首页 > 最新文献

npj Computational Materials最新文献

英文 中文
Efficient and accurate spatial mixing of machine learned interatomic potentials for materials science 材料科学中高效准确的机器学习原子间势空间混合
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01982-6
Fraser Birks, Matthew Nutter, Thomas D. Swinburne, James R. Kermode
Machine-learned interatomic potentials can offer near first-principles accuracy but are computationally expensive, limiting their application to large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, a CPU- and GPU-compatible package to accelerate simulations by spatially mixing interatomic potentials of different complexities, allowing deployment of modern MLIPs even under restricted computational budgets. We demonstrate our method for ACE, UF3, SNAP and MACE potential architectures and demonstrate how linear ‘cheap’ potentials can be distilled from a given ‘expensive’ potential, allowing close matching in relevant regions of configuration space. The functionality of ML-MIX is demonstrated through tests on point defects in Si, Fe and W-He, in which speedups of up to 11× over ~8000 atoms are demonstrated, without sacrificing accuracy. The scientific potential of ML-MIX is demonstrated via two case studies in W, measuring the mobility of $$b=frac{1}{2}langle 111rangle$$ b = 1 2 111 screw dislocations with ACE/ACE mixing and the implantation of He with MACE/SNAP mixing. The latter returns He reflection coefficients which (for the first time) match experimental observations up to an He incident energy of 80 eV—demonstrating the benefits of deploying state-of-the-art models on large, realistic systems.
机器学习的原子间势可以提供接近第一性原理的精度,但计算成本很高,限制了它们在大规模分子动力学模拟中的应用。受量子力学/分子力学方法的启发,我们提出了ML-MIX,一个CPU和gpu兼容的包,通过空间混合不同复杂性的原子间势来加速模拟,即使在有限的计算预算下也允许部署现代mlip。我们展示了我们的ACE, UF3, SNAP和MACE潜在架构的方法,并展示了如何从给定的“昂贵”潜力中提取线性“便宜”潜力,从而允许在配置空间的相关区域进行密切匹配。ML-MIX的功能通过对Si, Fe和W-He的点缺陷进行测试来证明,其中在不牺牲精度的情况下,在8000个原子上的加速高达11倍。ML-MIX的科学潜力通过W的两个案例研究得到证明,分别是测量ACE/ACE混合下$$b=frac{1}{2}langle 111rangle$$ b = 1 2 < 111 >螺钉位错的迁移率和MACE/SNAP混合下He的植入。后者返回的He反射系数(第一次)与实验观测结果相匹配,达到80 ev的He入射能量,这表明在大型现实系统上部署最先进的模型的好处。
{"title":"Efficient and accurate spatial mixing of machine learned interatomic potentials for materials science","authors":"Fraser Birks, Matthew Nutter, Thomas D. Swinburne, James R. Kermode","doi":"10.1038/s41524-026-01982-6","DOIUrl":"https://doi.org/10.1038/s41524-026-01982-6","url":null,"abstract":"Machine-learned interatomic potentials can offer near first-principles accuracy but are computationally expensive, limiting their application to large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, a CPU- and GPU-compatible package to accelerate simulations by spatially mixing interatomic potentials of different complexities, allowing deployment of modern MLIPs even under restricted computational budgets. We demonstrate our method for ACE, UF3, SNAP and MACE potential architectures and demonstrate how linear ‘cheap’ potentials can be distilled from a given ‘expensive’ potential, allowing close matching in relevant regions of configuration space. The functionality of ML-MIX is demonstrated through tests on point defects in Si, Fe and W-He, in which speedups of up to 11× over ~8000 atoms are demonstrated, without sacrificing accuracy. The scientific potential of ML-MIX is demonstrated via two case studies in W, measuring the mobility of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$b=frac{1}{2}langle 111rangle$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>〈</mml:mo> <mml:mn>111</mml:mn> <mml:mo>〉</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> screw dislocations with ACE/ACE mixing and the implantation of He with MACE/SNAP mixing. The latter returns He reflection coefficients which (for the first time) match experimental observations up to an He incident energy of 80 eV—demonstrating the benefits of deploying state-of-the-art models on large, realistic systems.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"59 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general optimization framework for mapping local transition-state networks 局部过渡状态网络映射的通用优化框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01985-3
Qichen Xu, Anna Delin
Understanding how complex systems transition between states requires mapping the energy landscape that governs these changes. Local transition-state networks reveal the barrier architecture that explains observed behaviour and enables mechanism-based prediction across computational chemistry, biology, and physics, yet in many practical settings current approaches either require pre-specified endpoints or rely on single-ended searches that provide only a limited sample of nearby saddles. We present a general optimization framework that systematically expands local coverage by coupling a multi-objective explorer with a bilayer minimum-mode kernel. The inner layer uses Hessian-vector products to recover the lowest-curvature subspace, the outer layer optimizes on a reflected force to reach index-1 saddles, then a two-sided descent certifies connectivity. The GPU-based pipeline is portable across autodiff backends and eigensolvers and, on large atomistic-spin tests, matches explicit-Hessian accuracy while cutting peak memory and wall time by orders of magnitude. Applied to a DFT-parameterized Néel-type skyrmionic model, it recovers known routes and reveals previously unreported mechanisms, including meron-antimeron-mediated Néel-type skyrmionic duplication, annihilation, and chiral-droplet formation, enabling up to 32 pathways between biskyrmion ( Q = 2) and biantiskyrmion ( Q = −2). The same core transfers to Cartesian atoms, automatically mapping canonical rearrangements of a Ni(111) heptamer, underscoring the framework’s generality.
