In this paper, a composite manufacturing method was proposed to reduce the inner surface roughness of silica groove. Firstly, femtosecond laser was used to ablate the silica groove, then, a 5% concentration hydrofluoric acid solution was used to corrode the inner surface of silica groove. Secondly, Su8 adhesive was filled with the groove to form a semi-buried 1×32 optical splitter by doctor blade. The test results showed that the surface roughness Ra was less than 0.2 µm, and average insertion loss of output ports was 21.34 dB, moreover, the uniformity was less than 1.44 dB. Compared with the traditional femtosecond laser ablating method, surface roughness reduced by at least 0.1 µm, and the average insertion loss of output ports was reduced by 1.22 dB, and the uniformity was reduced by 0.41 dB. So, the composite manufacturing method improved the communication performance. It is satisfied with the requirements for optical interconnection in the electro-optical printed circuit boards.
{"title":"Research on composite manufacturing method of semi-buried 1×32 optical splitter","authors":"Qing Tao, Sihao Xie","doi":"10.37190/oa230202","DOIUrl":"https://doi.org/10.37190/oa230202","url":null,"abstract":"In this paper, a composite manufacturing method was proposed to reduce the inner surface roughness of silica groove. Firstly, femtosecond laser was used to ablate the silica groove, then, a 5% concentration hydrofluoric acid solution was used to corrode the inner surface of silica groove. Secondly, Su8 adhesive was filled with the groove to form a semi-buried 1×32 optical splitter by doctor blade. The test results showed that the surface roughness Ra was less than 0.2 µm, and average insertion loss of output ports was 21.34 dB, moreover, the uniformity was less than 1.44 dB. Compared with the traditional femtosecond laser ablating method, surface roughness reduced by at least 0.1 µm, and the average insertion loss of output ports was reduced by 1.22 dB, and the uniformity was reduced by 0.41 dB. So, the composite manufacturing method improved the communication performance. It is satisfied with the requirements for optical interconnection in the electro-optical printed circuit boards.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70019630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To meet the needs of future wireless optical networks, this paper introduces a high-speed, hybrid multiplexed, coherent free-space optical (FSO) communication system that integrates an orbital angular momentum (OAM) multiplexed signal with an orthogonal frequency division multiplexing (OFDM) technique. Two independent QAM polarized beams, each carrying in-phase and quadrature (I/Q) phase 16-QAM-OFDM modulated data, are combined using mode division multiplexing (MDM) to increase the capacity of the proposed system. The reason of choosing OFDM is its capability to support higher data rate, and mitigating intersymbol interference (ISI). The signal is detected using a coherent detection-based digital signal processing (DSP) algorithm at the receiver end. The proposed hybrid FSO system is evaluated in low and heavy dust environments using bit error rate (BER), link distance, optical signal-to-noise ratio (OSNR), and received optical power performance matrices. The simulation results demonstrate the successful transmission of a 120 Gb/s single carrier over the longest link ranges of 1.5 and 0.40 km, respectively, under low and heavy dust weather environments below the signal degradation threshold value (forward error correction (FEC) limit) of BER 2.2 × 10 –3 in strong turbulent conditions.
{"title":"Evaluation of a high-speed hybrid OAM-OFDM-MDM multiplexed coherent FSO system under desert conditions","authors":"Shivaji Sinha, Chakresh Kumar","doi":"10.37190/oa230308","DOIUrl":"https://doi.org/10.37190/oa230308","url":null,"abstract":"To meet the needs of future wireless optical networks, this paper introduces a high-speed, hybrid multiplexed, coherent free-space optical (FSO) communication system that integrates an orbital angular momentum (OAM) multiplexed signal with an orthogonal frequency division multiplexing (OFDM) technique. Two independent QAM polarized beams, each carrying in-phase and quadrature (I/Q) phase 16-QAM-OFDM modulated data, are combined using mode division multiplexing (MDM) to increase the capacity of the proposed system. The reason of choosing OFDM is its capability to support higher data rate, and mitigating intersymbol interference (ISI). The signal is detected using a coherent detection-based digital signal processing (DSP) algorithm at the receiver end. The proposed hybrid FSO system is evaluated in low and heavy dust environments using bit error rate (BER), link distance, optical signal-to-noise ratio (OSNR), and received optical power performance matrices. The simulation results demonstrate the successful transmission of a 120 Gb/s single carrier over the longest link ranges of 1.5 and 0.40 km, respectively, under low and heavy dust weather environments below the signal degradation threshold value (forward error correction (FEC) limit) of BER 2.2 × 10 –3 in strong turbulent conditions.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135913982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frazna Parasuti, Dyah Hikmawati, Herri Trilaksana, Moh. Yasin
Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO 2 /porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.
