首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Futility Interim Analysis Based on Probability of Success Using a Surrogate Endpoint. 基于使用替代终点的成功概率的无用性中期分析。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-02 DOI: 10.1002/pst.2410
Ronan Fougeray, Loïck Vidot, Marco Ratta, Zhaoyang Teng, Donia Skanji, Gaëlle Saint-Hilary

In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical "final" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.

在使用时间到事件数据的临床试验中,疗效评估可能是一个漫长而复杂的过程,尤其是在考虑长期主要终点时。使用替代终点来关联主要终点已成为加快决策的一种常见做法。此外,尽量减少样本量的道德需求和优化可用资源的实际需求也促使科学界开发出利用历史数据的方法。本文介绍的方法以分组序列设计的一般理论为基础,采用贝叶斯框架,利用临床 "最终 "终点与代用终点之间有据可查的历史关系,利用临床试验早期中期分析的代用数据,为主要终点建立一个信息先验。然后,利用试验成功的预测概率来定义徒劳性终止规则。该方法表明,当当前数据与历史数据高度一致时,试验运行特征会得到大幅提升。此外,将代理先验与模糊成分相结合的稳健方法减轻了轻微先验数据冲突的影响,同时即使存在严重的先验数据冲突,也能保持可接受的性能。所提出的方法被应用于设计转移性结直肠癌的 III 期临床试验,以总生存期为主要终点,无进展生存期为替代终点。
{"title":"Futility Interim Analysis Based on Probability of Success Using a Surrogate Endpoint.","authors":"Ronan Fougeray, Loïck Vidot, Marco Ratta, Zhaoyang Teng, Donia Skanji, Gaëlle Saint-Hilary","doi":"10.1002/pst.2410","DOIUrl":"10.1002/pst.2410","url":null,"abstract":"<p><p>In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical \"final\" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"971-983"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survival Analysis Without Sharing of Individual Patient Data by Using a Gaussian Copula. 使用高斯 Copula 进行生存分析而无需共享单个患者数据
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-07 DOI: 10.1002/pst.2415
Federico Bonofiglio

Cox regression and Kaplan-Meier estimations are often needed in clinical research and this requires access to individual patient data (IPD). However, IPD cannot always be shared because of privacy or proprietary restrictions, which complicates the making of such estimations. We propose a method that generates pseudodata replacing the IPD by only sharing non-disclosive aggregates such as IPD marginal moments and a correlation matrix. Such aggregates are collected by a central computer and input as parameters to a Gaussian copula (GC) that generates the pseudodata. Survival inferences are computed on the pseudodata as if it were the IPD. Using practical examples we demonstrate the utility of the method, via the amount of IPD inferential content recoverable by the GC. We compare GC to a summary-based meta-analysis and an IPD bootstrap distributed across several centers. Other pseudodata approaches are also considered. In the empirical results, GC approximates the utility of the IPD bootstrap although it might yield more conservative inferences and it might have limitations in subgroup analyses. Overall, GC avoids many legal problems related to IPD privacy or property while enabling approximation of common IPD survival analyses otherwise difficult to conduct. Sharing more IPD aggregates than is currently practiced could facilitate "second purpose"-research and relax concerns regarding IPD access.

