首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Do You Want to Stay Single? Considerations on Single-Arm Trials in Drug Development and the Postregulatory Space. 您想继续单臂试验吗?药物开发中的单臂试验和后监管空间的考虑。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-06-25 DOI: 10.1002/pst.2412
Yulia Dyachkova, Cornelia Dunger-Baldauf, Nathalie Barbier, Jenny Devenport, Stefan Franzén, Gbenga Kazeem, Thomas Künzel, Pierre Mancini, Giacomo Mordenti, Knut Richert, Antonia Ridolfi, Daniel Saure

Single-arm trials (SATs), while not preferred, remain in use throughout the drug development cycle. They may be accepted by regulators in particular contexts (e.g., in oncology or rare diseases) when the potential effects of new treatments are very large and placebo treatment is unethical. However, in the postregulatory space, SATs are common, and perhaps even more poorly suited to address the questions of interest. In this manuscript, we review regulatory and HTA positions on SATs; challenges posed by SATs to address research questions beyond regulators, evolving statistical methods to provide context for SATs, case studies where SATs could and could not address questions of interest, and communication strategies to influence decision making and optimize study design to address evidence needs.

单臂试验(SAT)虽然不是首选,但在整个药物开发周期中仍在使用。在特定情况下(如肿瘤或罕见病),如果新疗法的潜在效果非常大,而安慰剂治疗又不道德,监管机构可能会接受单臂试验。然而,在后监管领域,SATs 很常见,也许更不适合解决人们感兴趣的问题。在本手稿中,我们回顾了监管机构和 HTA 对 SAT 的立场;SAT 在解决监管机构之外的研究问题时所面临的挑战;为 SAT 提供背景的不断发展的统计方法;SAT 能够和不能解决相关问题的案例研究;以及影响决策和优化研究设计以满足证据需求的沟通策略。
{"title":"Do You Want to Stay Single? Considerations on Single-Arm Trials in Drug Development and the Postregulatory Space.","authors":"Yulia Dyachkova, Cornelia Dunger-Baldauf, Nathalie Barbier, Jenny Devenport, Stefan Franzén, Gbenga Kazeem, Thomas Künzel, Pierre Mancini, Giacomo Mordenti, Knut Richert, Antonia Ridolfi, Daniel Saure","doi":"10.1002/pst.2412","DOIUrl":"10.1002/pst.2412","url":null,"abstract":"<p><p>Single-arm trials (SATs), while not preferred, remain in use throughout the drug development cycle. They may be accepted by regulators in particular contexts (e.g., in oncology or rare diseases) when the potential effects of new treatments are very large and placebo treatment is unethical. However, in the postregulatory space, SATs are common, and perhaps even more poorly suited to address the questions of interest. In this manuscript, we review regulatory and HTA positions on SATs; challenges posed by SATs to address research questions beyond regulators, evolving statistical methods to provide context for SATs, case studies where SATs could and could not address questions of interest, and communication strategies to influence decision making and optimize study design to address evidence needs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1206-1217"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handling Partially Observed Trial Data After Treatment Withdrawal: Introducing Retrieved Dropout Reference-Base Centred Multiple Imputation. 处理治疗退出后的部分观察试验数据:引入以检索到的辍学参考基数为中心的多重估算。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-16 DOI: 10.1002/pst.2416
Suzie Cro, James H Roger, James R Carpenter

The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment-policy as one of several strategies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the monitoring of patients and collection of primary outcome data following termination of randomised treatment. However, when patients withdraw from a study early before completion this creates true missing data complicating the analysis. One possible way forward uses multiple imputation to replace the missing data based on a model for outcome on- and off-treatment prior to study withdrawal, often referred to as retrieved dropout multiple imputation. This article introduces a novel approach to parameterising this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian priors applied during the imputation stage. A core reference-based model is combined with a retrieved dropout compliance model, using both on- and off-treatment data, to form an extended model for the purposes of imputation. This alleviates the problem of specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are not estimable, or are poorly estimated leading to unrealistically large standard errors in the resulting analysis. We refer to this new approach as retrieved dropout reference-base centred multiple imputation.

