Chaoqun Yu, Fuchang Chen, Jun Zeng, Cheng Huang, Zhimin He, Huichuan Lin, Yongtao Zhang, Ziyang Chen, Jixiong Pu
The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.
{"title":"Optical trapping forces of focused circular partially coherent beams on Rayleigh particles","authors":"Chaoqun Yu, Fuchang Chen, Jun Zeng, Cheng Huang, Zhimin He, Huichuan Lin, Yongtao Zhang, Ziyang Chen, Jixiong Pu","doi":"10.37190/oa220408","DOIUrl":"https://doi.org/10.37190/oa220408","url":null,"abstract":"The optical trapping forces of tightly-focused radially polarized circular partially coherent beams on Rayleigh particles are theoretically investigated. Numerical calculations are performed to study the optical trapping forces on Rayleigh particles for different initial coherent length of the incident circular partially coherent beams. The results show that the magnitude of the gradient force decreases with the reduction of the initial coherent length of the focused radially polarized circular partially coherent beams, while the balanced position (i.e., the position where the optical trapping forces becomes zero) stays constant. Moreover, the focused spot gradually elongates along the optical axis with the reduction of the initial coherent length, and the axial gradient force on Rayleigh particles also decreases gradually with the reduction of the intensity gradient in axial direction. As there exists an spherical aberrant in the focusing optical system, the focal spot in the direction of the optical axis becomes trumpet-shaped, and the optical trapping forces on Rayleigh particles change as well.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70017354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the slow and fast light (SFL) effects of the semiconductor optical amplifier (SOA) having certain facet reflections are theoretically investigated. The theoretical model is used to account for the SFL phenomenon causing the coherent population oscillation. The influence of the current modulation frequency, the value of the current, the linewidth enhancement factor, facet reflectivity as well as the relative phase of the modulated current on the phase delay in the SOA are studied. It is demonstrated that the SFL effect could be controlled by the modulation frequency, the value and relative phase of the current. Finally, it is shown that the magnitude of the SFL delay could be tuned by a change in the linewidth enhancement factor as well as the facet reflectivity of the SOA.
{"title":"Numerical analysis of slow and fast light effect in semiconductor optical amplifier with certain facet reflection","authors":"Cui Qin, Yu Jiang, Li Zhen","doi":"10.37190/oa220414","DOIUrl":"https://doi.org/10.37190/oa220414","url":null,"abstract":"In this paper, the slow and fast light (SFL) effects of the semiconductor optical amplifier (SOA) having certain facet reflections are theoretically investigated. The theoretical model is used to account for the SFL phenomenon causing the coherent population oscillation. The influence of the current modulation frequency, the value of the current, the linewidth enhancement factor, facet reflectivity as well as the relative phase of the modulated current on the phase delay in the SOA are studied. It is demonstrated that the SFL effect could be controlled by the modulation frequency, the value and relative phase of the current. Finally, it is shown that the magnitude of the SFL delay could be tuned by a change in the linewidth enhancement factor as well as the facet reflectivity of the SOA.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70017669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianglian Liu, Di Zhang, Lijiao Zhao, Pu Li, Jianguo Zhang, Yi Liu
We have studied and explored the influence of different launch angles on the circular Pearcey beams (CPBs) without vortex or with vortex for the first time. Although launch angles can manipulate the focal length and the contrast of peak intensity of the CPBs, the shape and propagation trajectory of the CPBs maintain invariant. When the vortex is considered, the focal pattern and the contrast of peak intensity of the circular Pearcey vortex beams (CPVBs) can be changed by adjusting the magnitude of topological charges and the position of vortex. In addition, we have deliberated the propagation of the CPVBs under the action of double opposite optical vortices.