{"title":"Ammonia level sensor using tapered optical fiber coated with titanium dioxide-incorporated porphyrin","authors":"Frazna Parasuti, Dyah Hikmawati, Herri Trilaksana, Moh. Yasin","doi":"10.37190/oa230302","DOIUrl":"https://doi.org/10.37190/oa230302","url":null,"abstract":"Since ammonia is water-soluble, environmental studies have shown that the industrial waste such as fertilizer manufacturing, food products, palm oil, urea fertilizer industry can cause very serious damage to water body ecosystems if not properly managed, resulting in a decrease in water quality. Devices based on optical technology, especially devices that combine optical fibers and nanomaterials, are identified as highly sensitive to the species of interest by detecting changes in physicochemical properties. A practical, easy-to-use, inexpensive instrument for detecting ammonia level was proposed using tapered optical fiber (TOF) coated with titanium dioxide-incorporated porphyrin. TOF was fabricated by simultaneously stretching and heating. The preparation of TiO 2 /porphyrin/gelatine was prepared to coat tapered optical fiber by dipping. SEM analysis shows an increase in length and a decrease in diameter, also the successful coating of titanium dioxide and porphyrin in the taper region. The EDX analysis also proves the presence of the Ti element in the TOF layer. The TOF produces significant sensing performances toward the ammonia liquid concentration level. The TOF coated with titanium dioxide-incorporated porphyrin can detect a one ppm difference in ammonia concentration with a certain range of output voltage for every concentration has.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135914261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelkarim El Mouncharih, Rabi Takassa, Omar Farkad, Abdelaziz Tchenka, El Alami Ibnouelghazi, Driss Abouelaoualim
In this work, using the two-dimensional finite difference time domain method, we are theoretically studying the optical properties of a two-dimensional photonic crystal biosensor based on silicon rods arranged as a square structure in an air bottom with two waveguides and a nanocavity. For this purpose, six different cells are infiltrated into the point defect. These six cells are Jurkat, HeLa, PC-12, MDA-MB-231, MCF-7, and basal cells. As a result, we have successfully detected cancer and benign cases of these cells through resonance peaks in the transmission spectrum. We evaluated the sensitivity, quality factor, detection limit, and figure of merit at different values for sensing region radius for optimization purposes. We report that we observed the maximum sensitivity of 1350 nm/RIU at 0.15 μm for the basal cell. Finally, the proposed biosensor can be a miniaturized structure with extreme sensitivity in cancer cell detection models.
{"title":"Optical simulations and optimization of highly sensitive biosensor for cancer cell detection","authors":"Abdelkarim El Mouncharih, Rabi Takassa, Omar Farkad, Abdelaziz Tchenka, El Alami Ibnouelghazi, Driss Abouelaoualim","doi":"10.37190/oa230306","DOIUrl":"https://doi.org/10.37190/oa230306","url":null,"abstract":"In this work, using the two-dimensional finite difference time domain method, we are theoretically studying the optical properties of a two-dimensional photonic crystal biosensor based on silicon rods arranged as a square structure in an air bottom with two waveguides and a nanocavity. For this purpose, six different cells are infiltrated into the point defect. These six cells are Jurkat, HeLa, PC-12, MDA-MB-231, MCF-7, and basal cells. As a result, we have successfully detected cancer and benign cases of these cells through resonance peaks in the transmission spectrum. We evaluated the sensitivity, quality factor, detection limit, and figure of merit at different values for sensing region radius for optimization purposes. We report that we observed the maximum sensitivity of 1350 nm/RIU at 0.15 μm for the basal cell. Finally, the proposed biosensor can be a miniaturized structure with extreme sensitivity in cancer cell detection models.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135914272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a photonic crystal-based structure for an all-optical full-subtractor has been proposed. The structure includes six nonlinear resonant rings to transmit the incoming optical waves toward the output ports. Using the different radii for nonlinear rods made the possibility of the dropping operation for different amounts of optical intensities. The nonlinear rods are made of a doped-glass with an optical Kerr coefficient of 10–15 m2/W. To calculate the components of the optical waves throughout the structure, the finite-difference time-domain method has been used. The simulation results prove the correct functionality of the proposed structure. Besides, the maximum rise time of the device is equal to 2 ps. The contrast ratio and the area of the structure are around 8.08 dB and 2790 µm2, respectively.