ICH E9(R1)增编(国际协调理事会,2019 年)建议,在定义估算指标时,将治疗政策作为解决治疗退出等并发症的几种策略之一。该策略要求对患者进行监测,并在随机治疗终止后收集主要结果数据。但是,如果患者在研究完成前提前退出,就会造成真正的数据缺失,使分析变得复杂。一种可行的方法是使用多重归因法来替换缺失数据,该方法基于研究退出前治疗中和治疗后的结果模型,通常称为检索辍学多重归因法。本文介绍了一种新颖的方法来为这一估算模型设置参数,以便在估算阶段对那些可能难以估计的参数应用轻度信息贝叶斯先验。基于参考文献的核心模型与检索到的辍学顺应性模型相结合,同时使用治疗中和治疗后的数据,形成一个用于估算的扩展模型。这就减轻了指定一套复杂的分析规则的问题,以适应影响估计值的参数无法估计或估计不准确导致分析结果标准误差过大的情况。我们将这种新方法称为以检索辍学参考基数为中心的多重估算。
{"title":"Handling Partially Observed Trial Data After Treatment Withdrawal: Introducing Retrieved Dropout Reference-Base Centred Multiple Imputation.","authors":"Suzie Cro, James H Roger, James R Carpenter","doi":"10.1002/pst.2416","DOIUrl":"10.1002/pst.2416","url":null,"abstract":"<p><p>The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment-policy as one of several strategies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the monitoring of patients and collection of primary outcome data following termination of randomised treatment. However, when patients withdraw from a study early before completion this creates true missing data complicating the analysis. One possible way forward uses multiple imputation to replace the missing data based on a model for outcome on- and off-treatment prior to study withdrawal, often referred to as retrieved dropout multiple imputation. This article introduces a novel approach to parameterising this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian priors applied during the imputation stage. A core reference-based model is combined with a retrieved dropout compliance model, using both on- and off-treatment data, to form an extended model for the purposes of imputation. This alleviates the problem of specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are not estimable, or are poorly estimated leading to unrealistically large standard errors in the resulting analysis. We refer to this new approach as retrieved dropout reference-base centred multiple imputation.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1095-1116"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Hierarchical Models for Subgroup Analysis. 用于分组分析的贝叶斯层次模型。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-15 DOI: 10.1002/pst.2424
Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann

In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.

在传统的亚组分析中,亚组治疗效果是使用每个亚组的数据单独估算的,而不考虑同一研究中其他亚组的数据。由于某些亚组的样本量较小,这种方法估算出的亚组治疗效果可能是异质性的,变异性较大,与总体人群的治疗效果相差甚远。贝叶斯分层模型(BHM)可用于得出更精确、异质性更小的亚组治疗效果估计值,这些估计值更接近总体人群的治疗效果。BHM 假定在调整效应修饰因子和其他相关协变量后,各亚组的治疗效果具有可交换性。在本文中,我们将讨论使用汇总级统计数据和患者级数据进行单向和多向 BHM 应用于亚组分析的技术细节。我们将通过四个基于新药申请的案例研究来说明这些模型在连续终点、二分终点、时间到事件终点和计数终点亚组分析中的应用。
{"title":"Bayesian Hierarchical Models for Subgroup Analysis.","authors":"Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann","doi":"10.1002/pst.2424","DOIUrl":"10.1002/pst.2424","url":null,"abstract":"<p><p>In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1065-1083"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Stratification Strategies for Population- Versus Randomization-Based Inference. 探索基于人群与随机推断的分层策略。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-10 DOI: 10.1002/pst.2419
Marco Novelli, William F Rosenberger

Stratification on important variables is a common practice in clinical trials, since ensuring cosmetic balance on known baseline covariates is often deemed to be a crucial requirement for the credibility of the experimental results. However, the actual benefits of stratification are still debated in the literature. Other authors have shown that it does not improve efficiency in large samples and improves it only negligibly in smaller samples. This paper investigates different subgroup analysis strategies, with a particular focus on the potential benefits in terms of inferential precision of prestratification versus both poststratification and post hoc regression adjustment. For each of these approaches, the pros and cons of population-based versus randomization-based inference are discussed. The effects of the presence of a treatment-by-covariate interaction and the variability in the patient responses are also taken into account. Our results show that, in general, prestratifying does not provide substantial benefit. On the contrary, it may be deleterious, in particular for randomization-based procedures in the presence of a chronological bias. Even when there is treatment-by-covariate interaction, prestratification may backfire by considerably reducing the inferential precision.