了解复杂系统如何在状态之间转换需要绘制控制这些变化的能源景观。局部过渡状态网络揭示了屏障结构,解释了观察到的行为,并实现了跨计算化学、生物学和物理学的基于机制的预测,然而在许多实际设置中,当前的方法要么需要预先指定的端点,要么依赖于只提供附近鞍点有限样本的单端搜索。我们提出了一个通用的优化框架,该框架通过将多目标搜索器与双层最小模核相耦合来系统地扩展局部覆盖。内层使用hessian矢量积恢复最低曲率子空间,外层优化反射力以达到索引-1鞍,然后双向下降证明连通性。基于gpu的流水线可以在autodiff后端和特征解算器之间移植,并且在大型原子自旋测试中,匹配显式hessian精度,同时将峰值内存和壁时间降低了几个数量级。应用于dft参数化的nsamel -type skyrmionic模型,它恢复了已知的途径并揭示了以前未报道的机制,包括介子-反介子介导的nsamel -type skyrmionic复制、湮灭和手性液滴的形成,在双kyrmiion (Q = 2)和双antiskrmiion (Q = - 2)之间实现了多达32种途径。同样的核心转移到笛卡尔原子上,自动映射Ni(111)七聚体的规范重排,强调了框架的普遍性。
{"title":"A general optimization framework for mapping local transition-state networks","authors":"Qichen Xu, Anna Delin","doi":"10.1038/s41524-026-01985-3","DOIUrl":"https://doi.org/10.1038/s41524-026-01985-3","url":null,"abstract":"Understanding how complex systems transition between states requires mapping the energy landscape that governs these changes. Local transition-state networks reveal the barrier architecture that explains observed behaviour and enables mechanism-based prediction across computational chemistry, biology, and physics, yet in many practical settings current approaches either require pre-specified endpoints or rely on single-ended searches that provide only a limited sample of nearby saddles. We present a general optimization framework that systematically expands local coverage by coupling a multi-objective explorer with a bilayer minimum-mode kernel. The inner layer uses Hessian-vector products to recover the lowest-curvature subspace, the outer layer optimizes on a reflected force to reach index-1 saddles, then a two-sided descent certifies connectivity. The GPU-based pipeline is portable across autodiff backends and eigensolvers and, on large atomistic-spin tests, matches explicit-Hessian accuracy while cutting peak memory and wall time by orders of magnitude. Applied to a DFT-parameterized Néel-type skyrmionic model, it recovers known routes and reveals previously unreported mechanisms, including meron-antimeron-mediated Néel-type skyrmionic duplication, annihilation, and chiral-droplet formation, enabling up to 32 pathways between biskyrmion ( <jats:italic>Q</jats:italic> = 2) and biantiskyrmion ( <jats:italic>Q</jats:italic> = −2). The same core transfers to Cartesian atoms, automatically mapping canonical rearrangements of a Ni(111) heptamer, underscoring the framework’s generality.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mumax+: extensible GPU-accelerated micromagnetics and beyond mumax+:可扩展的gpu加速微磁和超越
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-025-01893-y
Lars Moreels, Ian Lateur, Diego De Gusem, Jeroen Mulkers, Jonathan Maes, Milorad V. Milošević, Jonathan Leliaert, Bartel Van Waeyenberge
{"title":"mumax+: extensible GPU-accelerated micromagnetics and beyond","authors":"Lars Moreels, Ian Lateur, Diego De Gusem, Jeroen Mulkers, Jonathan Maes, Milorad V. Milošević, Jonathan Leliaert, Bartel Van Waeyenberge","doi":"10.1038/s41524-025-01893-y","DOIUrl":"https://doi.org/10.1038/s41524-025-01893-y","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic understanding of hydrogen bubble-induced embrittlement in tungsten enabled by machine learning molecular dynamics 通过机器学习分子动力学实现对氢气泡致钨脆的原子理解
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-026-01986-2