{"title":"Designing ultra-fast all-optical full-subtractor using the photonic crystal structure","authors":"","doi":"10.37190/oa230107","DOIUrl":"https://doi.org/10.37190/oa230107","url":null,"abstract":"In this paper, a photonic crystal-based structure for an all-optical full-subtractor has been proposed. The structure includes six nonlinear resonant rings to transmit the incoming optical waves toward the output ports. Using the different radii for nonlinear rods made the possibility of the dropping operation for different amounts of optical intensities. The nonlinear rods are made of a doped-glass with an optical Kerr coefficient of 10–15 m2/W. To calculate the components of the optical waves throughout the structure, the finite-difference time-domain method has been used. The simulation results prove the correct functionality of the proposed structure. Besides, the maximum rise time of the device is equal to 2 ps. The contrast ratio and the area of the structure are around 8.08 dB and 2790 µm2, respectively.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"81 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70018380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Li, Xieyuan Li, Haitao Zhang, Shuang Chen, Shurong Liu, Yang Li
An embedded microring resonator model using PtS2 as the core layer was designed and optimized for sensing. The inner layer is made of PtS2, and SiO2 and Si3N4 are used as cladding. The overall structure is Si3N4-SiO2-PtS2-SiO2-Si3N4. Field strength distribution of longitudinal section of single straight waveguide and the longitudinal section of coupling part of straight and annular waveguides are simulated according to the coupled-mode theory. The transfer matrix method is used to analyze characteristics between the length of the U-shaped feedback waveguide and the circumference of microring and the change of attenuation factor and coupling coefficient on the output spectrum. The simulation results showed that the embedded microring resonator with PtS2 as the core presents excellent optical properties. The resonance depth is more than –50 dB, and the sensitivity can reach 1806.61 dB/RIU. When the resonance wavelength is 1550.86 nm and the self-coupling coefficient is 0.9849. The corresponding detection limit is about 1.66056 × 10–7 dB/RIU, and the quality factor is 2.8848 × 10–5 under the measurement system with a signal-to-noise ratio of 30 dB. Compared with the traditional single microring structure, the proposed microring presents a higher free spectral range and more suitable for the fabrication of high-sensitivity, low-detection limit, and large-measurement range sensors.
{"title":"Research on characteristics of embedded resonator sensor based on PtS2","authors":"Xin Li, Xieyuan Li, Haitao Zhang, Shuang Chen, Shurong Liu, Yang Li","doi":"10.37190/oa230204","DOIUrl":"https://doi.org/10.37190/oa230204","url":null,"abstract":"An embedded microring resonator model using PtS2 as the core layer was designed and optimized for sensing. The inner layer is made of PtS2, and SiO2 and Si3N4 are used as cladding. The overall structure is Si3N4-SiO2-PtS2-SiO2-Si3N4. Field strength distribution of longitudinal section of single straight waveguide and the longitudinal section of coupling part of straight and annular waveguides are simulated according to the coupled-mode theory. The transfer matrix method is used to analyze characteristics between the length of the U-shaped feedback waveguide and the circumference of microring and the change of attenuation factor and coupling coefficient on the output spectrum. The simulation results showed that the embedded microring resonator with PtS2 as the core presents excellent optical properties. The resonance depth is more than –50 dB, and the sensitivity can reach 1806.61 dB/RIU. When the resonance wavelength is 1550.86 nm and the self-coupling coefficient is 0.9849. The corresponding detection limit is about 1.66056 × 10–7 dB/RIU, and the quality factor is 2.8848 × 10–5 under the measurement system with a signal-to-noise ratio of 30 dB. Compared with the traditional single microring structure, the proposed microring presents a higher free spectral range and more suitable for the fabrication of high-sensitivity, low-detection limit, and large-measurement range sensors.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70019285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.