对重要变量进行分层是临床试验中的常见做法,因为确保已知基线协变量的外观平衡通常被认为是实验结果可信度的关键要求。然而,分层的实际益处在文献中仍有争议。其他作者的研究表明,在大样本中,分层并不能提高效率,而在小样本中,分层的效果只能忽略不计。本文研究了不同的亚组分析策略,尤其关注预分层与后分层和事后回归调整在推断精度方面的潜在优势。对于每种方法,本文都讨论了基于人群的推断与基于随机化的推断的利弊。此外,还考虑了治疗与变量之间的交互作用以及患者反应的变异性的影响。我们的研究结果表明,一般来说,预分层并不会带来实质性的好处。相反,预分层可能会带来不利影响,特别是对于存在时间偏差的随机化程序。即使存在治疗与变量之间的交互作用,预分层也可能会适得其反,大大降低推断的精确性。
{"title":"Exploring Stratification Strategies for Population- Versus Randomization-Based Inference.","authors":"Marco Novelli, William F Rosenberger","doi":"10.1002/pst.2419","DOIUrl":"10.1002/pst.2419","url":null,"abstract":"<p><p>Stratification on important variables is a common practice in clinical trials, since ensuring cosmetic balance on known baseline covariates is often deemed to be a crucial requirement for the credibility of the experimental results. However, the actual benefits of stratification are still debated in the literature. Other authors have shown that it does not improve efficiency in large samples and improves it only negligibly in smaller samples. This paper investigates different subgroup analysis strategies, with a particular focus on the potential benefits in terms of inferential precision of prestratification versus both poststratification and post hoc regression adjustment. For each of these approaches, the pros and cons of population-based versus randomization-based inference are discussed. The effects of the presence of a treatment-by-covariate interaction and the variability in the patient responses are also taken into account. Our results show that, in general, prestratifying does not provide substantial benefit. On the contrary, it may be deleterious, in particular for randomization-based procedures in the presence of a chronological bias. Even when there is treatment-by-covariate interaction, prestratification may backfire by considerably reducing the inferential precision.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1045-1058"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Study Design and Analysis of Longitudinal Dose-Response Data Using Fractional Polynomials. 利用分数多项式进行高效研究设计和纵向剂量反应数据分析
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-28 DOI: 10.1002/pst.2425
Benjamin F Hartley, Dave Lunn, Adrian P Mander

Correctly characterising the dose-response relationship and taking the correct dose forward for further study is a critical part of the drug development process. We use optimal design theory to compare different designs and show that using longitudinal data from all available timepoints in a continuous-time dose-response model can substantially increase the efficiency of estimation of the dose-response compared to a single timepoint model. We give theoretical results to calculate the efficiency gains for a large class of these models. For example, a linearly growing Emax dose-response in a population with a between/within-patient variance ratio ranging from 0.1 to 1 measured at six visits can be estimated with between 1.43 and 2.22 times relative efficiency gain, or equivalently, with 30% to a 55% reduced sample size, compared to a single model of the final timepoint. Fractional polynomials are a flexible way to incorporate data from repeated measurements, increasing precision without imposing strong constraints. Longitudinal dose-response models using two fractional polynomial terms are robust to mis-specification of the true longitudinal process while maintaining, often large, efficiency gains. These models have applications for characterising the dose-response at interim or final analyses.