Yu Bao, Keke Song, Jiahui Liu, Yanzhou Wang, Yifei Ning, Penghua Ying, Ping Qian
{"title":"Atomistic understanding of hydrogen bubble-induced embrittlement in tungsten enabled by machine learning molecular dynamics","authors":"Yu Bao, Keke Song, Jiahui Liu, Yanzhou Wang, Yifei Ning, Penghua Ying, Ping Qian","doi":"10.1038/s41524-026-01986-2","DOIUrl":"https://doi.org/10.1038/s41524-026-01986-2","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"48 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational design of materials for nuclear reactors 核反应堆材料的计算设计
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-026-01980-8
Michael R. Tonks, David A. Andersson, Assel Aitkaliyeva
{"title":"Computational design of materials for nuclear reactors","authors":"Michael R. Tonks, David A. Andersson, Assel Aitkaliyeva","doi":"10.1038/s41524-026-01980-8","DOIUrl":"https://doi.org/10.1038/s41524-026-01980-8","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"240 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AIMATDESIGN: knowledge-augmented reinforcement learning for inverse materials design under data scarcity AIMATDESIGN:数据稀缺条件下逆向材料设计的知识增强强化学习
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-025-01894-x
Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian
{"title":"AIMATDESIGN: knowledge-augmented reinforcement learning for inverse materials design under data scarcity","authors":"Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian","doi":"10.1038/s41524-025-01894-x","DOIUrl":"https://doi.org/10.1038/s41524-025-01894-x","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"16 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active learning potentials for first-principles phase diagrams using replica-exchange nested sampling 使用副本交换嵌套抽样的第一原理相图的主动学习电位
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-026-01989-z
Nico Unglert, Michael Ketter, Georg K. H. Madsen
Accurate prediction of materials phase diagrams from first principles remains a central challenge in computational materials science. Machine-learning interatomic potentials can provide near-DFT accuracy at a fraction of the cost, but their reliability crucially depends on the availability of representative training data that span all relevant regions of the potential-energy surface. Here, we present a fully automated active-learning (AL) strategy based on replica-exchange nested sampling (RENS) for the generation of training data and the computation of complete pressure-temperature phase diagrams. In our framework, RENS acts as both the exploration engine and the acquisition mechanism: its intrinsic diversity and likelihood-constrained sampling ensure that the configurations selected for DFT labeling are both informative and thermodynamically representative. We apply the approach to silicon, germanium, and titanium using potentials trained at the r2SCAN level of theory. For all systems, the AL process converges within ~ 10–15 iterations, yielding transferable potentials that reproduce known phase transitions and thermodynamic trends. These results demonstrate that RENS-based AL provides a general and autonomous route to constructing machine-learning interatomic potentials and predicting first-principles phase diagrams across broad thermodynamic conditions.