{"title":"Phase retrieval without phase unwrapping for white blood cells in deep-learning phase-shifting digital holography","authors":"Shuyang Jin, Xiaoqing Xu, Jili Chen, Yudan Ni","doi":"10.37190/oa230109","DOIUrl":"https://doi.org/10.37190/oa230109","url":null,"abstract":"Phase retrieval and phase unwrapping are the two important problems for enabling quantitative phase imaging of cells in phase-shifting digital holography. To simultaneously cope with these two problems, a deep-learning phase-shifting digital holography method is proposed in this paper. The proposed method can establish the continuous mapping function of the interferogram to the ground-truth phase using the end-to-end convolutional neural network. With a well-trained deep convolutional neural network, this method can retrieve the phase from one-frame blindly phase-shifted interferogram, without phase unwrapping. The feasibility and applicability of the proposed method are verified by the simulation experiments of the microsphere and white blood cells, respectively. This method will pave the way to the quantitative phase imaging of biological cells with complex substructures.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70019084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ximin Zhang, Sen Qian, Huixin Liu, Chuan Chen, Chuanlu Deng, Chengyong Hu, Yi Huang
An ultrasonic sensor based on extrinsic Fabry–Pérot interference (EFPI) has been designed and demonstrated to detect the ultrasonic wave signal. The sensitivity and natural frequency of fiber Fabry–Pérot (F-P) sensor with different structure parameter have been simulated by COMSOL. The simulation results illustrate that the sensitivity is up to 1.737 nm/kPa and the natural frequency is 2.1 MHz, when the silica diaphragm thickness is 2 μm, the radius is 90 μm, and the cavity length is 18 μm. The most suitable parameters have been selected and the F-P sensor has been fabricated. When the ultrasonic signals with the frequencies of 40 kHz and 1.2 MHz are respectively applied to the sensor, the frequencies detected by the EFPI ultrasonic sensor are 39 kHz and 1.21 MHz based on a partial discharge detection experiment for the designed demodulation system. The experimental results show that the sensor can accurately detect ultrasonic signals. As an excellent platform for ultrasonic signal sensing, this EFPI ultrasonic sensing system has great potential applications in partial discharge detection field.
{"title":"An extrinsic Fabry–Pérot interference fiber sensorfor ultrasonic detection of partial discharge","authors":"Ximin Zhang, Sen Qian, Huixin Liu, Chuan Chen, Chuanlu Deng, Chengyong Hu, Yi Huang","doi":"10.37190/oa230203","DOIUrl":"https://doi.org/10.37190/oa230203","url":null,"abstract":"An ultrasonic sensor based on extrinsic Fabry–Pérot interference (EFPI) has been designed and demonstrated to detect the ultrasonic wave signal. The sensitivity and natural frequency of fiber Fabry–Pérot (F-P) sensor with different structure parameter have been simulated by COMSOL. The simulation results illustrate that the sensitivity is up to 1.737 nm/kPa and the natural frequency is 2.1 MHz, when the silica diaphragm thickness is 2 μm, the radius is 90 μm, and the cavity length is 18 μm. The most suitable parameters have been selected and the F-P sensor has been fabricated. When the ultrasonic signals with the frequencies of 40 kHz and 1.2 MHz are respectively applied to the sensor, the frequencies detected by the EFPI ultrasonic sensor are 39 kHz and 1.21 MHz based on a partial discharge detection experiment for the designed demodulation system. The experimental results show that the sensor can accurately detect ultrasonic signals. As an excellent platform for ultrasonic signal sensing, this EFPI ultrasonic sensing system has great potential applications in partial discharge detection field.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70019270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elliptical Gaussian beam (EGB) has many different physical properties from circular Gaussian beam. In this paper, the transverse energy flux and intensity of one and two coherent EGBs are studied. In our simulation, the transverse energy flux and intensity varying with waist ratio are discussed in detail. It has been found that through increasing the waist ratio, the transverse energy flux after interference would be strengthened significantly. Although the transverse energy flux is much weaker than the longitudinal energy flux, its signal to noise ratio has been verified to be strong enough for detection. Our derivations are still reasonable for another simulation with general experimental parameters. The simulation results are considered to be helpful for some physical experiments using the transverse energy flux of Gaussian beam, such as an important application in electromagnetic response produced by interaction of high-frequency gravitational waves.