正确描述剂量-反应关系并采取正确的剂量进行进一步研究是药物开发过程的关键部分。我们利用最优设计理论来比较不同的设计,结果表明,与单时间点模型相比,在连续时间剂量-反应模型中使用所有可用时间点的纵向数据可以大大提高剂量-反应的估算效率。我们给出了计算一大类此类模型效率提高的理论结果。例如,与最后一个时间点的单一模型相比,在一个患者间/患者内变异比在 0.1 到 1 之间的人群中,通过六次就诊测量的线性增长的 Emax 剂量反应的估计效率相对提高了 1.43 到 2.22 倍,或者说样本量减少了 30% 到 55%。分数多项式是纳入重复测量数据的一种灵活方法,可在不强加限制的情况下提高精确度。使用两个分数多项式项的纵向剂量-反应模型对真实纵向过程的错误规范具有很强的鲁棒性,同时还能保持较高的效率。这些模型可用于描述中期或最终分析的剂量反应特征。
{"title":"Efficient Study Design and Analysis of Longitudinal Dose-Response Data Using Fractional Polynomials.","authors":"Benjamin F Hartley, Dave Lunn, Adrian P Mander","doi":"10.1002/pst.2425","DOIUrl":"10.1002/pst.2425","url":null,"abstract":"<p><p>Correctly characterising the dose-response relationship and taking the correct dose forward for further study is a critical part of the drug development process. We use optimal design theory to compare different designs and show that using longitudinal data from all available timepoints in a continuous-time dose-response model can substantially increase the efficiency of estimation of the dose-response compared to a single timepoint model. We give theoretical results to calculate the efficiency gains for a large class of these models. For example, a linearly growing Emax dose-response in a population with a between/within-patient variance ratio ranging from 0.1 to 1 measured at six visits can be estimated with between 1.43 and 2.22 times relative efficiency gain, or equivalently, with 30% to a 55% reduced sample size, compared to a single model of the final timepoint. Fractional polynomials are a flexible way to incorporate data from repeated measurements, increasing precision without imposing strong constraints. Longitudinal dose-response models using two fractional polynomial terms are robust to mis-specification of the true longitudinal process while maintaining, often large, efficiency gains. These models have applications for characterising the dose-response at interim or final analyses.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1128-1143"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To Dilute or Not to Dilute: Nominal Titer Dosing for Genetic Medicines. 稀释还是不稀释:基因药物的名义滴度剂量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-06-25 DOI: 10.1002/pst.2406
Paul Faya, Tianhui Zhang

Recombinant adeno-associated virus (AAV) has become a popular platform for many gene therapy applications. The strength of AAV-based products is a critical quality attribute that affects the efficacy of the drug and is measured as the concentration of vector genomes, or physical titer. Because the dosing of patients is based on the titer measurement, it is critical for manufacturers to ensure that the measured titer of the drug product is close to the actual concentration of the batch. Historically, dosing calculations have been performed using the measured titer, which is reported on the drug product label. However, due to recent regulatory guidance, sponsors are now expected to label the drug product with nominal or "target" titer. This new expectation for gene therapy products can pose a challenge in the presence of process and analytical variability. In particular, the manufacturer must decide if a dilution of the drug substance is warranted at the drug product stage to bring the strength in line with the nominal value. In this paper, we present two straightforward statistical methods to aid the manufacturer in the dilution decision. These approaches use the understanding of process and analytical variability to compute probabilities of achieving the desired drug product titer. We also provide an approach for determining an optimal assay replication strategy for achieving the desired probability of meeting drug product release specifications.

重组腺相关病毒(AAV)已成为许多基因治疗应用的流行平台。基于 AAV 的产品的强度是影响药物疗效的关键质量属性,以载体基因组的浓度或物理滴度来衡量。由于患者的用药剂量是根据滴度测量得出的,因此生产商必须确保药物产品的测量滴度接近批次的实际浓度。一直以来,剂量计算都是使用药物产品标签上报告的测定滴度。然而,根据最近的监管指南,申办者现在应该在药品标签上标注名义滴度或 "目标 "滴度。对基因治疗产品的这一新要求可能会给工艺和分析变异性带来挑战。特别是,制造商必须决定是否需要在药物产品阶段对药物物质进行稀释,以使其强度符合标称值。在本文中,我们提出了两种简单明了的统计方法来帮助制造商做出稀释决定。这些方法利用对工艺和分析变异性的理解来计算达到所需药物产品滴度的概率。我们还提供了一种方法,用于确定最佳的化验复制策略,以达到满足药物产品释放规格的预期概率。
{"title":"To Dilute or Not to Dilute: Nominal Titer Dosing for Genetic Medicines.","authors":"Paul Faya, Tianhui Zhang","doi":"10.1002/pst.2406","DOIUrl":"10.1002/pst.2406","url":null,"abstract":"<p><p>Recombinant adeno-associated virus (AAV) has become a popular platform for many gene therapy applications. The strength of AAV-based products is a critical quality attribute that affects the efficacy of the drug and is measured as the concentration of vector genomes, or physical titer. Because the dosing of patients is based on the titer measurement, it is critical for manufacturers to ensure that the measured titer of the drug product is close to the actual concentration of the batch. Historically, dosing calculations have been performed using the measured titer, which is reported on the drug product label. However, due to recent regulatory guidance, sponsors are now expected to label the drug product with nominal or \"target\" titer. This new expectation for gene therapy products can pose a challenge in the presence of process and analytical variability. In particular, the manufacturer must decide if a dilution of the drug substance is warranted at the drug product stage to bring the strength in line with the nominal value. In this paper, we present two straightforward statistical methods to aid the manufacturer in the dilution decision. These approaches use the understanding of process and analytical variability to compute probabilities of achieving the desired drug product titer. We also provide an approach for determining an optimal assay replication strategy for achieving the desired probability of meeting drug product release specifications.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"939-944"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T3 + 3: 3 + 3 Design With Delayed Outcomes. T3 + 3:延迟结果的 3 + 3 设计。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-06-25 DOI: 10.1002/pst.2414
Jiaying Guo, Mengyi Lu, Isabella Wan, Yumin Wang, Leng Han, Yong Zang