从第一性原理准确预测材料相图仍然是计算材料科学的核心挑战。机器学习原子间势可以以一小部分成本提供接近dft的精度,但它们的可靠性关键取决于跨越势能表面所有相关区域的代表性训练数据的可用性。在这里,我们提出了一种基于副本交换嵌套采样(RENS)的全自动主动学习(AL)策略,用于生成训练数据和计算完整的压力-温度相位图。在我们的框架中,RENS既是探索引擎又是获取机制:其固有的多样性和似然约束采样确保为DFT标记选择的配置既具有信息性又具有热力学代表性。我们将该方法应用于硅、锗和钛,使用在r2SCAN理论水平上训练的电位。对于所有系统,人工智能过程在~ 10-15次迭代内收敛,产生可转移的势,再现已知的相变和热力学趋势。这些结果表明,基于rens的人工智能为构建机器学习原子间势和预测广泛热力学条件下的第一原理相图提供了一种通用和自主的途径。
{"title":"Active learning potentials for first-principles phase diagrams using replica-exchange nested sampling","authors":"Nico Unglert, Michael Ketter, Georg K. H. Madsen","doi":"10.1038/s41524-026-01989-z","DOIUrl":"https://doi.org/10.1038/s41524-026-01989-z","url":null,"abstract":"Accurate prediction of materials phase diagrams from first principles remains a central challenge in computational materials science. Machine-learning interatomic potentials can provide near-DFT accuracy at a fraction of the cost, but their reliability crucially depends on the availability of representative training data that span all relevant regions of the potential-energy surface. Here, we present a fully automated active-learning (AL) strategy based on replica-exchange nested sampling (RENS) for the generation of training data and the computation of complete pressure-temperature phase diagrams. In our framework, RENS acts as both the exploration engine and the acquisition mechanism: its intrinsic diversity and likelihood-constrained sampling ensure that the configurations selected for DFT labeling are both informative and thermodynamically representative. We apply the approach to silicon, germanium, and titanium using potentials trained at the r2SCAN level of theory. For all systems, the AL process converges within ~ 10–15 iterations, yielding transferable potentials that reproduce known phase transitions and thermodynamic trends. These results demonstrate that RENS-based AL provides a general and autonomous route to constructing machine-learning interatomic potentials and predicting first-principles phase diagrams across broad thermodynamic conditions.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Gaussian process-based cost-aware batch Bayesian optimization for complex materials design campaigns 基于深度高斯过程的成本感知批量贝叶斯优化复杂材料设计活动
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-04 DOI: 10.1038/s41524-026-01981-7
Sk Md Ahnaf Akif Alvi, Brent Vela, Vahid Attari, Jan Janssen, Danny Perez, Douglas Allaire, Raymundo Arróyave
{"title":"Deep Gaussian process-based cost-aware batch Bayesian optimization for complex materials design campaigns","authors":"Sk Md Ahnaf Akif Alvi, Brent Vela, Vahid Attari, Jan Janssen, Danny Perez, Douglas Allaire, Raymundo Arróyave","doi":"10.1038/s41524-026-01981-7","DOIUrl":"https://doi.org/10.1038/s41524-026-01981-7","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"91 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacancy-controlled superconductivity in rock-salt carbides: towards predictive modelling of real-world superconductors 岩盐碳化物中的空位控制超导性:对现实世界超导体的预测建模
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-04 DOI: 10.1038/s41524-025-01943-5
Simone Di Cataldo, William Cursio, Lilia Boeri
We critically reexamine the superconducting properties of rock-salt transition-metal carbides (TMCs), often regarded as textbook conventional superconductors, combining first-principles electron-phonon calculations with variable-composition evolutionary structure prediction. Studying superconducting trends across the entire transition-metal series, we find that, when the rock-salt stoichiometric phase is dynamically or thermodynamically unstable, carbon-vacant structures identified through unbiased structure prediction permit to reconcile theoretical calculations with experimental trends. Our integrated use of structure prediction and electron-phonon calculations defines a general framework for realistic modeling of superconductors shaped by non-equilibrium synthesis routes and defect tolerance.
我们批判性地重新审视岩盐过渡金属碳化物(TMCs)的超导特性,通常被认为是教科书式的传统超导体,结合第一性原理电子-声子计算和变成分进化结构预测。研究了整个过渡金属系列的超导趋势,我们发现,当岩盐化学计量相是动态或热力学不稳定时,通过无偏结构预测确定的碳空结构允许将理论计算与实验趋势相协调。我们对结构预测和电子-声子计算的综合使用为非平衡合成路线和缺陷容限形成的超导体的实际建模定义了一个一般框架。
