首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Sample Size Estimation Using a Partially Clustered Frailty Model for Biomarker-Strategy Designs With Multiple Treatments. 使用部分聚类虚弱模型估算具有多种治疗方法的生物标记物策略设计的样本量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-16 DOI: 10.1002/pst.2407
Derek Dinart, Virginie Rondeau, Carine Bellera

Biomarker-guided therapy is a growing area of research in medicine. To optimize the use of biomarkers, several study designs including the biomarker-strategy design (BSD) have been proposed. Unlike traditional designs, the emphasis here is on comparing treatment strategies and not on treatment molecules as such. Patients are assigned to either a biomarker-based strategy (BBS) arm, in which biomarker-positive patients receive an experimental treatment that targets the identified biomarker, or a non-biomarker-based strategy (NBBS) arm, in which patients receive treatment regardless of their biomarker status. We proposed a simulation method based on a partially clustered frailty model (PCFM) as well as an extension of Freidlin formula to estimate the sample size required for BSD with multiple targeted treatments. The sample size was mainly influenced by the heterogeneity of treatment effect, the proportion of biomarker-negative patients, and the randomization ratio. The PCFM is well suited for the data structure and offers an alternative to traditional methodologies.

生物标志物指导疗法是一个不断发展的医学研究领域。为了优化生物标记物的使用,人们提出了包括生物标记物策略设计(BSD)在内的多种研究设计。与传统设计不同的是,这里的重点是比较治疗策略,而不是治疗分子本身。患者被分配到基于生物标记物的策略(BBS)组或非基于生物标记物的策略(NBBS)组,在BBS组中,生物标记物阳性患者接受针对已确定生物标记物的实验性治疗;在NBBS组中,患者无论其生物标记物状态如何都接受治疗。我们提出了一种基于部分聚类虚弱模型(PCFM)的模拟方法以及 Freidlin 公式的扩展,用于估算采用多种靶向治疗的 BSD 所需的样本量。样本量主要受治疗效果异质性、生物标志物阴性患者比例和随机化比例的影响。PCFM 非常适合数据结构,是传统方法的替代方案。
{"title":"Sample Size Estimation Using a Partially Clustered Frailty Model for Biomarker-Strategy Designs With Multiple Treatments.","authors":"Derek Dinart, Virginie Rondeau, Carine Bellera","doi":"10.1002/pst.2407","DOIUrl":"https://doi.org/10.1002/pst.2407","url":null,"abstract":"<p><p>Biomarker-guided therapy is a growing area of research in medicine. To optimize the use of biomarkers, several study designs including the biomarker-strategy design (BSD) have been proposed. Unlike traditional designs, the emphasis here is on comparing treatment strategies and not on treatment molecules as such. Patients are assigned to either a biomarker-based strategy (BBS) arm, in which biomarker-positive patients receive an experimental treatment that targets the identified biomarker, or a non-biomarker-based strategy (NBBS) arm, in which patients receive treatment regardless of their biomarker status. We proposed a simulation method based on a partially clustered frailty model (PCFM) as well as an extension of Freidlin formula to estimate the sample size required for BSD with multiple targeted treatments. The sample size was mainly influenced by the heterogeneity of treatment effect, the proportion of biomarker-negative patients, and the randomization ratio. The PCFM is well suited for the data structure and offers an alternative to traditional methodologies.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handling Partially Observed Trial Data After Treatment Withdrawal: Introducing Retrieved Dropout Reference-Base Centred Multiple Imputation. 处理治疗退出后的部分观察试验数据:引入以检索到的辍学参考基数为中心的多重估算。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-16 DOI: 10.1002/pst.2416
Suzie Cro, James H Roger, James R Carpenter

The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment-policy as one of several strategies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the monitoring of patients and collection of primary outcome data following termination of randomised treatment. However, when patients withdraw from a study early before completion this creates true missing data complicating the analysis. One possible way forward uses multiple imputation to replace the missing data based on a model for outcome on- and off-treatment prior to study withdrawal, often referred to as retrieved dropout multiple imputation. This article introduces a novel approach to parameterising this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian priors applied during the imputation stage. A core reference-based model is combined with a retrieved dropout compliance model, using both on- and off-treatment data, to form an extended model for the purposes of imputation. This alleviates the problem of specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are not estimable, or are poorly estimated leading to unrealistically large standard errors in the resulting analysis. We refer to this new approach as retrieved dropout reference-base centred multiple imputation.