Delayed outcome is common in phase I oncology clinical trials. It causes logistic difficulty, wastes resources, and prolongs the trial duration. This article investigates this issue and proposes the time-to-event 3 + 3 (T3 + 3) design, which utilizes the actual follow-up time for at-risk patients with pending toxicity outcomes. The T3 + 3 design allows continuous accrual without unnecessary trial suspension and is costless and implementable with pretabulated dose decision rules. Besides, the T3 + 3 design uses the isotonic regression to estimate the toxicity rates across dose levels and therefore can accommodate for any targeted toxicity rate for maximum tolerated dose (MTD). It dramatically facilitates the trial preparation and conduct without intensive computation and statistical consultation. The extension to other algorithm-based phase I dose-finding designs (e.g., i3 + 3 design) is also studied. Comprehensive computer simulation studies are conducted to investigate the performance of the T3 + 3 design under various dose-toxicity scenarios. The results confirm that the T3 + 3 design substantially shortens the trial duration compared with the conventional 3 + 3 design and yields much higher accuracy in MTD identification than the rolling six design. In summary, the T3 + 3 design addresses the delayed outcome issue while keeping the desirable features of the 3 + 3 design, such as simplicity, transparency, and costless implementation. It has great potential to accelerate early-phase drug development.

延迟结果在肿瘤学一期临床试验中很常见。它给后勤工作带来困难,浪费资源,延长试验时间。本文对这一问题进行了研究,并提出了从时间到事件的 3 + 3(T3 + 3)设计,即利用实际随访时间对毒性结果待定的高危患者进行随访。T3 + 3 设计允许持续累积,而无需不必要地暂停试验,而且成本低廉,可通过预先制定的剂量决策规则来实施。此外,T3 + 3 设计使用等张回归法来估算各剂量水平的毒性率,因此可以适应最大耐受剂量(MTD)的任何目标毒性率。这极大地方便了试验的准备和实施,无需大量计算和统计咨询。此外,还研究了将该方法推广到其他基于算法的 I 期剂量寻找设计(如 i3 + 3 设计)的可能性。还进行了全面的计算机模拟研究,以调查 T3 + 3 设计在各种剂量-毒性情况下的表现。结果证实,与传统的 3 + 3 设计相比,T3 + 3 设计大大缩短了试验持续时间,而且与滚动 6 设计相比,T3 + 3 设计的 MTD 识别准确率要高得多。总之,T3 + 3 设计既解决了延迟结果问题,又保留了 3 + 3 设计的理想特性,如简单、透明和实施成本低。它在加速早期药物开发方面具有巨大潜力。
{"title":"T3 + 3: 3 + 3 Design With Delayed Outcomes.","authors":"Jiaying Guo, Mengyi Lu, Isabella Wan, Yumin Wang, Leng Han, Yong Zang","doi":"10.1002/pst.2414","DOIUrl":"10.1002/pst.2414","url":null,"abstract":"<p><p>Delayed outcome is common in phase I oncology clinical trials. It causes logistic difficulty, wastes resources, and prolongs the trial duration. This article investigates this issue and proposes the time-to-event 3 + 3 (T3 + 3) design, which utilizes the actual follow-up time for at-risk patients with pending toxicity outcomes. The T3 + 3 design allows continuous accrual without unnecessary trial suspension and is costless and implementable with pretabulated dose decision rules. Besides, the T3 + 3 design uses the isotonic regression to estimate the toxicity rates across dose levels and therefore can accommodate for any targeted toxicity rate for maximum tolerated dose (MTD). It dramatically facilitates the trial preparation and conduct without intensive computation and statistical consultation. The extension to other algorithm-based phase I dose-finding designs (e.g., i3 + 3 design) is also studied. Comprehensive computer simulation studies are conducted to investigate the performance of the T3 + 3 design under various dose-toxicity scenarios. The results confirm that the T3 + 3 design substantially shortens the trial duration compared with the conventional 3 + 3 design and yields much higher accuracy in MTD identification than the rolling six design. In summary, the T3 + 3 design addresses the delayed outcome issue while keeping the desirable features of the 3 + 3 design, such as simplicity, transparency, and costless implementation. It has great potential to accelerate early-phase drug development.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"959-970"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Personalized Dose-Finding Algorithm Based on Adaptive Gaussian Process Regression. 基于自适应高斯过程回归的个性化剂量确定算法
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-08-09 DOI: 10.1002/pst.2417
Yeonhee Park, Won Chang