{"title":"Abruptly autofocusing property of circular Pearcey vortex beams with different initial launch angles in harmonic potentials","authors":"Xianglian Liu, Di Zhang, Lijiao Zhao, Pu Li, Jianguo Zhang, Yi Liu","doi":"10.37190/oa220308","DOIUrl":"https://doi.org/10.37190/oa220308","url":null,"abstract":"We have studied and explored the influence of different launch angles on the circular Pearcey beams (CPBs) without vortex or with vortex for the first time. Although launch angles can manipulate the focal length and the contrast of peak intensity of the CPBs, the shape and propagation trajectory of the CPBs maintain invariant. When the vortex is considered, the focal pattern and the contrast of peak intensity of the circular Pearcey vortex beams (CPVBs) can be changed by adjusting the magnitude of topological charges and the position of vortex. In addition, we have deliberated the propagation of the CPVBs under the action of double opposite optical vortices.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70016643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to meet the advent of the high-definition liquid crystal display (LCD) era, in addition to the high-quality panel manufacturing technology, how the backlight module can provide a uniform backlight with higher uniformity for a better experience in viewing, is a very important and urgent issue. In this study, the 15.6-inch side-in backlight module was used as the benchmark, and the Taguchi method was applied to find the high uniformity. The matching of the fishbone diagram affects the optical uniformity factor of the backlight module, such as the size of the light guide plate dot, the color of the plastic frame, the color of the fixed gel of the light guide plate, and the difference of the reflection surface. The optical analog software LightTools is used according to the orthogonal table. The signal-to-noise (S/N) ratio of the average uniformity characteristics is obtained, then it is converted into the best response factor of the factor response table and the factor reaction diagram. The homogeneity at 13 points is as high as 90.12%, which is 4.72% higher than the original design factor. The contribution of the four factors to the uniformity can be obtained by using the variance analysis. Finally, the influence of each factor level on the uniformity is discussed.
{"title":"Optimization of optical uniformity factors of backlight module using robust design method","authors":"Ju-Chi Wang, Yu-Cheng Fan, Te-Hua Fang, Anh-Son Tran, Yu-Ting Cheng","doi":"10.37190/oa220101","DOIUrl":"https://doi.org/10.37190/oa220101","url":null,"abstract":"In order to meet the advent of the high-definition liquid crystal display (LCD) era, in addition to the high-quality panel manufacturing technology, how the backlight module can provide a uniform backlight with higher uniformity for a better experience in viewing, is a very important and urgent issue. In this study, the 15.6-inch side-in backlight module was used as the benchmark, and the Taguchi method was applied to find the high uniformity. The matching of the fishbone diagram affects the optical uniformity factor of the backlight module, such as the size of the light guide plate dot, the color of the plastic frame, the color of the fixed gel of the light guide plate, and the difference of the reflection surface. The optical analog software LightTools is used according to the orthogonal table. The signal-to-noise (S/N) ratio of the average uniformity characteristics is obtained, then it is converted into the best response factor of the factor response table and the factor reaction diagram. The homogeneity at 13 points is as high as 90.12%, which is 4.72% higher than the original design factor. The contribution of the four factors to the uniformity can be obtained by using the variance analysis. Finally, the influence of each factor level on the uniformity is discussed.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70013979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Twin decomposition, consisting of equal and random modulus decompositions, not only makes a cryptosystem asymmetric but also resists special attack. A new double-image asymmetric cryptosystem using twin decomposition in fractional Hartley domain is proposed. An input grayscale image, bonded with another grayscale image as its phase mask, is transformed via fractional Hartley transform. Equal modulus decomposition is applied on the resulting image, giving us two intermediate images. One of them is subjected to another fractional Hartley transform followed by random modulus decomposition, whereas the other serves as the first private key. The application of random modulus decomposition also results in two images: encrypted image and the second private key. During the process of decryption, firstly the encrypted image is combined with second private key and thereafter it is subjected to inverse fractional Hartley transform. The resulting image is then combined with the first private key, and followed by another inverse fractional Hartley transform, thus recovering the two original images. The proposed cryptosystem is validated for pairs of grayscale images.
{"title":"Asymmetric double-image encryption using twin decomposition in fractional Hartley domain","authors":"J. Kumar, Phool Singh, Akash Yadav","doi":"10.37190/oa220102","DOIUrl":"https://doi.org/10.37190/oa220102","url":null,"abstract":"Twin decomposition, consisting of equal and random modulus decompositions, not only makes a cryptosystem asymmetric but also resists special attack. A new double-image asymmetric cryptosystem using twin decomposition in fractional Hartley domain is proposed. An input grayscale image, bonded with another grayscale image as its phase mask, is transformed via fractional Hartley transform. Equal modulus decomposition is applied on the resulting image, giving us two intermediate images. One of them is subjected to another fractional Hartley transform followed by random modulus decomposition, whereas the other serves as the first private key. The application of random modulus decomposition also results in two images: encrypted image and the second private key. During the process of decryption, firstly the encrypted image is combined with second private key and thereafter it is subjected to inverse fractional Hartley transform. The resulting image is then combined with the first private key, and followed by another inverse fractional Hartley transform, thus recovering the two original images. The proposed cryptosystem is validated for pairs of grayscale images.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70013988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ayela, Gaston Edah, A. Biswas, Qin Zhou, Y. Yıldırım, Salam Khan, A. K. Alzahrani, M. Belić
The parameter dynamics of solitons, propagating through optical fibers, is emerged from the usage of variational principle. The anti-cubic nonlinearity and its generalized version are studied. This study reveals that the center position does not affect the dynamics of different parameters and only soliton power and linear momentum are conserved quantities.