{"title":"Vacancy-controlled superconductivity in rock-salt carbides: towards predictive modelling of real-world superconductors","authors":"Simone Di Cataldo, William Cursio, Lilia Boeri","doi":"10.1038/s41524-025-01943-5","DOIUrl":"https://doi.org/10.1038/s41524-025-01943-5","url":null,"abstract":"We critically reexamine the superconducting properties of rock-salt transition-metal carbides (TMCs), often regarded as textbook conventional superconductors, combining first-principles electron-phonon calculations with variable-composition evolutionary structure prediction. Studying superconducting trends across the entire transition-metal series, we find that, when the rock-salt stoichiometric phase is dynamically or thermodynamically unstable, carbon-vacant structures identified through unbiased structure prediction permit to reconcile theoretical calculations with experimental trends. Our integrated use of structure prediction and electron-phonon calculations defines a general framework for realistic modeling of superconductors shaped by non-equilibrium synthesis routes and defect tolerance.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"398 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app 使用AiiDAlab Quantum ESPRESSO应用程序进行原子材料计算
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-03 DOI: 10.1038/s41524-025-01936-4
Xing Wang, Edan Bainglass, Miki Bonacci, Andres Ortega-Guerrero, Lorenzo Bastonero, Marnik Bercx, Pietro Bonfà, Roberto De Renzi, Dou Du, Peter N. O. Gillespie, Michael A. Hernández-Bertrán, Daniel Hollas, Sebastiaan P. Huber, Elisa Molinari, Ifeanyi J. Onuorah, Nataliya Paulish, Deborah Prezzi, Junfeng Qiao, Timo Reents, Christopher J. Sewell, Iurii Timrov, Aliaksandr V. Yakutovich, Jusong Yu, Nicola Marzari, Carlo A. Pignedoli, Giovanni Pizzi
Despite the wide availability of density functional theory (DFT) codes, their adoption by the broader materials science community remains limited due to challenges such as software installation, input preparation, high-performance computing setup, and output analysis. To overcome these barriers, we introduce the Quantum ESPRESSO app, an intuitive, web-based platform built on AiiDAlab that integrates user-friendly graphical interfaces with automated DFT workflows. The app employs a modular Input-Process-Output model and a plugin-based architecture, providing predefined computational protocols, automated error handling, and interactive results visualization. We demonstrate the app’s capabilities through plugins for electronic band structures, projected density of states, phonon, infrared/Raman, X-ray and muon spectroscopies, Hubbard parameters (DFT+U+V), Wannier functions, and post-processing tools. By extending the FAIR principles to simulations, workflows, and analyses, the app enhances the accessibility and reproducibility of advanced DFT calculations and provides a general template to interface with other first-principles calculation codes.
尽管密度泛函理论(DFT)代码广泛可用,但由于软件安装、输入准备、高性能计算设置和输出分析等挑战,它们被更广泛的材料科学界采用仍然有限。为了克服这些障碍,我们推出了Quantum ESPRESSO应用程序,这是一个基于AiiDAlab的基于web的直观平台,将用户友好的图形界面与自动化DFT工作流程集成在一起。该应用程序采用模块化的输入-过程-输出模型和基于插件的架构,提供预定义的计算协议,自动错误处理和交互式结果可视化。我们通过电子能带结构、状态投影密度、声子、红外/拉曼、x射线和μ子光谱、哈伯德参数(DFT+U+V)、万尼尔函数和后处理工具的插件展示了应用程序的功能。通过将FAIR原则扩展到模拟,工作流程和分析,该应用程序增强了高级DFT计算的可访问性和可重复性,并提供了与其他第一原理计算代码接口的通用模板。
{"title":"Making atomistic materials calculations accessible with the AiiDAlab Quantum ESPRESSO app","authors":"Xing Wang, Edan Bainglass, Miki Bonacci, Andres Ortega-Guerrero, Lorenzo Bastonero, Marnik Bercx, Pietro Bonfà, Roberto De Renzi, Dou Du, Peter N. O. Gillespie, Michael A. Hernández-Bertrán, Daniel Hollas, Sebastiaan P. Huber, Elisa Molinari, Ifeanyi J. Onuorah, Nataliya Paulish, Deborah Prezzi, Junfeng Qiao, Timo Reents, Christopher J. Sewell, Iurii Timrov, Aliaksandr V. Yakutovich, Jusong Yu, Nicola Marzari, Carlo A. Pignedoli, Giovanni Pizzi","doi":"10.1038/s41524-025-01936-4","DOIUrl":"https://doi.org/10.1038/s41524-025-01936-4","url":null,"abstract":"Despite the wide availability of density functional theory (DFT) codes, their adoption by the broader materials science community remains limited due to challenges such as software installation, input preparation, high-performance computing setup, and output analysis. To overcome these barriers, we introduce the Quantum ESPRESSO app, an intuitive, web-based platform built on AiiDAlab that integrates user-friendly graphical interfaces with automated DFT workflows. The app employs a modular Input-Process-Output model and a plugin-based architecture, providing predefined computational protocols, automated error handling, and interactive results visualization. We demonstrate the app’s capabilities through plugins for electronic band structures, projected density of states, phonon, infrared/Raman, X-ray and muon spectroscopies, Hubbard parameters (DFT+U+V), Wannier functions, and post-processing tools. By extending the FAIR principles to simulations, workflows, and analyses, the app enhances the accessibility and reproducibility of advanced DFT calculations and provides a general template to interface with other first-principles calculation codes.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"62 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1