ICH E9(R1)增编(国际协调理事会,2019 年)建议,在定义估算指标时,将治疗政策作为解决治疗退出等并发症的几种策略之一。该策略要求对患者进行监测,并在随机治疗终止后收集主要结果数据。但是,如果患者在研究完成前提前退出,就会造成真正的数据缺失,使分析变得复杂。一种可行的方法是使用多重归因法来替换缺失数据,该方法基于研究退出前治疗中和治疗后的结果模型,通常称为检索辍学多重归因法。本文介绍了一种新颖的方法来为这一估算模型设置参数,以便在估算阶段对那些可能难以估计的参数应用轻度信息贝叶斯先验。基于参考文献的核心模型与检索到的辍学顺应性模型相结合,同时使用治疗中和治疗后的数据,形成一个用于估算的扩展模型。这就减轻了指定一套复杂的分析规则的问题,以适应影响估计值的参数无法估计或估计不准确导致分析结果标准误差过大的情况。我们将这种新方法称为以检索辍学参考基数为中心的多重估算。
{"title":"Handling Partially Observed Trial Data After Treatment Withdrawal: Introducing Retrieved Dropout Reference-Base Centred Multiple Imputation.","authors":"Suzie Cro, James H Roger, James R Carpenter","doi":"10.1002/pst.2416","DOIUrl":"https://doi.org/10.1002/pst.2416","url":null,"abstract":"<p><p>The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment-policy as one of several strategies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the monitoring of patients and collection of primary outcome data following termination of randomised treatment. However, when patients withdraw from a study early before completion this creates true missing data complicating the analysis. One possible way forward uses multiple imputation to replace the missing data based on a model for outcome on- and off-treatment prior to study withdrawal, often referred to as retrieved dropout multiple imputation. This article introduces a novel approach to parameterising this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian priors applied during the imputation stage. A core reference-based model is combined with a retrieved dropout compliance model, using both on- and off-treatment data, to form an extended model for the purposes of imputation. This alleviates the problem of specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are not estimable, or are poorly estimated leading to unrealistically large standard errors in the resulting analysis. We refer to this new approach as retrieved dropout reference-base centred multiple imputation.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Hierarchical Models for Subgroup Analysis. 用于分组分析的贝叶斯层次模型。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-15 DOI: 10.1002/pst.2424
Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann

In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.

在传统的亚组分析中,亚组治疗效果是使用每个亚组的数据单独估算的,而不考虑同一研究中其他亚组的数据。由于某些亚组的样本量较小,这种方法估算出的亚组治疗效果可能是异质性的,变异性较大,与总体人群的治疗效果相差甚远。贝叶斯分层模型(BHM)可用于得出更精确、异质性更小的亚组治疗效果估计值,这些估计值更接近总体人群的治疗效果。BHM 假定在调整效应修饰因子和其他相关协变量后,各亚组的治疗效果具有可交换性。在本文中,我们将讨论使用汇总级统计数据和患者级数据进行单向和多向 BHM 应用于亚组分析的技术细节。我们将通过四个基于新药申请的案例研究来说明这些模型在连续终点、二分终点、时间到事件终点和计数终点亚组分析中的应用。
{"title":"Bayesian Hierarchical Models for Subgroup Analysis.","authors":"Yun Wang, Wenda Tu, William Koh, James Travis, Robert Abugov, Kiya Hamilton, Mengjie Zheng, Roberto Crackel, Pablo Bonangelino, Mark Rothmann","doi":"10.1002/pst.2424","DOIUrl":"https://doi.org/10.1002/pst.2424","url":null,"abstract":"<p><p>In conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one-way and multi-way BHM using summary-level statistics, and patient-level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time-to-event, and count endpoints.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Duration Trial as an Alternative Design for Continuous Endpoints. 可变持续时间试验作为连续终点的替代设计
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-11 DOI: 10.1002/pst.2418
Jitendra Ganju, Julie Guoguang Ma