{"title":"Dynamical system of optical soliton parameters for anti-cubic and generalized anti-cubic nonlinearities with super-Gaussian and super-sech pulses","authors":"A. Ayela, Gaston Edah, A. Biswas, Qin Zhou, Y. Yıldırım, Salam Khan, A. K. Alzahrani, M. Belić","doi":"10.37190/oa220109","DOIUrl":"https://doi.org/10.37190/oa220109","url":null,"abstract":"The parameter dynamics of solitons, propagating through optical fibers, is emerged from the usage of variational principle. The anti-cubic nonlinearity and its generalized version are studied. This study reveals that the center position does not affect the dynamics of different parameters and only soliton power and linear momentum are conserved quantities.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70014429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. M. Jalife-Chavira, G. Trujillo-Schiaffino, P. G. Mendoza-Villegas, D. P. Salas-Peimbert, M. Anguiano-Morales, L. F. Corral-Martinez, Edgar Zendejas-Hernández
In this paper we present a technique to measure the radius of curvature of a test sphere based on the relation between acquired images of a circular cosine fringe pattern and size of virtual image formed on the calibration test surface. Radius of curvature is calculated with the exact equation proposed, using the parameters of the optical setup. Fringe pattern evaluation was performed by locating extrema indices. The mathematical formulation as well as the experimental setup and results are presented. After applying a linear fit algorithm to the data as a method of compensation, obtained results show an error within the tolerance established by the ISO 10343 specifications.
{"title":"An exact approach for radius of curvature measurement in a calibration test sphere","authors":"J. M. Jalife-Chavira, G. Trujillo-Schiaffino, P. G. Mendoza-Villegas, D. P. Salas-Peimbert, M. Anguiano-Morales, L. F. Corral-Martinez, Edgar Zendejas-Hernández","doi":"10.37190/oa220206","DOIUrl":"https://doi.org/10.37190/oa220206","url":null,"abstract":"In this paper we present a technique to measure the radius of curvature of a test sphere based on the relation between acquired images of a circular cosine fringe pattern and size of virtual image formed on the calibration test surface. Radius of curvature is calculated with the exact equation proposed, using the parameters of the optical setup. Fringe pattern evaluation was performed by locating extrema indices. The mathematical formulation as well as the experimental setup and results are presented. After applying a linear fit algorithm to the data as a method of compensation, obtained results show an error within the tolerance established by the ISO 10343 specifications.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70014587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shujia Wan, Qiong Gong, Hongjuan Wang, Shibang Ma, Yi Qin
The successful recovery of the plaintext in the simplified diffractive-imaging-based encryption (S-DIBE) scheme needs to record one intact axial intensity map as the ciphertext. By aid of compressive sensing, we propose here a new image encryption approach, referred to as compressed DIBE (C-DIBE), which allows further compression of the intensity map. The plaintext is sampled before being sent to DIBE. Afterwards, the intensity map recorded by the CCD camera is also processed by such sampling operation to generate the ciphertext. For decryption, we first obtain the sparse plaintext using the proposed phase retrieval algorithm, and then reobtain the primary plaintext from it via compressive sensing. Numerical results show that a proper proportion of the intensity map (e.g. 50%) is enough to totally recover a grayscale image. We achieve multiple-image encryption by space multiplexing without enlarging the size of the ciphertext. The robustness of C-DIBE against brute-force attack evidently outperforms S-DIBE due to the extended key space. Numerical simulation has been presented to confirm the proposal.