临床研究中经常需要进行 Cox 回归和 Kaplan-Meier 估计,这就需要获取患者的个人数据(IPD)。然而,由于隐私或专有权的限制,IPD 并不总能共享,这就使此类估算变得更加复杂。我们提出了一种方法,通过只共享 IPD 边际矩和相关矩阵等非披露性总体数据来生成替代 IPD 的伪数据。这些总体数据由中央计算机收集,并作为参数输入到生成伪数据的高斯共线公式(GC)中。对伪数据进行生存推断计算时,就像计算 IPD 一样。通过实际案例,我们展示了该方法的实用性,即 GC 可恢复 IPD 推断内容的数量。我们将 GC 与基于摘要的荟萃分析和分布在多个中心的 IPD 引导分析进行了比较。我们还考虑了其他伪数据方法。在实证结果中,GC 近似于 IPD 自举法的效用,尽管它可能产生更保守的推论,而且在亚组分析中可能有局限性。总的来说,GC 可以避免许多与 IPD 隐私或财产相关的法律问题,同时还能近似地进行普通 IPD 生存分析,否则很难进行。与目前的做法相比,共享更多的 IPD 总量可促进 "第二目的 "研究,并放松对 IPD 访问的担忧。
{"title":"Survival Analysis Without Sharing of Individual Patient Data by Using a Gaussian Copula.","authors":"Federico Bonofiglio","doi":"10.1002/pst.2415","DOIUrl":"10.1002/pst.2415","url":null,"abstract":"<p><p>Cox regression and Kaplan-Meier estimations are often needed in clinical research and this requires access to individual patient data (IPD). However, IPD cannot always be shared because of privacy or proprietary restrictions, which complicates the making of such estimations. We propose a method that generates pseudodata replacing the IPD by only sharing non-disclosive aggregates such as IPD marginal moments and a correlation matrix. Such aggregates are collected by a central computer and input as parameters to a Gaussian copula (GC) that generates the pseudodata. Survival inferences are computed on the pseudodata as if it were the IPD. Using practical examples we demonstrate the utility of the method, via the amount of IPD inferential content recoverable by the GC. We compare GC to a summary-based meta-analysis and an IPD bootstrap distributed across several centers. Other pseudodata approaches are also considered. In the empirical results, GC approximates the utility of the IPD bootstrap although it might yield more conservative inferences and it might have limitations in subgroup analyses. Overall, GC avoids many legal problems related to IPD privacy or property while enabling approximation of common IPD survival analyses otherwise difficult to conduct. Sharing more IPD aggregates than is currently practiced could facilitate \"second purpose\"-research and relax concerns regarding IPD access.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1031-1044"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Methods for Quality Tolerance Limit (QTL) Monitoring. 质量容限 (QTL) 监测的贝叶斯方法。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-08-09 DOI: 10.1002/pst.2427
J C Poythress, Jin Hyung Lee, Kentaro Takeda, Jun Liu

In alignment with the ICH guideline for Good Clinical Practice [ICH E6(R2)], quality tolerance limit (QTL) monitoring has become a standard component of risk-based monitoring of clinical trials by sponsor companies. Parameters that are candidates for QTL monitoring are critical to participant safety and quality of trial results. Breaching the QTL of a given parameter could indicate systematic issues with the trial that could impact participant safety or compromise the reliability of trial results. Methods for QTL monitoring should detect potential QTL breaches as early as possible while limiting the rate of false alarms. Early detection allows for the implementation of remedial actions that can prevent a QTL breach at the end of the trial. We demonstrate that statistically based methods that account for the expected value and variability of the data generating process outperform simple methods based on fixed thresholds with respect to important operating characteristics. We also propose a Bayesian method for QTL monitoring and an extension that allows for the incorporation of partial information, demonstrating its potential to outperform frequentist methods originating from the statistical process control literature.

