Pub Date : 2024-10-24DOI: 10.1038/s41524-024-01424-1
Ebert Alvares, Kai Sellschopp, Bo Wang, ShinYoung Kang, Thomas Klassen, Brandon C. Wood, Tae Wook Heo, Paul Jerabek, Claudio Pistidda
The quantification of interphase properties between metals and their corresponding hydrides is crucial for modeling the thermodynamics and kinetics of the hydrogenation processes in solid-state hydrogen storage materials. In particular, interphase boundary energies assume a pivotal role in determining the kinetics of nucleation, growth, and coarsening of hydrides, alongside accompanying morphological evolution during hydrogenation. The total interphase energy arises from both chemical bonding and mechanical strains in these solid-state systems. Since these contributions are usually coupled, it is challenging to distinguish via conventional computational approaches. Here, a comprehensive atomistic modeling methodology is developed to decouple chemical and mechanical energy contributions using first-principles calculations, of which feasibility is demonstrated by quantifying chemical and elastic strain energies of key interfaces within the FeTi metal-hydride system. Derived materials parameters are then employed for mesoscopic micromechanical analysis, predicting crystallographic orientations in line with experimental observations. The multiscale approach outlined verifies the importance of the chemo-mechanical interplay in the morphological evolution of growing hydride phases, and can be generalized to investigate other systems. In addition, it can streamline the design of atomistic models for the quantitative evaluation of interphase properties between dissimilar phases and allow for efficient predictions of their preferred phase boundary orientations.
{"title":"Multiscale modeling of metal-hydride interphases—quantification of decoupled chemo-mechanical energies","authors":"Ebert Alvares, Kai Sellschopp, Bo Wang, ShinYoung Kang, Thomas Klassen, Brandon C. Wood, Tae Wook Heo, Paul Jerabek, Claudio Pistidda","doi":"10.1038/s41524-024-01424-1","DOIUrl":"https://doi.org/10.1038/s41524-024-01424-1","url":null,"abstract":"<p>The quantification of interphase properties between metals and their corresponding hydrides is crucial for modeling the thermodynamics and kinetics of the hydrogenation processes in solid-state hydrogen storage materials. In particular, interphase boundary energies assume a pivotal role in determining the kinetics of nucleation, growth, and coarsening of hydrides, alongside accompanying morphological evolution during hydrogenation. The total interphase energy arises from both chemical bonding and mechanical strains in these solid-state systems. Since these contributions are usually coupled, it is challenging to distinguish via conventional computational approaches. Here, a comprehensive atomistic modeling methodology is developed to decouple chemical and mechanical energy contributions using first-principles calculations, of which feasibility is demonstrated by quantifying chemical and elastic strain energies of key interfaces within the FeTi metal-hydride system. Derived materials parameters are then employed for mesoscopic micromechanical analysis, predicting crystallographic orientations in line with experimental observations. The multiscale approach outlined verifies the importance of the chemo-mechanical interplay in the morphological evolution of growing hydride phases, and can be generalized to investigate other systems. In addition, it can streamline the design of atomistic models for the quantitative evaluation of interphase properties between dissimilar phases and allow for efficient predictions of their preferred phase boundary orientations.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"212 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1038/s41524-024-01433-0
Ryong-Gyu Lee, Yong-Hoon Kim
The self-consistent field (SCF) generation of the three-dimensional (3D) electron density distribution (ρ) represents a fundamental aspect of density functional theory (DFT) and related first-principles calculations, and how one can shorten or bypass the SCF loop represents a critical question in electronic structure theory from both practical and fundamental standpoints. Herein, a machine learning strategy, DeepSCF, is presented in which the map between the SCF ρ and the initial guess density (ρ0) constructed by the summation of neutral atomic densities is learned using 3D convolutional neural networks (CNNs). High accuracy and transferability of DeepSCF are achieved by first encoding ρ0 on a 3D grid and then expanding the input features to include atomic fingerprints beyond ρ0. The prediction of the residual density (δρ) rather than ρ itself is targeted, and given that δρ is indicative of chemical bonding information, a dataset of small-sized organic molecules featuring diverse bonding characters is adopted. The fidelity of DeepSCF is finally enhanced by subjecting the atomic geometries of the dataset to random rotations and strains. The effectiveness of DeepSCF is demonstrated using a complex carbon nanotube-based DNA sequencer model. This work evidences that the nearsightedness in electronic structure can be optimally represented via the spatial locality in CNNs, offering insight into the success of various machine learning-based atomistic materials simulations.