Clinical trials with continuous primary endpoints typically measure outcomes at baseline, at a fixed timepoint (denoted Tmin), and at intermediate timepoints. The analysis is commonly performed using the mixed model repeated measures method. It is sometimes expected that the effect size will be larger with follow-up longer than Tmin. But extending the follow-up for all patients delays trial completion. We propose an alternative trial design and analysis method that potentially increases statistical power without extending the trial duration or increasing the sample size. We propose following the last enrolled patient until Tmin, with earlier enrollees having variable follow-up durations up to a maximum of Tmax. The sample size at Tmax will be smaller than at Tmin, and due to staggered enrollment, data missing at Tmax will be missing completely at random. For analysis, we propose an alpha-adjusted procedure based on the smaller of the p values at Tmin and Tmax, termed minP $$ minP $$ . This approach can provide the highest power when the powers at Tmin and Tmax are similar. If the power at Tmin and Tmax differ significantly, the power of minP $$ minP $$ is modestly reduced compared with the larger of the two powers. Rare disease trials, due to the limited size of the patient population, may benefit the most with this design.

具有连续性主要终点的临床试验通常在基线、固定时间点(Tmin)和中间时间点测量结果。分析通常采用混合模型重复测量法。有时,人们会期望随访时间长于 Tmin 时的效应大小会更大。但延长所有患者的随访时间会延误试验的完成。我们提出了另一种试验设计和分析方法,这种方法有可能在不延长试验时间或增加样本量的情况下提高统计能力。我们建议对最后一名入组患者进行随访,直至 Tmin,而对较早入组患者的随访时间则不固定,直至最大随访时间 Tmax。Tmax时的样本量将小于Tmin时的样本量,而且由于交错入组,Tmax时缺失的数据将完全随机缺失。在分析时,我们建议采用基于 Tmin 和 Tmax 时 p 值中较小者的阿尔法调整程序,称为 minP $$ minP $$。当 Tmin 和 Tmax 的功率相近时,这种方法可提供最高的功率。如果 Tmin 和 Tmax 时的功率相差很大,则 minP $$ minP $$ 的功率会比两个功率中较大的功率略低。罕见病试验由于患者人数有限,采用这种设计可能会受益最大。
{"title":"Variable Duration Trial as an Alternative Design for Continuous Endpoints.","authors":"Jitendra Ganju, Julie Guoguang Ma","doi":"10.1002/pst.2418","DOIUrl":"https://doi.org/10.1002/pst.2418","url":null,"abstract":"<p><p>Clinical trials with continuous primary endpoints typically measure outcomes at baseline, at a fixed timepoint (denoted T<sub>min</sub>), and at intermediate timepoints. The analysis is commonly performed using the mixed model repeated measures method. It is sometimes expected that the effect size will be larger with follow-up longer than T<sub>min</sub>. But extending the follow-up for all patients delays trial completion. We propose an alternative trial design and analysis method that potentially increases statistical power without extending the trial duration or increasing the sample size. We propose following the last enrolled patient until T<sub>min</sub>, with earlier enrollees having variable follow-up durations up to a maximum of T<sub>max</sub>. The sample size at T<sub>max</sub> will be smaller than at T<sub>min</sub>, and due to staggered enrollment, data missing at T<sub>max</sub> will be missing completely at random. For analysis, we propose an alpha-adjusted procedure based on the smaller of the p values at T<sub>min</sub> and T<sub>max</sub>, termed <math> <semantics><mrow><mtext>minP</mtext></mrow> <annotation>$$ minP $$</annotation></semantics> </math> . This approach can provide the highest power when the powers at T<sub>min</sub> and T<sub>max</sub> are similar. If the power at T<sub>min</sub> and T<sub>max</sub> differ significantly, the power of <math> <semantics><mrow><mtext>minP</mtext></mrow> <annotation>$$ minP $$</annotation></semantics> </math> is modestly reduced compared with the larger of the two powers. Rare disease trials, due to the limited size of the patient population, may benefit the most with this design.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of CMC Statisticians: Co-Practitioners of the Scientific Method. CMC 统计人员的作用:科学方法的共同实践者。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-10 DOI: 10.1002/pst.2420
Timothy Schofield

Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.