根据《国际化学品管理委员会良好临床实践指南》[ICH E6(R2)],质量耐受限度(QTL)监测已成为申办公司对临床试验进行风险监测的标准组成部分。作为 QTL 监测对象的参数对参与者的安全和试验结果的质量至关重要。突破特定参数的 QTL 可能表明试验存在系统性问题,从而影响受试者的安全或损害试验结果的可靠性。QTL 监测方法应尽早发现潜在的 QTL 缺陷,同时限制误报率。及早检测可以采取补救措施,防止试验结束时出现 QTL 缺陷。我们证明,考虑到数据生成过程的预期值和变异性的统计方法在重要操作特征方面优于基于固定阈值的简单方法。我们还提出了一种用于 QTL 监测的贝叶斯方法,以及一种允许纳入部分信息的扩展方法,证明了其优于源于统计过程控制文献的频数主义方法的潜力。
{"title":"Bayesian Methods for Quality Tolerance Limit (QTL) Monitoring.","authors":"J C Poythress, Jin Hyung Lee, Kentaro Takeda, Jun Liu","doi":"10.1002/pst.2427","DOIUrl":"10.1002/pst.2427","url":null,"abstract":"<p><p>In alignment with the ICH guideline for Good Clinical Practice [ICH E6(R2)], quality tolerance limit (QTL) monitoring has become a standard component of risk-based monitoring of clinical trials by sponsor companies. Parameters that are candidates for QTL monitoring are critical to participant safety and quality of trial results. Breaching the QTL of a given parameter could indicate systematic issues with the trial that could impact participant safety or compromise the reliability of trial results. Methods for QTL monitoring should detect potential QTL breaches as early as possible while limiting the rate of false alarms. Early detection allows for the implementation of remedial actions that can prevent a QTL breach at the end of the trial. We demonstrate that statistically based methods that account for the expected value and variability of the data generating process outperform simple methods based on fixed thresholds with respect to important operating characteristics. We also propose a Bayesian method for QTL monitoring and an extension that allows for the incorporation of partial information, demonstrating its potential to outperform frequentist methods originating from the statistical process control literature.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1166-1180"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reparametrized Firth's Logistic Regressions for Dose-Finding Study With the Biased-Coin Design. 采用偏币设计的剂量寻找研究中的重拟合 Firth Logistic 回归。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-16 DOI: 10.1002/pst.2423
Hyungwoo Kim, Seungpil Jung, Yudi Pawitan, Woojoo Lee

Finding an adequate dose of the drug by revealing the dose-response relationship is very crucial and a challenging problem in the clinical development. The main concerns in dose-finding study are to identify a minimum effective dose (MED) in anesthesia studies and maximum tolerated dose (MTD) in oncology clinical trials. For the estimation of MED and MTD, we propose two modifications of Firth's logistic regression using reparametrization, called reparametrized Firth's logistic regression (rFLR) and ridge-penalized reparametrized Firth's logistic regression (RrFLR). The proposed methods are designed by directly reducing the small-sample bias of the maximum likelihood estimate for the parameter of interest. In addition, we develop a method on how to construct confidence intervals for rFLR and RrFLR using profile penalized likelihood. In the up-and-down biased-coin design, numerical studies confirm the superior performance of the proposed methods in terms of the mean squared error, bias, and coverage accuracy of confidence intervals.

在临床开发过程中,通过揭示剂量-反应关系来找到适当的药物剂量是一个非常关键且具有挑战性的问题。剂量寻找研究的主要关注点是确定麻醉研究中的最小有效剂量(MED)和肿瘤临床试验中的最大耐受剂量(MTD)。为了估算 MED 和 MTD,我们提出了两种使用重拟态对 Firth Logistic 回归进行修改的方法,分别称为重拟态 Firth Logistic 回归(rFLR)和脊惩罚重拟态 Firth Logistic 回归(RrFLR)。所提出的方法是通过直接减少相关参数的最大似然估计的小样本偏差而设计的。此外,我们还开发了一种方法,即如何利用轮廓惩罚似然法构建 rFLR 和 RrFLR 的置信区间。在上下偏置硬币设计中,数值研究证实了所提方法在均方误差、偏差和置信区间覆盖精度方面的优越性能。
{"title":"Reparametrized Firth's Logistic Regressions for Dose-Finding Study With the Biased-Coin Design.","authors":"Hyungwoo Kim, Seungpil Jung, Yudi Pawitan, Woojoo Lee","doi":"10.1002/pst.2423","DOIUrl":"10.1002/pst.2423","url":null,"abstract":"<p><p>Finding an adequate dose of the drug by revealing the dose-response relationship is very crucial and a challenging problem in the clinical development. The main concerns in dose-finding study are to identify a minimum effective dose (MED) in anesthesia studies and maximum tolerated dose (MTD) in oncology clinical trials. For the estimation of MED and MTD, we propose two modifications of Firth's logistic regression using reparametrization, called reparametrized Firth's logistic regression (rFLR) and ridge-penalized reparametrized Firth's logistic regression (RrFLR). The proposed methods are designed by directly reducing the small-sample bias of the maximum likelihood estimate for the parameter of interest. In addition, we develop a method on how to construct confidence intervals for rFLR and RrFLR using profile penalized likelihood. In the up-and-down biased-coin design, numerical studies confirm the superior performance of the proposed methods in terms of the mean squared error, bias, and coverage accuracy of confidence intervals.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1117-1127"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved. 二元分类下涉及子类时的最佳切点选择方法
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-07 DOI: 10.1002/pst.2413
Jia Wang, Lili Tian

In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.