{"title":"Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints","authors":"Ryong-Gyu Lee, Yong-Hoon Kim","doi":"10.1038/s41524-024-01433-0","DOIUrl":"https://doi.org/10.1038/s41524-024-01433-0","url":null,"abstract":"<p>The self-consistent field (SCF) generation of the three-dimensional (3D) electron density distribution (<i>ρ</i>) represents a fundamental aspect of density functional theory (DFT) and related first-principles calculations, and how one can shorten or bypass the SCF loop represents a critical question in electronic structure theory from both practical and fundamental standpoints. Herein, a machine learning strategy, DeepSCF, is presented in which the map between the SCF <i>ρ</i> and the initial guess density (<i>ρ</i><sub>0</sub>) constructed by the summation of neutral atomic densities is learned using 3D convolutional neural networks (CNNs). High accuracy and transferability of DeepSCF are achieved by first encoding <i>ρ</i><sub>0</sub> on a 3D grid and then expanding the input features to include atomic fingerprints beyond <i>ρ</i><sub>0</sub>. The prediction of the residual density (δ<i>ρ</i>) rather than <i>ρ</i> itself is targeted, and given that δ<i>ρ</i> is indicative of chemical bonding information, a dataset of small-sized organic molecules featuring diverse bonding characters is adopted. The fidelity of DeepSCF is finally enhanced by subjecting the atomic geometries of the dataset to random rotations and strains. The effectiveness of DeepSCF is demonstrated using a complex carbon nanotube-based DNA sequencer model. This work evidences that the nearsightedness in electronic structure can be optimally represented via the spatial locality in CNNs, offering insight into the success of various machine learning-based atomistic materials simulations.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"30 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41524-024-01434-z
Jiaqi Zhou, Samuel Poncé, Jean-Christophe Charlier
The conversion efficiency from charge current to spin current via the spin Hall effect is evaluated by the spin Hall ratio (SHR). Through state-of-the-art ab initio calculations involving both charge conductivity and spin Hall conductivity, we report the SHRs of the III-V monolayer family, revealing an ultrahigh ratio of 0.58 in the hole-doped GaAs monolayer. In order to find more promising 2D materials, a descriptor for high SHR is proposed and applied to a high-throughput database, which provides the fully relativistic band structures and Wannier Hamiltonians of 216 exfoliable monolayer semiconductors and has been released to the community. Among potential candidates for high SHR, the MXene monolayer Sc2CCl2 is identified with the proposed descriptor and confirmed by computation, demonstrating the descriptor validity for high SHR materials discovery.
通过自旋霍尔效应从电荷电流到自旋电流的转换效率是通过自旋霍尔比(SHR)来评估的。通过涉及电荷电导率和自旋霍尔电导率的最先进的 ab initio 计算,我们报告了 III-V 单层系列的 SHR,发现掺杂空穴的砷化镓单层具有 0.58 的超高比值。为了找到更多有前途的二维材料,我们提出了高SHR的描述符,并将其应用于高通量数据库,该数据库提供了216种可剥离单层半导体的完全相对论能带结构和万尼尔哈密顿,并已向社会发布。在潜在的高SHR候选材料中,MXene单层Sc2CCl2被提出的描述符识别出来,并通过计算得到证实,证明了描述符在发现高SHR材料方面的有效性。
{"title":"Enhanced spin Hall ratio in two-dimensional semiconductors","authors":"Jiaqi Zhou, Samuel Poncé, Jean-Christophe Charlier","doi":"10.1038/s41524-024-01434-z","DOIUrl":"https://doi.org/10.1038/s41524-024-01434-z","url":null,"abstract":"<p>The conversion efficiency from charge current to spin current via the spin Hall effect is evaluated by the spin Hall ratio (SHR). Through state-of-the-art ab initio calculations involving both charge conductivity and spin Hall conductivity, we report the SHRs of the III-V monolayer family, revealing an ultrahigh ratio of 0.58 in the hole-doped GaAs monolayer. In order to find more promising 2D materials, a descriptor for high SHR is proposed and applied to a high-throughput database, which provides the fully relativistic band structures and Wannier Hamiltonians of 216 exfoliable monolayer semiconductors and has been released to the community. Among potential candidates for high SHR, the MXene monolayer Sc<sub>2</sub>CCl<sub>2</sub> is identified with the proposed descriptor and confirmed by computation, demonstrating the descriptor validity for high SHR materials discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"67 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1038/s41524-024-01432-1
Hoje Chun, Jaclyn R. Lunger, Jeung Ku Kang, Rafael Gómez-Bombarelli, Byungchan Han
Single-atom catalysts (SACs) with multiple active sites exhibit high activity for a wide range of sluggish reactions, but identifying optimal multimetallic SAC is challenging due to the vast design space. Here, we present a self-driving computational strategy that combines first-principles calculations and equivariant graph neural network (GNN) to explore over 30,000 binary metallic sites with varying combinations of 3d transition metals and different ligand environments for oxygen reduction and evolution reactions (ORR/OER). Active learning facilitates the investigation of the search space by balancing the exploration of unseen atomic structures with the exploitation of the active ones. The GNN learns the chemical environments to capture composition-structure-property relationships for ORR/OER activity and selectivity. The computational predictions of promising Co-Fe, Co-Co, and Co-Zn metal pairs are consistent with the state-of-the-art results of experimental measurements reported in the literature. This approach can be extended to a broader class of multi-element high entropic materials systems.