{"title":"Transverse energy propagation and interference of elliptical Gaussian beams","authors":"Jin Li, Shuang-Cheng Tan","doi":"10.37190/oa230207","DOIUrl":"https://doi.org/10.37190/oa230207","url":null,"abstract":"Elliptical Gaussian beam (EGB) has many different physical properties from circular Gaussian beam. In this paper, the transverse energy flux and intensity of one and two coherent EGBs are studied. In our simulation, the transverse energy flux and intensity varying with waist ratio are discussed in detail. It has been found that through increasing the waist ratio, the transverse energy flux after interference would be strengthened significantly. Although the transverse energy flux is much weaker than the longitudinal energy flux, its signal to noise ratio has been verified to be strong enough for detection. Our derivations are still reasonable for another simulation with general experimental parameters. The simulation results are considered to be helpful for some physical experiments using the transverse energy flux of Gaussian beam, such as an important application in electromagnetic response produced by interaction of high-frequency gravitational waves.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70019784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this article was to investigate the dynamic evolution behaviors of plasma expansion plumes by pulses laser irradiating centimeter-scale spherical space debris. A calculated model of centimeter-scale spherical space debris irradiated by pulses laser was firstly deduced based on FEM (finite element method)/COMSOL, and the action rules of plasma expansion plumes by pulses laser-generated irradiating the debris were simulated for different laser powers and action times. The results showed that the velocity of plasma expansion plumes was increased with the increase of laser powers and action times. Especially, when the laser power was 700 kW and the action time was close to 25 μs, the maximum velocity of plasma expansion plumes approached 1.91 km/s, and the diffusion radius of plasma expansion plumes was increased by about 2.5 mm. Further, the diffusion radius was about twice that of 400 kW when the action time reached about 48 μs. As a result, by simulating the transient flow process of nanosecond pulses laser irradiating small spherical space debris, the flow field evolution information and plasma plumes evolution characteristics of centimeter-scale space debris at nanosecond time resolution were revealed.
{"title":"Effects of plasma expansion plumes in view of pulses laser irradiating centimeter-scale spherical space debris","authors":"None Yingwu Fang","doi":"10.37190/oa230303","DOIUrl":"https://doi.org/10.37190/oa230303","url":null,"abstract":"The objective of this article was to investigate the dynamic evolution behaviors of plasma expansion plumes by pulses laser irradiating centimeter-scale spherical space debris. A calculated model of centimeter-scale spherical space debris irradiated by pulses laser was firstly deduced based on FEM (finite element method)/COMSOL, and the action rules of plasma expansion plumes by pulses laser-generated irradiating the debris were simulated for different laser powers and action times. The results showed that the velocity of plasma expansion plumes was increased with the increase of laser powers and action times. Especially, when the laser power was 700 kW and the action time was close to 25 μs, the maximum velocity of plasma expansion plumes approached 1.91 km/s, and the diffusion radius of plasma expansion plumes was increased by about 2.5 mm. Further, the diffusion radius was about twice that of 400 kW when the action time reached about 48 μs. As a result, by simulating the transient flow process of nanosecond pulses laser irradiating small spherical space debris, the flow field evolution information and plasma plumes evolution characteristics of centimeter-scale space debris at nanosecond time resolution were revealed.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135913985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}