化学、制造和控制(CMC)统计人员在药品和生物制品的开发和生命周期管理中发挥着关键作用,他们与非统计人员伙伴合作管理产品质量。用于做出质量决策的信息来自于研究,而研究的成功离不开科学方法的支持。研究分为四个步骤:(1) 目标,(2) 设计,(3) 实施,(4) 分析。仔细考虑每个步骤有助于确保研究结论和相关决策的正确性。这可以是与化验的有效性有关的开发决策,也可以是符合规格等质量决策。重要的是,所有决策都有风险。传统的统计风险(如 1 类和 2 类错误)可与相关影响相结合,以管理患者价值以及开发和商业成本。CMC 统计学家将重点放在科学方法各步骤的风险管理上,从而实现最佳的产品开发和挽救生命的药物和生物制剂的稳健供应。
{"title":"The Role of CMC Statisticians: Co-Practitioners of the Scientific Method.","authors":"Timothy Schofield","doi":"10.1002/pst.2420","DOIUrl":"https://doi.org/10.1002/pst.2420","url":null,"abstract":"<p><p>Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Stratification Strategies for Population- Versus Randomization-Based Inference. 探索基于人群与随机推断的分层策略。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-10 DOI: 10.1002/pst.2419
Marco Novelli, William F Rosenberger

Stratification on important variables is a common practice in clinical trials, since ensuring cosmetic balance on known baseline covariates is often deemed to be a crucial requirement for the credibility of the experimental results. However, the actual benefits of stratification are still debated in the literature. Other authors have shown that it does not improve efficiency in large samples and improves it only negligibly in smaller samples. This paper investigates different subgroup analysis strategies, with a particular focus on the potential benefits in terms of inferential precision of prestratification versus both poststratification and post hoc regression adjustment. For each of these approaches, the pros and cons of population-based versus randomization-based inference are discussed. The effects of the presence of a treatment-by-covariate interaction and the variability in the patient responses are also taken into account. Our results show that, in general, prestratifying does not provide substantial benefit. On the contrary, it may be deleterious, in particular for randomization-based procedures in the presence of a chronological bias. Even when there is treatment-by-covariate interaction, prestratification may backfire by considerably reducing the inferential precision.

对重要变量进行分层是临床试验中的常见做法,因为确保已知基线协变量的外观平衡通常被认为是实验结果可信度的关键要求。然而,分层的实际益处在文献中仍有争议。其他作者的研究表明,在大样本中,分层并不能提高效率,而在小样本中,分层的效果只能忽略不计。本文研究了不同的亚组分析策略,尤其关注预分层与后分层和事后回归调整在推断精度方面的潜在优势。对于每种方法,本文都讨论了基于人群的推断与基于随机化的推断的利弊。此外,还考虑了治疗与变量之间的交互作用以及患者反应的变异性的影响。我们的研究结果表明,一般来说,预分层并不会带来实质性的好处。相反,预分层可能会带来不利影响,特别是对于存在时间偏差的随机化程序。即使存在治疗与变量之间的交互作用,预分层也可能会适得其反,大大降低推断的精确性。
{"title":"Exploring Stratification Strategies for Population- Versus Randomization-Based Inference.","authors":"Marco Novelli, William F Rosenberger","doi":"10.1002/pst.2419","DOIUrl":"https://doi.org/10.1002/pst.2419","url":null,"abstract":"<p><p>Stratification on important variables is a common practice in clinical trials, since ensuring cosmetic balance on known baseline covariates is often deemed to be a crucial requirement for the credibility of the experimental results. However, the actual benefits of stratification are still debated in the literature. Other authors have shown that it does not improve efficiency in large samples and improves it only negligibly in smaller samples. This paper investigates different subgroup analysis strategies, with a particular focus on the potential benefits in terms of inferential precision of prestratification versus both poststratification and post hoc regression adjustment. For each of these approaches, the pros and cons of population-based versus randomization-based inference are discussed. The effects of the presence of a treatment-by-covariate interaction and the variability in the patient responses are also taken into account. Our results show that, in general, prestratifying does not provide substantial benefit. On the contrary, it may be deleterious, in particular for randomization-based procedures in the presence of a chronological bias. Even when there is treatment-by-covariate interaction, prestratification may backfire by considerably reducing the inferential precision.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potency Assay Variability Estimation in Practice. 实践中的药效测定变异性估算。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-08 DOI: 10.1002/pst.2408
Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson

During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.