{"title":"Active learning accelerated exploration of single-atom local environments in multimetallic systems for oxygen electrocatalysis","authors":"Hoje Chun, Jaclyn R. Lunger, Jeung Ku Kang, Rafael Gómez-Bombarelli, Byungchan Han","doi":"10.1038/s41524-024-01432-1","DOIUrl":"https://doi.org/10.1038/s41524-024-01432-1","url":null,"abstract":"<p>Single-atom catalysts (SACs) with multiple active sites exhibit high activity for a wide range of sluggish reactions, but identifying optimal multimetallic SAC is challenging due to the vast design space. Here, we present a self-driving computational strategy that combines first-principles calculations and equivariant graph neural network (GNN) to explore over 30,000 binary metallic sites with varying combinations of 3<i>d</i> transition metals and different ligand environments for oxygen reduction and evolution reactions (ORR/OER). Active learning facilitates the investigation of the search space by balancing the exploration of unseen atomic structures with the exploitation of the active ones. The GNN learns the chemical environments to capture composition-structure-property relationships for ORR/OER activity and selectivity. The computational predictions of promising Co-Fe, Co-Co, and Co-Zn metal pairs are consistent with the state-of-the-art results of experimental measurements reported in the literature. This approach can be extended to a broader class of multi-element high entropic materials systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1038/s41524-024-01426-z
Qin Li, Nihang Fu, Sadman Sadeed Omee, Jianjun Hu
Materials datasets usually contain many redundant (highly similar) materials due to the tinkering approach historically used in material design. This redundancy skews the performance evaluation of machine learning (ML) models when using random splitting, leading to overestimated predictive performance and poor performance on out-of-distribution samples. This issue is well-known in bioinformatics for protein function prediction, where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold. In this paper, we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT, a redundancy reduction algorithm for material datasets. Applying MD-HIT to composition- and structure-based formation energy and band gap prediction problems, we demonstrate that with redundancy control, the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy, but better reflect models’ true prediction capability.