Dose-finding studies play a crucial role in drug development by identifying the optimal dose(s) for later studies while considering tolerability. This not only saves time and effort in proceeding with Phase III trials but also improves efficacy. In an era of precision medicine, it is not ideal to assume patient homogeneity in dose-finding studies as patients may respond differently to the drug. To address this, we propose a personalized dose-finding algorithm that assigns patients to individualized optimal biological doses. Our design follows a two-stage approach. Initially, patients are enrolled under broad eligibility criteria. Based on the Stage 1 data, we fit a regression model of toxicity and efficacy outcomes on dose and biomarkers to characterize treatment-sensitive patients. In the second stage, we restrict the trial population to sensitive patients, apply a personalized dose allocation algorithm, and choose the recommended dose at the end of the trial. Simulation study shows that the proposed design reliably enriches the trial population, minimizes the number of failures, and yields superior operating characteristics compared to several existing dose-finding designs in terms of both the percentage of correct selection and the number of patients treated at target dose(s).

剂量摸底研究在药物研发中发挥着至关重要的作用,它可以在考虑耐受性的同时,为后续研究确定最佳剂量。这不仅能节省进行 III 期试验的时间和精力,还能提高疗效。在精准医疗时代,在剂量探索研究中假定患者具有同质性并不理想,因为患者可能对药物产生不同的反应。为了解决这个问题,我们提出了一种个性化剂量寻找算法,为患者分配个性化的最佳生物剂量。我们的设计采用两阶段方法。首先,根据广泛的资格标准招募患者。在第一阶段数据的基础上,我们根据剂量和生物标志物拟合了毒性和疗效结果的回归模型,以确定对治疗敏感的患者的特征。在第二阶段,我们将试验人群限定为敏感患者,应用个性化剂量分配算法,并在试验结束时选择推荐剂量。模拟研究表明,与现有的几种剂量寻找设计相比,所提出的设计能可靠地丰富试验人群,最大限度地减少失败次数,并在正确选择的百分比和按目标剂量治疗的患者人数方面产生更优越的操作特性。
{"title":"A Personalized Dose-Finding Algorithm Based on Adaptive Gaussian Process Regression.","authors":"Yeonhee Park, Won Chang","doi":"10.1002/pst.2417","DOIUrl":"10.1002/pst.2417","url":null,"abstract":"<p><p>Dose-finding studies play a crucial role in drug development by identifying the optimal dose(s) for later studies while considering tolerability. This not only saves time and effort in proceeding with Phase III trials but also improves efficacy. In an era of precision medicine, it is not ideal to assume patient homogeneity in dose-finding studies as patients may respond differently to the drug. To address this, we propose a personalized dose-finding algorithm that assigns patients to individualized optimal biological doses. Our design follows a two-stage approach. Initially, patients are enrolled under broad eligibility criteria. Based on the Stage 1 data, we fit a regression model of toxicity and efficacy outcomes on dose and biomarkers to characterize treatment-sensitive patients. In the second stage, we restrict the trial population to sensitive patients, apply a personalized dose allocation algorithm, and choose the recommended dose at the end of the trial. Simulation study shows that the proposed design reliably enriches the trial population, minimizes the number of failures, and yields superior operating characteristics compared to several existing dose-finding designs in terms of both the percentage of correct selection and the number of patients treated at target dose(s).</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1181-1205"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying the Estimand Framework to Non‐Inferiority Trials. 将 Estimand 框架应用于非劣效性试验。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-08-08 DOI: 10.1002/pst.2433
Helle Lynggaard, Oliver N Keene, Tobias Mütze, Sunita Rehal