在实践中,我们经常会遇到二元分类问题,其中两个主类都由多个子类组成。例如,在一项评估生物标记物区分非癌症病例和癌症病例准确性的卵巢癌研究中,非癌症类包括健康受试者和良性病例,而癌症类包括早期和晚期受试者。本文旨在为这种情况提供大量最佳切点选择方法。此外,我们还研究了最佳切点的置信区间估计。我们进行了模拟研究,以探索所提出的切点选择方法和置信区间估计方法的性能。使用所提出的方法分析了一个真实的卵巢癌数据集。
{"title":"Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved.","authors":"Jia Wang, Lili Tian","doi":"10.1002/pst.2413","DOIUrl":"10.1002/pst.2413","url":null,"abstract":"<p><p>In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"984-1030"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing hypothesis tests in survival analysis under anticipated delayed effects. 预期延迟效应下生存分析中的可视化假设检验
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-05-06 DOI: 10.1002/pst.2393
José L Jiménez, Isobel Barrott, Francesca Gasperoni, Dominic Magirr

What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we anticipate non-proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log-rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log-rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log-rank tests can achieve high power compared to the standard log-rank test, some choices of weights may lead to type-I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre-specified time point τ -a mathematically unambiguous summary measure. However, by emphasizing differences prior to τ , such test statistics may not fully capture the benefit of a new treatment in terms of long-term survival. In this article, we introduce a graphical approach for direct comparison of weighted log-rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.

当我们预计延迟效应会导致非比例危险时,对于采用时间到事件终点的随机临床试验(RCT)的主要分析,什么才是适当的统计方法?这个问题最近引起了很多争论。标准方法是对数秩检验和/或 Cox 比例危险度模型。统计文献中也探讨了其他方法,如加权对数秩检验和基于限制平均生存时间(RMST)的检验。虽然与标准对数秩检验相比,加权对数秩检验可以获得较高的检验功率,但在特定条件下,某些权重的选择可能会导致I型误差膨胀。此外,加权对数秩检验与数学上明确的总结性指标并无关联。另一方面,基于 RMST 的检验统计允许研究两条生存曲线在预先指定的时间点 τ $$ tau $$ 前的平均差异--这是一个数学上明确的总结性指标。然而,由于强调τ $$ tau $$之前的差异,这种检验统计可能无法完全反映新疗法在长期生存方面的益处。在本文中,我们介绍了一种直接比较加权对数秩检验和基于 RMST 检验的图形方法。从这一新角度出发,我们可以更明智地选择分析方法,而不仅仅局限于功率和 I 型误差的比较。
{"title":"Visualizing hypothesis tests in survival analysis under anticipated delayed effects.","authors":"José L Jiménez, Isobel Barrott, Francesca Gasperoni, Dominic Magirr","doi":"10.1002/pst.2393","DOIUrl":"10.1002/pst.2393","url":null,"abstract":"<p><p>What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we anticipate non-proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log-rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log-rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log-rank tests can achieve high power compared to the standard log-rank test, some choices of weights may lead to type-I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre-specified time point <math><mrow><mi>τ</mi></mrow> </math> -a mathematically unambiguous summary measure. However, by emphasizing differences prior to <math><mrow><mi>τ</mi></mrow> </math> , such test statistics may not fully capture the benefit of a new treatment in terms of long-term survival. In this article, we introduce a graphical approach for direct comparison of weighted log-rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"870-883"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using an early outcome as the sole source of information of interim decisions regarding treatment effect on a long-term endpoint: The non-Gaussian case. 将早期结果作为临时决定对长期终点治疗效果的唯一信息来源:非高斯情况
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-06-05 DOI: 10.1002/pst.2398
Leandro Garcia Barrado, Tomasz Burzykowski