由于材料设计历来采用修修补补的方法,材料数据集通常包含许多冗余(高度相似)材料。在使用随机拆分时,这种冗余会使机器学习(ML)模型的性能评估出现偏差,导致预测性能被高估,并且在非分布样本上的性能不佳。这个问题在生物信息学的蛋白质功能预测中是众所周知的,CD-HIT 等工具通过确保样本间的序列相似性大于给定阈值来减少冗余。在本文中,我们调查了材料科学中用于材料特性预测的被高估的 ML 性能,并提出了 MD-HIT,一种用于材料数据集的冗余减少算法。将 MD-HIT 应用于基于成分和结构的形成能和带隙预测问题,我们证明了在冗余控制下,ML 模型在测试集上的预测性能往往比高冗余度模型的性能相对较低,但能更好地反映模型的真实预测能力。
{"title":"MD-HIT: Machine learning for material property prediction with dataset redundancy control","authors":"Qin Li, Nihang Fu, Sadman Sadeed Omee, Jianjun Hu","doi":"10.1038/s41524-024-01426-z","DOIUrl":"https://doi.org/10.1038/s41524-024-01426-z","url":null,"abstract":"<p>Materials datasets usually contain many redundant (highly similar) materials due to the tinkering approach historically used in material design. This redundancy skews the performance evaluation of machine learning (ML) models when using random splitting, leading to overestimated predictive performance and poor performance on out-of-distribution samples. This issue is well-known in bioinformatics for protein function prediction, where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold. In this paper, we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT, a redundancy reduction algorithm for material datasets. Applying MD-HIT to composition- and structure-based formation energy and band gap prediction problems, we demonstrate that with redundancy control, the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy, but better reflect models’ true prediction capability.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s41524-024-01404-5
Rasmus Fromsejer, Bjørn Maribo-Mogensen, Georgios M. Kontogeorgis, Xiaodong Liang
Crystalline solids play a fundamental role in a host of materials and technologies, ranging from pharmaceuticals to renewable energy. The thermodynamic properties of these solids are crucial determinants of their stability and therefore their behavior. The advent of large density functional theory databases with properties of solids has stimulated research on predictive methods for their thermodynamic properties, especially for the enthalpy of formation ΔfH. Increasingly sophisticated artificial intelligence and machine learning (ML) models have primarily driven development in this field in recent years. However, these models can suffer from lack of generalizability and poor interpretability. In this work, we explore a different route and develop and evaluate a framework for the application of reaction network (RN) theory to the prediction of ΔfH of crystalline solids. For an experimental dataset of 1550 compounds we are able to obtain a mean absolute error w.r.t ΔfH of 29.6 meV atom−1 using the RN approach. This performance is better than existing ML-based predictive methods and close to the experimental uncertainty. Moreover, we show that the RN framework allows for straightforward estimation of the uncertainty of the predictions.
{"title":"Accurate formation enthalpies of solids using reaction networks","authors":"Rasmus Fromsejer, Bjørn Maribo-Mogensen, Georgios M. Kontogeorgis, Xiaodong Liang","doi":"10.1038/s41524-024-01404-5","DOIUrl":"https://doi.org/10.1038/s41524-024-01404-5","url":null,"abstract":"<p>Crystalline solids play a fundamental role in a host of materials and technologies, ranging from pharmaceuticals to renewable energy. The thermodynamic properties of these solids are crucial determinants of their stability and therefore their behavior. The advent of large density functional theory databases with properties of solids has stimulated research on predictive methods for their thermodynamic properties, especially for the enthalpy of formation Δ<sub>f</sub><i>H</i>. Increasingly sophisticated artificial intelligence and machine learning (ML) models have primarily driven development in this field in recent years. However, these models can suffer from lack of generalizability and poor interpretability. In this work, we explore a different route and develop and evaluate a framework for the application of reaction network (RN) theory to the prediction of Δ<sub>f</sub><i>H</i> of crystalline solids. For an experimental dataset of 1550 compounds we are able to obtain a mean absolute error w.r.t Δ<sub>f</sub><i>H</i> of 29.6 meV atom<sup>−1</sup> using the RN approach. This performance is better than existing ML-based predictive methods and close to the experimental uncertainty. Moreover, we show that the RN framework allows for straightforward estimation of the uncertainty of the predictions.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1038/s41524-024-01428-x
Alireza Sadri, Timothy C. Petersen, Emmanuel W. C. Terzoudis-Lumsden, Bryan D. Esser, Joanne Etheridge, Scott D. Findlay
By simultaneously achieving high spatial and angular sampling resolution, four dimensional scanning transmission electron microscopy (4D STEM) is enabling analysis techniques that provide great insight into the atomic structure of materials. Applying these techniques to scientifically and technologically significant beam-sensitive materials remains challenging because the low doses needed to minimise beam damage lead to noisy data. We demonstrate an unsupervised deep learning model that leverages the continuity and coupling between the probe position and the electron scattering distribution to denoise 4D STEM data. By restricting the network complexity it can learn the geometric flow present but not the noise. Through experimental and simulated case studies, we demonstrate that denoising as a preprocessing step enables 4D STEM analysis techniques to succeed at lower doses, broadening the range of materials that can be studied using these powerful structure characterization techniques.