在药物开发过程中,药效测试在生物制剂生产和营销所需的质量评估中发挥着重要作用。由于多种操作和生物因素的影响,与理化方法相比,生物测定的变异性通常更高。在本文中,我们将讨论生物测定变异性的不同来源以及如何对这种变异性进行统计估算。此外,我们还提出了一种算法,用于估算与不同运行次数相关的可报告结果的变异性,以及在给定规范下相应的 OOS 率。我们对多种检测形式进行了数值实验,以阐明生物检测变异性的经验分布。
{"title":"Potency Assay Variability Estimation in Practice.","authors":"Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson","doi":"10.1002/pst.2408","DOIUrl":"https://doi.org/10.1002/pst.2408","url":null,"abstract":"<p><p>During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survival Analysis Without Sharing of Individual Patient Data by Using a Gaussian Copula. 使用高斯 Copula 进行生存分析而无需共享单个患者数据
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-07 DOI: 10.1002/pst.2415
Federico Bonofiglio

Cox regression and Kaplan-Meier estimations are often needed in clinical research and this requires access to individual patient data (IPD). However, IPD cannot always be shared because of privacy or proprietary restrictions, which complicates the making of such estimations. We propose a method that generates pseudodata replacing the IPD by only sharing non-disclosive aggregates such as IPD marginal moments and a correlation matrix. Such aggregates are collected by a central computer and input as parameters to a Gaussian copula (GC) that generates the pseudodata. Survival inferences are computed on the pseudodata as if it were the IPD. Using practical examples we demonstrate the utility of the method, via the amount of IPD inferential content recoverable by the GC. We compare GC to a summary-based meta-analysis and an IPD bootstrap distributed across several centers. Other pseudodata approaches are also considered. In the empirical results, GC approximates the utility of the IPD bootstrap although it might yield more conservative inferences and it might have limitations in subgroup analyses. Overall, GC avoids many legal problems related to IPD privacy or property while enabling approximation of common IPD survival analyses otherwise difficult to conduct. Sharing more IPD aggregates than is currently practiced could facilitate "second purpose"-research and relax concerns regarding IPD access.

临床研究中经常需要进行 Cox 回归和 Kaplan-Meier 估计,这就需要获取患者的个人数据(IPD)。然而,由于隐私或专有权的限制,IPD 并不总能共享,这就使此类估算变得更加复杂。我们提出了一种方法,通过只共享 IPD 边际矩和相关矩阵等非披露性总体数据来生成替代 IPD 的伪数据。这些总体数据由中央计算机收集,并作为参数输入到生成伪数据的高斯共线公式(GC)中。对伪数据进行生存推断计算时,就像计算 IPD 一样。通过实际案例,我们展示了该方法的实用性,即 GC 可恢复 IPD 推断内容的数量。我们将 GC 与基于摘要的荟萃分析和分布在多个中心的 IPD 引导分析进行了比较。我们还考虑了其他伪数据方法。在实证结果中,GC 近似于 IPD 自举法的效用,尽管它可能产生更保守的推论,而且在亚组分析中可能有局限性。总的来说,GC 可以避免许多与 IPD 隐私或财产相关的法律问题,同时还能近似地进行普通 IPD 生存分析,否则很难进行。与目前的做法相比,共享更多的 IPD 总量可促进 "第二目的 "研究,并放松对 IPD 访问的担忧。
{"title":"Survival Analysis Without Sharing of Individual Patient Data by Using a Gaussian Copula.","authors":"Federico Bonofiglio","doi":"10.1002/pst.2415","DOIUrl":"https://doi.org/10.1002/pst.2415","url":null,"abstract":"<p><p>Cox regression and Kaplan-Meier estimations are often needed in clinical research and this requires access to individual patient data (IPD). However, IPD cannot always be shared because of privacy or proprietary restrictions, which complicates the making of such estimations. We propose a method that generates pseudodata replacing the IPD by only sharing non-disclosive aggregates such as IPD marginal moments and a correlation matrix. Such aggregates are collected by a central computer and input as parameters to a Gaussian copula (GC) that generates the pseudodata. Survival inferences are computed on the pseudodata as if it were the IPD. Using practical examples we demonstrate the utility of the method, via the amount of IPD inferential content recoverable by the GC. We compare GC to a summary-based meta-analysis and an IPD bootstrap distributed across several centers. Other pseudodata approaches are also considered. In the empirical results, GC approximates the utility of the IPD bootstrap although it might yield more conservative inferences and it might have limitations in subgroup analyses. Overall, GC avoids many legal problems related to IPD privacy or property while enabling approximation of common IPD survival analyses otherwise difficult to conduct. Sharing more IPD aggregates than is currently practiced could facilitate \"second purpose\"-research and relax concerns regarding IPD access.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved. 二元分类下涉及子类时的最佳切点选择方法
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-07 DOI: 10.1002/pst.2413
Jia Wang, Lili Tian