In randomized clinical trials that use a long-term efficacy endpoint, the follow-up time necessary to observe the endpoint may be substantial. In such trials, an attractive option is to consider an interim analysis based solely on an early outcome that could be used to expedite the evaluation of treatment's efficacy. Garcia Barrado et al. (Pharm Stat. 2022; 21: 209-219) developed a methodology that allows introducing such an early interim analysis for the case when both the early outcome and the long-term endpoint are normally-distributed, continuous variables. We extend the methodology to any combination of the early-outcome and long-term-endpoint types. As an example, we consider the case of a binary outcome and a time-to-event endpoint. We further evaluate the potential gain in operating characteristics (power, expected trial duration, and expected sample size) of a trial with such an interim analysis in function of the properties of the early outcome as a surrogate for the long-term endpoint.

在采用长期疗效终点的随机临床试验中,观察终点所需的随访时间可能会很长。在此类试验中,一个有吸引力的选择是考虑仅根据早期结果进行中期分析,以加快疗效评估。Garcia Barrado 等人(Pharm Stat. 2022; 21: 209-219)开发了一种方法,可以在早期结果和长期终点均为正态分布连续变量的情况下引入这种早期中期分析。我们将该方法扩展到早期结果和长期终点类型的任何组合。举例来说,我们考虑了二元结果和时间到事件终点的情况。我们将根据作为长期终点替代物的早期结果的特性,进一步评估采用这种中期分析的试验在运行特性(功率、预期试验持续时间和预期样本量)方面的潜在收益。
{"title":"Using an early outcome as the sole source of information of interim decisions regarding treatment effect on a long-term endpoint: The non-Gaussian case.","authors":"Leandro Garcia Barrado, Tomasz Burzykowski","doi":"10.1002/pst.2398","DOIUrl":"10.1002/pst.2398","url":null,"abstract":"<p><p>In randomized clinical trials that use a long-term efficacy endpoint, the follow-up time necessary to observe the endpoint may be substantial. In such trials, an attractive option is to consider an interim analysis based solely on an early outcome that could be used to expedite the evaluation of treatment's efficacy. Garcia Barrado et al. (Pharm Stat. 2022; 21: 209-219) developed a methodology that allows introducing such an early interim analysis for the case when both the early outcome and the long-term endpoint are normally-distributed, continuous variables. We extend the methodology to any combination of the early-outcome and long-term-endpoint types. As an example, we consider the case of a binary outcome and a time-to-event endpoint. We further evaluate the potential gain in operating characteristics (power, expected trial duration, and expected sample size) of a trial with such an interim analysis in function of the properties of the early outcome as a surrogate for the long-term endpoint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"928-938"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Duration Trial as an Alternative Design for Continuous Endpoints. 可变持续时间试验作为连续终点的替代设计
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-11 DOI: 10.1002/pst.2418
Jitendra Ganju, Julie Guoguang Ma

Clinical trials with continuous primary endpoints typically measure outcomes at baseline, at a fixed timepoint (denoted T min), and at intermediate timepoints. The analysis is commonly performed using the mixed model repeated measures method. It is sometimes expected that the effect size will be larger with follow-up longer than T min. But extending the follow-up for all patients delays trial completion. We propose an alternative trial design and analysis method that potentially increases statistical power without extending the trial duration or increasing the sample size. We propose following the last enrolled patient until T min, with earlier enrollees having variable follow-up durations up to a maximum of T max. The sample size at T max will be smaller than at T min, and due to staggered enrollment, data missing at T max will be missing completely at random. For analysis, we propose an alpha-adjusted procedure based on the smaller of the p values at T min and T max, termed minP . This approach can provide the highest power when the powers at T min and T max are similar. If the power at T min and T max differ significantly, the power of minP is modestly reduced compared with the larger of the two powers. Rare disease trials, due to the limited size of the patient population, may benefit the most with this design.