{"title":"Compressed optical image encryption in the diffractive-imaging-based scheme by input plane and output plane random sampling","authors":"Shujia Wan, Qiong Gong, Hongjuan Wang, Shibang Ma, Yi Qin","doi":"10.37190/oa220104","DOIUrl":"https://doi.org/10.37190/oa220104","url":null,"abstract":"The successful recovery of the plaintext in the simplified diffractive-imaging-based encryption (S-DIBE) scheme needs to record one intact axial intensity map as the ciphertext. By aid of compressive sensing, we propose here a new image encryption approach, referred to as compressed DIBE (C-DIBE), which allows further compression of the intensity map. The plaintext is sampled before being sent to DIBE. Afterwards, the intensity map recorded by the CCD camera is also processed by such sampling operation to generate the ciphertext. For decryption, we first obtain the sparse plaintext using the proposed phase retrieval algorithm, and then reobtain the primary plaintext from it via compressive sensing. Numerical results show that a proper proportion of the intensity map (e.g. 50%) is enough to totally recover a grayscale image. We achieve multiple-image encryption by space multiplexing without enlarging the size of the ciphertext. The robustness of C-DIBE against brute-force attack evidently outperforms S-DIBE due to the extended key space. Numerical simulation has been presented to confirm the proposal.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70014703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Stoilova, B. Blagoeva, D. Nazarova, E. Stoykova, N. Berberova-Buhova, L. Nedelchev, A. Machikhin
In this work, we applied two polarized light based approaches to visualize histological patterns of liver pathologies. The first one involves acquisition of two images through a polarizing microscope, one image (Ppar) acquired with the analyzer oriented parallel to the polarization of illumination and the other (Pper) acquired with the analyzer oriented perpendicular to the illumination. The final image is based on the polarization ratio, Preconstructed = (Ppar – Pper)/(Ppar + Pper). Using the second technique, the histological specimens were illuminated with a polarized laser beam with wavelength of 635 nm. Polarimetric parameters as azimuth, angle of ellipticity, degree of polarization and reflected power have been measured to quantify the change in the polarization state of the incident light after interaction with the sample of the healthy tissue and of the tissue with abnormal morphological changes.
{"title":"Visualization of pathologic changes in liver tissue via polarized light","authors":"A. Stoilova, B. Blagoeva, D. Nazarova, E. Stoykova, N. Berberova-Buhova, L. Nedelchev, A. Machikhin","doi":"10.37190/oa220306","DOIUrl":"https://doi.org/10.37190/oa220306","url":null,"abstract":"In this work, we applied two polarized light based approaches to visualize histological patterns of liver pathologies. The first one involves acquisition of two images through a polarizing microscope, one image (Ppar) acquired with the analyzer oriented parallel to the polarization of illumination and the other (Pper) acquired with the analyzer oriented perpendicular to the illumination. The final image is based on the polarization ratio, Preconstructed = (Ppar – Pper)/(Ppar + Pper). Using the second technique, the histological specimens were illuminated with a polarized laser beam with wavelength of 635 nm. Polarimetric parameters as azimuth, angle of ellipticity, degree of polarization and reflected power have been measured to quantify the change in the polarization state of the incident light after interaction with the sample of the healthy tissue and of the tissue with abnormal morphological changes.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70015993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A single-mode telecommunication optical route can be used for reliable power supplies of a remote non-electric temperature fiber-optic polarization sensor, but the optical route, due to many physical factors, affects an immediate state of polarization during the transmission. This negative phenomenon changes the sensitivity of the sensor itself. The thesis proposes two main approaches to solving that problem. The first approach is based on the suitable connection of a depolarizer and linear polarizers. The second approach is based on signal interference, which takes place in a polarization-maintaining fiber coupler. This article also evaluates the advantages and disadvantages of the two approaches and graphically demonstrates the functionality of the fiber-optic sensor, which was tested by applying a container with water of different temperatures. A big advantage of this type of sensor is that it is not necessary to have components, that are dependent on electricity, near the monitored place, where there may be no access to electricity, or the place may be sensitive to an electric charge. Paper demonstrates the possibility of successfully powering the non-electric sensor via a classical optical route.
{"title":"Utilization of telecommunication optical routes to power fiber-optic polarization sensors","authors":"Zdeněk Vyležich, M. Kyselak","doi":"10.37190/oa220407","DOIUrl":"https://doi.org/10.37190/oa220407","url":null,"abstract":"A single-mode telecommunication optical route can be used for reliable power supplies of a remote non-electric temperature fiber-optic polarization sensor, but the optical route, due to many physical factors, affects an immediate state of polarization during the transmission. This negative phenomenon changes the sensitivity of the sensor itself. The thesis proposes two main approaches to solving that problem. The first approach is based on the suitable connection of a depolarizer and linear polarizers. The second approach is based on signal interference, which takes place in a polarization-maintaining fiber coupler. This article also evaluates the advantages and disadvantages of the two approaches and graphically demonstrates the functionality of the fiber-optic sensor, which was tested by applying a container with water of different temperatures. A big advantage of this type of sensor is that it is not necessary to have components, that are dependent on electricity, near the monitored place, where there may be no access to electricity, or the place may be sensitive to an electric charge. Paper demonstrates the possibility of successfully powering the non-electric sensor via a classical optical route.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"57 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70017317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}