In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.

在实践中,我们经常会遇到二元分类问题,其中两个主类都由多个子类组成。例如,在一项评估生物标记物区分非癌症病例和癌症病例准确性的卵巢癌研究中,非癌症类包括健康受试者和良性病例,而癌症类包括早期和晚期受试者。本文旨在为这种情况提供大量最佳切点选择方法。此外,我们还研究了最佳切点的置信区间估计。我们进行了模拟研究,以探索所提出的切点选择方法和置信区间估计方法的性能。使用所提出的方法分析了一个真实的卵巢癌数据集。
{"title":"Optimal Cut-Point Selection Methods Under Binary Classification When Subclasses Are Involved.","authors":"Jia Wang, Lili Tian","doi":"10.1002/pst.2413","DOIUrl":"https://doi.org/10.1002/pst.2413","url":null,"abstract":"<p><p>In practice, we often encounter binary classification problems where both main classes consist of multiple subclasses. For example, in an ovarian cancer study where biomarkers were evaluated for their accuracy of distinguishing noncancer cases from cancer cases, the noncancer class consists of healthy subjects and benign cases, while the cancer class consists of subjects at both early and late stages. This article aims to provide a large number of optimal cut-point selection methods for such setting. Furthermore, we also study confidence interval estimation of the optimal cut-points. Simulation studies are carried out to explore the performance of the proposed cut-point selection methods as well as confidence interval estimation methods. A real ovarian cancer data set is analyzed using the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Futility Interim Analysis Based on Probability of Success Using a Surrogate Endpoint. 基于使用替代终点的成功概率的无用性中期分析。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-02 DOI: 10.1002/pst.2410
Ronan Fougeray, Loïck Vidot, Marco Ratta, Zhaoyang Teng, Donia Skanji, Gaëlle Saint-Hilary

In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical "final" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.

在使用时间到事件数据的临床试验中,疗效评估可能是一个漫长而复杂的过程,尤其是在考虑长期主要终点时。使用替代终点来关联主要终点已成为加快决策的一种常见做法。此外,尽量减少样本量的道德需求和优化可用资源的实际需求也促使科学界开发出利用历史数据的方法。本文介绍的方法以分组序列设计的一般理论为基础,采用贝叶斯框架,利用临床 "最终 "终点与代用终点之间有据可查的历史关系,利用临床试验早期中期分析的代用数据,为主要终点建立一个信息先验。然后,利用试验成功的预测概率来定义徒劳性终止规则。该方法表明,当当前数据与历史数据高度一致时,试验运行特征会得到大幅提升。此外,将代理先验与模糊成分相结合的稳健方法减轻了轻微先验数据冲突的影响,同时即使存在严重的先验数据冲突,也能保持可接受的性能。所提出的方法被应用于设计转移性结直肠癌的 III 期临床试验,以总生存期为主要终点,无进展生存期为替代终点。
{"title":"Futility Interim Analysis Based on Probability of Success Using a Surrogate Endpoint.","authors":"Ronan Fougeray, Loïck Vidot, Marco Ratta, Zhaoyang Teng, Donia Skanji, Gaëlle Saint-Hilary","doi":"10.1002/pst.2410","DOIUrl":"https://doi.org/10.1002/pst.2410","url":null,"abstract":"<p><p>In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical \"final\" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1