具有连续性主要终点的临床试验通常在基线、固定时间点(Tmin)和中间时间点测量结果。分析通常采用混合模型重复测量法。有时,人们会期望随访时间长于 Tmin 时的效应大小会更大。但延长所有患者的随访时间会延误试验的完成。我们提出了另一种试验设计和分析方法,这种方法有可能在不延长试验时间或增加样本量的情况下提高统计能力。我们建议对最后一名入组患者进行随访,直至 Tmin,而对较早入组患者的随访时间则不固定,直至最大随访时间 Tmax。Tmax时的样本量将小于Tmin时的样本量,而且由于交错入组,Tmax时缺失的数据将完全随机缺失。在分析时,我们建议采用基于 Tmin 和 Tmax 时 p 值中较小者的阿尔法调整程序,称为 minP $$ minP $$。当 Tmin 和 Tmax 的功率相近时,这种方法可提供最高的功率。如果 Tmin 和 Tmax 时的功率相差很大,则 minP $$ minP $$ 的功率会比两个功率中较大的功率略低。罕见病试验由于患者人数有限,采用这种设计可能会受益最大。
{"title":"Variable Duration Trial as an Alternative Design for Continuous Endpoints.","authors":"Jitendra Ganju, Julie Guoguang Ma","doi":"10.1002/pst.2418","DOIUrl":"10.1002/pst.2418","url":null,"abstract":"<p><p>Clinical trials with continuous primary endpoints typically measure outcomes at baseline, at a fixed timepoint (denoted T <sub>min</sub>), and at intermediate timepoints. The analysis is commonly performed using the mixed model repeated measures method. It is sometimes expected that the effect size will be larger with follow-up longer than T <sub>min</sub>. But extending the follow-up for all patients delays trial completion. We propose an alternative trial design and analysis method that potentially increases statistical power without extending the trial duration or increasing the sample size. We propose following the last enrolled patient until T <sub>min</sub>, with earlier enrollees having variable follow-up durations up to a maximum of T <sub>max</sub>. The sample size at T <sub>max</sub> will be smaller than at T <sub>min</sub>, and due to staggered enrollment, data missing at T <sub>max</sub> will be missing completely at random. For analysis, we propose an alpha-adjusted procedure based on the smaller of the p values at T <sub>min</sub> and T <sub>max</sub>, termed <math> <semantics><mrow><mtext>minP</mtext></mrow> </semantics> </math> . This approach can provide the highest power when the powers at T <sub>min</sub> and T <sub>max</sub> are similar. If the power at T <sub>min</sub> and T <sub>max</sub> differ significantly, the power of <math> <semantics><mrow><mtext>minP</mtext></mrow> </semantics> </math> is modestly reduced compared with the larger of the two powers. Rare disease trials, due to the limited size of the patient population, may benefit the most with this design.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1059-1064"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample Size Estimation Using a Partially Clustered Frailty Model for Biomarker-Strategy Designs With Multiple Treatments. 使用部分聚类虚弱模型估算具有多种治疗方法的生物标记物策略设计的样本量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-07-16 DOI: 10.1002/pst.2407
Derek Dinart, Virginie Rondeau, Carine Bellera

Biomarker-guided therapy is a growing area of research in medicine. To optimize the use of biomarkers, several study designs including the biomarker-strategy design (BSD) have been proposed. Unlike traditional designs, the emphasis here is on comparing treatment strategies and not on treatment molecules as such. Patients are assigned to either a biomarker-based strategy (BBS) arm, in which biomarker-positive patients receive an experimental treatment that targets the identified biomarker, or a non-biomarker-based strategy (NBBS) arm, in which patients receive treatment regardless of their biomarker status. We proposed a simulation method based on a partially clustered frailty model (PCFM) as well as an extension of Freidlin formula to estimate the sample size required for BSD with multiple targeted treatments. The sample size was mainly influenced by the heterogeneity of treatment effect, the proportion of biomarker-negative patients, and the randomization ratio. The PCFM is well suited for the data structure and offers an alternative to traditional methodologies.