{"title":"Unsupervised deep denoising for four-dimensional scanning transmission electron microscopy","authors":"Alireza Sadri, Timothy C. Petersen, Emmanuel W. C. Terzoudis-Lumsden, Bryan D. Esser, Joanne Etheridge, Scott D. Findlay","doi":"10.1038/s41524-024-01428-x","DOIUrl":"https://doi.org/10.1038/s41524-024-01428-x","url":null,"abstract":"<p>By simultaneously achieving high spatial and angular sampling resolution, four dimensional scanning transmission electron microscopy (4D STEM) is enabling analysis techniques that provide great insight into the atomic structure of materials. Applying these techniques to scientifically and technologically significant beam-sensitive materials remains challenging because the low doses needed to minimise beam damage lead to noisy data. We demonstrate an unsupervised deep learning model that leverages the continuity and coupling between the probe position and the electron scattering distribution to denoise 4D STEM data. By restricting the network complexity it can learn the geometric flow present but not the noise. Through experimental and simulated case studies, we demonstrate that denoising as a preprocessing step enables 4D STEM analysis techniques to succeed at lower doses, broadening the range of materials that can be studied using these powerful structure characterization techniques.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1038/s41524-024-01425-0
Nicolas Roisin, Guillaume Brunin, Gian-Marco Rignanese, Denis Flandre, Jean-Pierre Raskin, Samuel Poncé
Strain engineering is a widely used technique for enhancing the mobility of charge carriers in semiconductors, but its effect is not fully understood. In this work, we perform first-principles calculations to explore the variations of the mobility of electrons and holes in silicon upon deformation by uniaxial strain up to 2% in the [100] crystal direction. We compute the π11 and π12 electron piezoresistances based on the low-strain change of resistivity with temperature in the range 200 K to 400 K, in excellent agreement with experiment. We also predict them for holes which were only measured at room temperature. Remarkably, for electrons in the transverse direction, we predict a minimum room-temperature mobility about 1200 cm2 V−1 s−1 at 0.3% uniaxial tensile strain while we observe a monotonous increase of the longitudinal transport, reaching a value of 2200 cm2 V−1 s−1 at high strain. We confirm these findings experimentally using four-point bending measurements, establishing the reliability of our first-principles calculations. For holes, we find that the transport is almost unaffected by strain up to 0.3% uniaxial tensile strain and then rises significantly, more than doubling at 2% strain. Our findings open new perspectives to boost the mobility by applying a stress in the [100] direction. This is particularly interesting for holes for which shear strain was thought for a long time to be the only way to enhance the mobility.
{"title":"Phonon-limited mobility for electrons and holes in highly-strained silicon","authors":"Nicolas Roisin, Guillaume Brunin, Gian-Marco Rignanese, Denis Flandre, Jean-Pierre Raskin, Samuel Poncé","doi":"10.1038/s41524-024-01425-0","DOIUrl":"https://doi.org/10.1038/s41524-024-01425-0","url":null,"abstract":"<p>Strain engineering is a widely used technique for enhancing the mobility of charge carriers in semiconductors, but its effect is not fully understood. In this work, we perform first-principles calculations to explore the variations of the mobility of electrons and holes in silicon upon deformation by uniaxial strain up to 2% in the [100] crystal direction. We compute the <i>π</i><sub>11</sub> and <i>π</i><sub>12</sub> electron piezoresistances based on the low-strain change of resistivity with temperature in the range 200 K to 400 K, in excellent agreement with experiment. We also predict them for holes which were only measured at room temperature. Remarkably, for electrons in the transverse direction, we predict a minimum room-temperature mobility about 1200 cm<sup>2 </sup>V<sup>−1 </sup>s<sup>−1</sup> at 0.3% uniaxial tensile strain while we observe a monotonous increase of the longitudinal transport, reaching a value of 2200 cm<sup>2 </sup>V<sup>−1 </sup>s<sup>−1</sup> at high strain. We confirm these findings experimentally using four-point bending measurements, establishing the reliability of our first-principles calculations. For holes, we find that the transport is almost unaffected by strain up to 0.3% uniaxial tensile strain and then rises significantly, more than doubling at 2% strain. Our findings open new perspectives to boost the mobility by applying a stress in the [100] direction. This is particularly interesting for holes for which shear strain was thought for a long time to be the only way to enhance the mobility.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1038/s41524-024-01400-9
Mattia Miotto, Lorenzo Monacelli
Interpreting Raman and IR vibrational spectra in complex organic molecules lacking symmetries poses a formidable challenge. In this study, we propose an innovative approach for simulating vibrational spectra and attributing observed peaks to molecular motions, even when highly anharmonic, without the need for computationally expensive ab initio calculations. Our approach stems from the time-dependent stochastic self-consistent harmonic approximation to capture quantum nuclear fluctuations in atom dynamics while describing interatomic interaction through state-of-the-art reactive machine-learning force fields. Finally, we employ an isotropic charge model and a bond capacitor model trained on ab initio data to predict the intensity of IR and Raman signals.