Most published applications of the estimand framework have focused on superiority trials. However, non-inferiority trials present specific challenges compared to superiority trials. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use notes in their addendum on estimands and sensitivity analysis in clinical trials that there may be special considerations to the implementation of estimands in clinical trials with a non-inferiority objective yet provides little guidance. This paper discusses considerations that trial teams should make when defining estimands for a clinical trial with a non-inferiority objective. We discuss how the pre-addendum way of establishing non-inferiority can be embraced by the estimand framework including a discussion of the role of the Per Protocol analysis set. We examine what clinical questions of interest can be formulated in the context of non-inferiority trials and outline why we do not think it is sensible to describe an estimand as 'conservative'. The impact of the estimand framework on key considerations in non-inferiority trials such as whether trials should have more than one primary estimand, the choice of non-inferiority margin, assay sensitivity, switching from non-inferiority to superiority and estimation are discussed. We conclude by providing a list of recommendations, and important considerations for defining estimands for trials with a non-inferiority objective.

大多数已发表的估算值框架应用都集中在优效试验上。然而,与优效试验相比,非劣效试验面临着特殊的挑战。国际人用药品技术要求协调委员会在其关于临床试验中的估计指标和敏感性分析的增编中指出,在以非劣效性为目标的临床试验中实施估计指标时可能会有一些特殊的考虑因素,但几乎没有提供任何指导。本文讨论了试验团队在为具有非劣效性目标的临床试验定义估计指标时应注意的事项。我们讨论了估算指标框架如何采用增补前方式确定非劣效性,包括讨论每项协议分析集的作用。我们研究了在非劣效性试验中可以提出哪些临床问题,并概述了为什么我们认为将估计值描述为 "保守 "是不明智的。我们还讨论了估计指标框架对非劣效性试验中主要考虑因素的影响,如试验是否应该有一个以上的主要估计指标、非劣效边际的选择、检测灵敏度、从非劣效到优效的转换以及估计。最后,我们提供了一份建议清单,以及在以非劣效性为目标的试验中定义估计指标的重要注意事项。
{"title":"Applying the Estimand Framework to Non‐Inferiority Trials.","authors":"Helle Lynggaard, Oliver N Keene, Tobias Mütze, Sunita Rehal","doi":"10.1002/pst.2433","DOIUrl":"10.1002/pst.2433","url":null,"abstract":"<p><p>Most published applications of the estimand framework have focused on superiority trials. However, non-inferiority trials present specific challenges compared to superiority trials. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use notes in their addendum on estimands and sensitivity analysis in clinical trials that there may be special considerations to the implementation of estimands in clinical trials with a non-inferiority objective yet provides little guidance. This paper discusses considerations that trial teams should make when defining estimands for a clinical trial with a non-inferiority objective. We discuss how the pre-addendum way of establishing non-inferiority can be embraced by the estimand framework including a discussion of the role of the Per Protocol analysis set. We examine what clinical questions of interest can be formulated in the context of non-inferiority trials and outline why we do not think it is sensible to describe an estimand as 'conservative'. The impact of the estimand framework on key considerations in non-inferiority trials such as whether trials should have more than one primary estimand, the choice of non-inferiority margin, assay sensitivity, switching from non-inferiority to superiority and estimation are discussed. We conclude by providing a list of recommendations, and important considerations for defining estimands for trials with a non-inferiority objective.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1156-1165"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes. 优化 2 型糖尿病 3 期临床试验的样本量确定。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-30 DOI: 10.1002/pst.2446
Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann

An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.

对受试者水平差异的知情估计是准确估计临床试验所需样本量的关键因素。在计划阶段对提交给美国食品药品管理局的已完成的成人 2 型糖尿病研究进行评估,以确定方差估计的准确性,从而为未来研究的样本量要求提供启示。从美国食品药品管理局(FDA)的新药申请数据库中,我们获得了主要终点--糖化血红蛋白(HbA1c)从基线到6个月的变化--的受试者水平方差估计值。此外,我们还使用了另外九项研究来考察具有临床意义的协变量对残差标准差和样本量再估计的影响。我们的分析表明,缩小样本量不会影响成人 2 型糖尿病药物试验疗效结果的有效性。这一发现对未来涉及成人 2 型糖尿病人群的研究具有重要意义,包括有可能缩短招募期和提高结果的及时性。此外,我们的发现还可用于未来内分泌学临床试验的设计。
{"title":"Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes.","authors":"Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann","doi":"10.1002/pst.2446","DOIUrl":"https://doi.org/10.1002/pst.2446","url":null,"abstract":"<p><p>An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1