生物标志物指导疗法是一个不断发展的医学研究领域。为了优化生物标记物的使用,人们提出了包括生物标记物策略设计(BSD)在内的多种研究设计。与传统设计不同的是,这里的重点是比较治疗策略,而不是治疗分子本身。患者被分配到基于生物标记物的策略(BBS)组或非基于生物标记物的策略(NBBS)组,在BBS组中,生物标记物阳性患者接受针对已确定生物标记物的实验性治疗;在NBBS组中,患者无论其生物标记物状态如何都接受治疗。我们提出了一种基于部分聚类虚弱模型(PCFM)的模拟方法以及 Freidlin 公式的扩展,用于估算采用多种靶向治疗的 BSD 所需的样本量。样本量主要受治疗效果异质性、生物标志物阴性患者比例和随机化比例的影响。PCFM 非常适合数据结构,是传统方法的替代方案。
{"title":"Sample Size Estimation Using a Partially Clustered Frailty Model for Biomarker-Strategy Designs With Multiple Treatments.","authors":"Derek Dinart, Virginie Rondeau, Carine Bellera","doi":"10.1002/pst.2407","DOIUrl":"10.1002/pst.2407","url":null,"abstract":"<p><p>Biomarker-guided therapy is a growing area of research in medicine. To optimize the use of biomarkers, several study designs including the biomarker-strategy design (BSD) have been proposed. Unlike traditional designs, the emphasis here is on comparing treatment strategies and not on treatment molecules as such. Patients are assigned to either a biomarker-based strategy (BBS) arm, in which biomarker-positive patients receive an experimental treatment that targets the identified biomarker, or a non-biomarker-based strategy (NBBS) arm, in which patients receive treatment regardless of their biomarker status. We proposed a simulation method based on a partially clustered frailty model (PCFM) as well as an extension of Freidlin formula to estimate the sample size required for BSD with multiple targeted treatments. The sample size was mainly influenced by the heterogeneity of treatment effect, the proportion of biomarker-negative patients, and the randomization ratio. The PCFM is well suited for the data structure and offers an alternative to traditional methodologies.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"1084-1094"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A model-assisted design for partially or completely ordered groups. 部分或完全有序群体的模型辅助设计。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-01 Epub Date: 2024-05-20 DOI: 10.1002/pst.2396
Connor Celum, Mark Conaway

This paper proposes a trial design for locating group-specific doses when groups are partially or completely ordered by dose sensitivity. Previous trial designs for partially ordered groups are model-based, whereas the proposed method is model-assisted, providing clinicians with a design that is simpler. The proposed method performs similarly to model-based methods, providing simplicity without losing accuracy. Additionally, to the best of our knowledge, the proposed method is the first paper on dose-finding for partially ordered groups with convergence results. To generalize the proposed method, a framework is introduced that allows partial orders to be transferred to a grid format with a known ordering across rows but an unknown ordering within rows.

本文提出了一种试验设计方法,用于在按剂量敏感性部分或完全排序的组别中定位特定组别的剂量。以往针对部分排序组的试验设计是基于模型的,而本文提出的方法是模型辅助的,为临床医生提供了一种更简单的设计。所提出的方法与基于模型的方法性能相似,既简单又不失准确性。此外,据我们所知,所提出的方法是首篇关于部分有序分组剂量计算的论文,并给出了收敛结果。为了推广所提出的方法,我们引入了一个框架,允许将部分排序转移到网格格式中,网格中各行的排序是已知的,但各行内部的排序是未知的。
{"title":"A model-assisted design for partially or completely ordered groups.","authors":"Connor Celum, Mark Conaway","doi":"10.1002/pst.2396","DOIUrl":"10.1002/pst.2396","url":null,"abstract":"<p><p>This paper proposes a trial design for locating group-specific doses when groups are partially or completely ordered by dose sensitivity. Previous trial designs for partially ordered groups are model-based, whereas the proposed method is model-assisted, providing clinicians with a design that is simpler. The proposed method performs similarly to model-based methods, providing simplicity without losing accuracy. Additionally, to the best of our knowledge, the proposed method is the first paper on dose-finding for partially ordered groups with convergence results. To generalize the proposed method, a framework is introduced that allows partial orders to be transferred to a grid format with a known ordering across rows but an unknown ordering within rows.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"906-927"},"PeriodicalIF":1.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1