Antonios Daletzakis, Kit C B Roes, Marianne A Jonker
The duration of response (DoR) is defined as the time from the onset of response to treatment up to progression of disease or death due to any reason, whichever occurs earlier. The expected DoR could be a suitable estimand to measure the efficacy of a treatment but is in practice difficult to estimate, since patients' follow-up times are often right-censored. Instead, the restricted mean duration of response (RMDoR) is often used. The RMDoR in a time is equal to the expected DoR restricted to the interval . In this paper, we consider the behaviour of the RMDoR as a function of and its suitability as a measure to quantify the efficacy of a treatment. Besides, we focus on the estimation of the RMDoR. In oncology, the events response to treatment and progression of disease are typically detected through time-scheduled scans and are therefore interval-censored. We describe multiple estimators for the RMDoR that deal with the interval censoring in different ways and study the performance of these estimators in single arm trials and randomised controlled trials.
{"title":"Estimation of the Restricted Mean Duration of Response (RMDoR) in Oncology.","authors":"Antonios Daletzakis, Kit C B Roes, Marianne A Jonker","doi":"10.1002/pst.2468","DOIUrl":"10.1002/pst.2468","url":null,"abstract":"<p><p>The duration of response (DoR) is defined as the time from the onset of response to treatment up to progression of disease or death due to any reason, whichever occurs earlier. The expected DoR could be a suitable estimand to measure the efficacy of a treatment but is in practice difficult to estimate, since patients' follow-up times are often right-censored. Instead, the restricted mean duration of response (RMDoR) is often used. The RMDoR in a time <math> <semantics><mrow><mi>τ</mi></mrow> <annotation>$$ tau $$</annotation></semantics> </math> is equal to the expected DoR restricted to the interval <math> <semantics> <mrow><mfenced><mn>0</mn> <mi>τ</mi></mfenced> </mrow> <annotation>$$ left[0,tau right] $$</annotation></semantics> </math> . In this paper, we consider the behaviour of the RMDoR as a function of <math> <semantics><mrow><mi>τ</mi></mrow> <annotation>$$ tau $$</annotation></semantics> </math> and its suitability as a measure to quantify the efficacy of a treatment. Besides, we focus on the estimation of the RMDoR. In oncology, the events response to treatment and progression of disease are typically detected through time-scheduled scans and are therefore interval-censored. We describe multiple estimators for the RMDoR that deal with the interval censoring in different ways and study the performance of these estimators in single arm trials and randomised controlled trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 1","pages":"e2468"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-10DOI: 10.1002/pst.2420
Timothy Schofield
Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.
{"title":"The Role of CMC Statisticians: Co-Practitioners of the Scientific Method.","authors":"Timothy Schofield","doi":"10.1002/pst.2420","DOIUrl":"10.1002/pst.2420","url":null,"abstract":"<p><p>Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2420"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.
在肿瘤学领域,II 期研究对临床开发计划至关重要,因为这类研究可以确定具有足够活性的强效制剂,以便在随后的 III 期试验中继续开发。传统上,II 期研究是单臂研究,主要终点是短期疗效。然而,药物安全性也是一个重要的考虑因素。在这种多结果设计的背景下,人们开发了基于预测概率的贝叶斯监测策略,以评估临床试验是否能提供足够的证据,从而在预定试验结束时继续进行 III 期研究。因此,我们提出了一种新的简单指数向量来总结现有策略无法捕捉的结果。具体来说,我们定义了治疗潜在效果最差和最有希望的两种情况,然后使用提出的指数向量来衡量两种情况之间的偏差。最后,我们进行了模拟研究,以评估设计的运行特性。结果表明,建议的方法能做出适当的 "去/不去 "临时决策。
{"title":"Bayesian Predictive Probability Based on a Bivariate Index Vector for Single-Arm Phase II Study With Binary Efficacy and Safety Endpoints.","authors":"Takuya Yoshimoto, Satoru Shinoda, Kouji Yamamoto, Kouji Tahata","doi":"10.1002/pst.2431","DOIUrl":"10.1002/pst.2431","url":null,"abstract":"<p><p>In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2431"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-18DOI: 10.1002/pst.2429
Palash Sharma, Milind A Phadnis
Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.