解读缺乏对称性的复杂有机分子的拉曼和红外振动光谱是一项艰巨的挑战。在本研究中,我们提出了一种创新方法,用于模拟振动光谱并将观测到的峰值归因于分子运动,即使是在高度非谐波的情况下,也无需进行计算成本高昂的 ab initio 计算。我们的方法源于随时间变化的随机自洽谐波近似,以捕捉原子动力学中的量子核波动,同时通过最先进的反应式机器学习力场来描述原子间的相互作用。最后,我们采用各向同性电荷模型和在 ab initio 数据基础上训练的键电容模型来预测红外和拉曼信号的强度。
{"title":"Fast prediction of anharmonic vibrational spectra for complex organic molecules","authors":"Mattia Miotto, Lorenzo Monacelli","doi":"10.1038/s41524-024-01400-9","DOIUrl":"https://doi.org/10.1038/s41524-024-01400-9","url":null,"abstract":"<p>Interpreting Raman and IR vibrational spectra in complex organic molecules lacking symmetries poses a formidable challenge. In this study, we propose an innovative approach for simulating vibrational spectra and attributing observed peaks to molecular motions, even when highly anharmonic, without the need for computationally expensive ab initio calculations. Our approach stems from the time-dependent stochastic self-consistent harmonic approximation to capture quantum nuclear fluctuations in atom dynamics while describing interatomic interaction through state-of-the-art reactive machine-learning force fields. Finally, we employ an isotropic charge model and a bond capacitor model trained on ab initio data to predict the intensity of IR and Raman signals.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"62 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1038/s41524-024-01431-2
Bingjia Yang, Pinchen Xie, Roberto Car
Dielectric properties of the hydrogen-bonded ferroelectric crystal KH2PO4 (KDP) differ significantly from those of KD2PO4 (DKDP). It is well established that deuteration affects the interplay of hydrogen-bond switches and heavy ion displacements that underlie the emergence of macroscopic polarization, but a detailed microscopic model is missing. We show that all-atom path integral molecular dynamics simulations can predict the isotope effects, revealing the microscopic mechanism that differentiates KDP and DKDP. Proton tunneling generates phosphate configurations that do not contribute to the polarization. At low temperatures, these quantum dipolar defects are substantial in KDP but negligible in DKDP. These intrinsic defects explain why KDP has lower spontaneous polarization and transition entropy than DKDP. The prominent role of quantum fluctuations in KDP is related to the unusual strength of the hydrogen bonds and should be equally important in other crystals of the KDP family, which exhibit similar isotope effects.
{"title":"Deuteration removes quantum dipolar defects from KDP crystals","authors":"Bingjia Yang, Pinchen Xie, Roberto Car","doi":"10.1038/s41524-024-01431-2","DOIUrl":"https://doi.org/10.1038/s41524-024-01431-2","url":null,"abstract":"<p>Dielectric properties of the hydrogen-bonded ferroelectric crystal KH<sub>2</sub>PO<sub>4</sub> (KDP) differ significantly from those of KD<sub>2</sub>PO<sub>4</sub> (DKDP). It is well established that deuteration affects the interplay of hydrogen-bond switches and heavy ion displacements that underlie the emergence of macroscopic polarization, but a detailed microscopic model is missing. We show that all-atom path integral molecular dynamics simulations can predict the isotope effects, revealing the microscopic mechanism that differentiates KDP and DKDP. Proton tunneling generates phosphate configurations that do not contribute to the polarization. At low temperatures, these quantum dipolar defects are substantial in KDP but negligible in DKDP. These intrinsic defects explain why KDP has lower spontaneous polarization and transition entropy than DKDP. The prominent role of quantum fluctuations in KDP is related to the unusual strength of the hydrogen bonds and should be equally important in other crystals of the KDP family, which exhibit similar isotope effects.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"80 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}