hierarchical transfer learning: an agile and equitable strategy for machine-learning interatomic models","authors":"Rebecca K. Lindsey, Awwal D. Oladipupo, Sorin Bastea, Bradley A. Steele, I-Feng W. Kuo, Nir Goldman","doi":"10.1038/s41524-025-01863-4","DOIUrl":"https://doi.org/10.1038/s41524-025-01863-4","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"82 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials 利用主动训练矩张量势揭示Cs在非晶和多晶SiC中的扩散机制
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-01-09 DOI: 10.1038/s41524-025-01944-4
Jiaxuan Li, Nikita Rybin, Taowei Wang, Alexander Shapeev, Xiaotong Chen, Bing Liu
{"title":"Revealing the diffusion mechanism of Cs in amorphous and polycrystalline SiC by actively trained moment tensor potentials","authors":"Jiaxuan Li, Nikita Rybin, Taowei Wang, Alexander Shapeev, Xiaotong Chen, Bing Liu","doi":"10.1038/s41524-025-01944-4","DOIUrl":"https://doi.org/10.1038/s41524-025-01944-4","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"252 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145938274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1