{"title":"Sample Size Reestimation in Stochastic Curtailment Tests With Time-to-Events Outcome in the Case of Nonproportional Hazards Utilizing Two Weibull Distributions With Unknown Shape Parameters.","authors":"Palash Sharma, Milind A Phadnis","doi":"10.1002/pst.2429","DOIUrl":"10.1002/pst.2429","url":null,"abstract":"<p><p>Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2429"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In compound hit screening, an important chemical property is target binding affinity, represented by a parameter ΔΔG. You can measure ΔΔG experimentally (ΔΔGexp) or by calculations via simulations (ΔΔGcalc). Because it is expensive to measure ΔΔG experimentally, only a few experimental runs are performed. The relationship between the experimental data and the calculated results is a straight line with a slope that is not necessarily one. The goal is to estimate the linear relationship between ΔΔGexp and ΔΔGcalc by fitting a Deming regression model that will be used to predict future values of ΔΔGtrue based on the obtained ΔΔGcalc.
{"title":"Estimating the Strength of Binding Affinity via Delta-Delta-G for Hit Screening After a Deming Regression Calibration.","authors":"Kanaka Tatikola, Javier Cabrera","doi":"10.1002/pst.2460","DOIUrl":"https://doi.org/10.1002/pst.2460","url":null,"abstract":"<p><p>In compound hit screening, an important chemical property is target binding affinity, represented by a parameter ΔΔG. You can measure ΔΔG experimentally (ΔΔG<sub>exp</sub>) or by calculations via simulations (ΔΔG<sub>calc</sub>). Because it is expensive to measure ΔΔG experimentally, only a few experimental runs are performed. The relationship between the experimental data and the calculated results is a straight line with a slope that is not necessarily one. The goal is to estimate the linear relationship between ΔΔG<sub>exp</sub> and ΔΔG<sub>calc</sub> by fitting a Deming regression model that will be used to predict future values of ΔΔG<sub>true</sub> based on the obtained ΔΔG<sub>calc</sub>.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 1","pages":"e2460"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-04-02DOI: 10.1002/pst.2383
Elli Makariadou, Xuechen Wang, Nicholas Hein, Negera W Deresa, Kathy Mutambanengwe, Bie Verbist, Olivier Thas
Combination treatments have been of increasing importance in drug development across therapeutic areas to improve treatment response, minimize the development of resistance, and/or minimize adverse events. Pre-clinical in-vitro combination experiments aim to explore the potential of such drug combinations during drug discovery by comparing the observed effect of the combination with the expected treatment effect under the assumption of no interaction (i.e., null model). This tutorial will address important design aspects of such experiments to allow proper statistical evaluation. Additionally, it will highlight the Biochemically Intuitive Generalized Loewe methodology (BIGL R package available on CRAN) to statistically detect deviations from the expectation under different null models. A clear advantage of the methodology is the quantification of the effect sizes, together with confidence interval while controlling the directional false coverage rate. Finally, a case study will showcase the workflow in analyzing combination experiments.
在各治疗领域的药物研发中,联合疗法的重要性与日俱增,它可以改善治疗反应,最大限度地减少耐药性的产生,和/或最大限度地减少不良反应。临床前体外联合实验旨在通过比较联合治疗的观察效果和无相互作用假设(即无效模型)下的预期治疗效果,在药物研发过程中探索此类药物联合治疗的潜力。本教程将讨论此类实验的重要设计方面,以便进行适当的统计评估。此外,它还将重点介绍生化直观广义卢韦法(BIGL R 软件包,可在 CRAN 上下载),用于统计检测不同无效模型下的预期偏差。该方法的一个明显优势是可以量化效应大小和置信区间,同时控制方向性错误覆盖率。最后,一个案例研究将展示分析组合实验的工作流程。
{"title":"Synergy detection: A practical guide to statistical assessment of potential drug combinations.","authors":"Elli Makariadou, Xuechen Wang, Nicholas Hein, Negera W Deresa, Kathy Mutambanengwe, Bie Verbist, Olivier Thas","doi":"10.1002/pst.2383","DOIUrl":"10.1002/pst.2383","url":null,"abstract":"<p><p>Combination treatments have been of increasing importance in drug development across therapeutic areas to improve treatment response, minimize the development of resistance, and/or minimize adverse events. Pre-clinical in-vitro combination experiments aim to explore the potential of such drug combinations during drug discovery by comparing the observed effect of the combination with the expected treatment effect under the assumption of no interaction (i.e., null model). This tutorial will address important design aspects of such experiments to allow proper statistical evaluation. Additionally, it will highlight the Biochemically Intuitive Generalized Loewe methodology (BIGL R package available on CRAN) to statistically detect deviations from the expectation under different null models. A clear advantage of the methodology is the quantification of the effect sizes, together with confidence interval while controlling the directional false coverage rate. Finally, a case study will showcase the workflow in analyzing combination experiments.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2383"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-17DOI: 10.1002/pst.2421
Steven Novick, Tianhui Zhang
In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.
{"title":"Strategy for Designing In Vivo Dose-Response Comparison Studies.","authors":"Steven Novick, Tianhui Zhang","doi":"10.1002/pst.2421","DOIUrl":"10.1002/pst.2421","url":null,"abstract":"<p><p>In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2421"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-16DOI: 10.1002/pst.2438
Yilong Zhang, Yujie Zhao, Bingjun Wang, Yiwen Luo
In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, the re-randomization test is a straightforward and attractive method to provide valid statistical inferences. In this paper, we investigate the number of repetitions in tests. This is motivated by a group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under predefined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing, and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.
{"title":"Number of Repetitions in Re-Randomization Tests.","authors":"Yilong Zhang, Yujie Zhao, Bingjun Wang, Yiwen Luo","doi":"10.1002/pst.2438","DOIUrl":"10.1002/pst.2438","url":null,"abstract":"<p><p>In covariate-adaptive or response-adaptive randomization, the treatment assignment and outcome can be correlated. Under this situation, the re-randomization test is a straightforward and attractive method to provide valid statistical inferences. In this paper, we investigate the number of repetitions in tests. This is motivated by a group sequential design in clinical trials, where the nominal significance bound can be very small at an interim analysis. Accordingly, re-randomization tests lead to a very large number of required repetitions, which may be computationally intractable. To reduce the number of repetitions, we propose an adaptive procedure and compare it with multiple approaches under predefined criteria. Monte Carlo simulations are conducted to show the performance of different approaches in a limited sample size. We also suggest strategies to reduce total computation time and provide practical guidance in preparing, executing, and reporting before and after data are unblinded at an interim analysis, so one can complete the computation within a reasonable time frame.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2438"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-02-28DOI: 10.1002/pst.2366
Kjell Johnson, Max Kuhn
Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.
{"title":"What they forgot to tell you about machine learning with an application to pharmaceutical manufacturing.","authors":"Kjell Johnson, Max Kuhn","doi":"10.1002/pst.2366","DOIUrl":"10.1002/pst.2366","url":null,"abstract":"<p><p>Predictive models (a.k.a. machine learning models) are ubiquitous in all stages of drug research, safety, development, manufacturing, and marketing. The results of these models are used inside and outside of pharmaceutical companies for the purpose of understanding scientific processes and for predicting characteristics of new samples or patients. While there are many resources that describe such models, there are few that explain how to develop a robust model that extracts the highest possible performance from the available data, especially in support of pharmaceutical applications. This tutorial will describe pitfalls and best practices for developing and validating predictive models with a specific application to a monitoring a pharmaceutical manufacturing process. The pitfalls and best practices will be highlighted to call attention to specific points that are not generally discussed in other resources.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2366"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-06-10DOI: 10.1002/pst.2399
Vinicius Bonato, Szu-Yu Tang, Matilda Hsieh, Yao Zhang, Shibing Deng
Animal models are used in cancer pre-clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time-point and continuous endpoints collected longitudinally over multiple time-points. Additionally, time-to-event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.
动物模型用于癌症临床前研究,以确定药物靶点、为临床试验选择候选化合物、确定最佳药物剂量、确定生物标志物并确保化合物的安全性。本教程旨在概述动物研究的研究设计和数据分析,重点是用于确定抗癌化合物优先次序的肿瘤生长抑制(TGI)研究。本教程讨论的一些实验设计方面的问题包括:选择适当的生物模型、选择用于评估抗癌活性的终点(肿瘤体积、肿瘤生长率、事件或分类终点)、考虑与这类研究相关的测量误差和潜在偏差、样本量估计以及讨论缺失数据的处理。教程还回顾了 TGI 研究中采用的统计分析方法,既考虑了在单个时间点收集的连续终点,也考虑了在多个时间点纵向收集的连续终点。此外,还讨论了针对事件发生(如动物死亡或肿瘤大小达到某一阈值)的研究进行的时间到事件分析。此外,对于涉及分类终点的 TGI 研究,本教程还概述了统计方法,以便有效比较不同治疗组的结果。最后,本教程还讨论了在 TGI 研究中评估联合用药协同作用的分析方法,这涉及联合用药以提高总体疗效。本教程还包括 R 示例脚本,以帮助用户对该主题进行相关数据分析。
{"title":"Experimental design considerations and statistical analyses in preclinical tumor growth inhibition studies.","authors":"Vinicius Bonato, Szu-Yu Tang, Matilda Hsieh, Yao Zhang, Shibing Deng","doi":"10.1002/pst.2399","DOIUrl":"10.1002/pst.2399","url":null,"abstract":"<p><p>Animal models are used in cancer pre-clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time-point and continuous endpoints collected longitudinally over multiple time-points. Additionally, time-to-event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2399"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}