首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Comparative Analyses of Bioequivalence Assessment Methods for In Vitro Permeation Test Data. 体外渗透试验数据的生物等效性评估方法比较分析。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-24 DOI: 10.1002/pst.2434
Sami Leon, Elena Rantou, Jessica Kim, Sungwoo Choi, Nam Hee Choi

For topical, dermatological drug products, an in vitro option to determine bioequivalence (BE) between test and reference products is recommended. In particular, in vitro permeation test (IVPT) data analysis uses a reference-scaled approach for two primary endpoints, cumulative penetration amount (AMT) and maximum flux (Jmax), which takes the within donor variability into consideration. In 2022, the Food and Drug Administration (FDA) published a draft IVPT guidance that includes statistical analysis methods for both balanced and unbalanced cases of IVPT study data. This work presents a comprehensive evaluation of various methodologies used to estimate critical parameters essential in assessing BE. Specifically, we investigate the performance of the FDA draft IVPT guidance approach alongside alternative empirical and model-based methods utilizing mixed-effects models. Our analyses include both simulated scenarios and real-world studies. In simulated scenarios, empirical formulas consistently demonstrate robustness in approximating the true model, particularly in effectively addressing treatment-donor interactions. Conversely, the effectiveness of model-based approaches heavily relies on precise model selection, which significantly influences their results. The research emphasizes the importance of accurate model selection in model-based BE assessment methodologies. It sheds light on the advantages of empirical formulas, highlighting their reliability compared to model-based approaches and offers valuable implications for BE assessments. Our findings underscore the significance of robust methodologies and provide essential insights to advance their understanding and application in the assessment of BE, employed in IVPT data analysis.

对于外用皮肤病药物产品,建议采用体外方法来确定试验产品和参照产品之间的生物等效性(BE)。特别是,体外渗透试验(IVPT)数据分析对两个主要终点--累积渗透量(AMT)和最大通量(Jmax)--采用参考标度法,其中考虑了供体内部的变异性。2022 年,美国食品和药物管理局(FDA)发布了 IVPT 指南草案,其中包括 IVPT 研究数据平衡和非平衡情况的统计分析方法。这项工作全面评估了用于估算评估 BE 所必需的关键参数的各种方法。具体来说,我们研究了 FDA IVPT 指南草案方法的性能,以及利用混合效应模型的其他基于经验和模型的方法。我们的分析包括模拟情景和真实世界研究。在模拟场景中,经验公式在逼近真实模型方面始终表现出稳健性,尤其是在有效处理治疗-供体相互作用方面。相反,基于模型的方法的有效性在很大程度上依赖于精确的模型选择,这对其结果有很大影响。这项研究强调了在基于模型的生物多样性评估方法中准确选择模型的重要性。研究揭示了经验公式的优势,强调了与基于模型的方法相比,经验公式的可靠性,并为生物多样性评估提供了有价值的启示。我们的研究结果强调了稳健方法的重要性,并为在 IVPT 数据分析中使用的 BE 评估方法的理解和应用提供了重要启示。
{"title":"Comparative Analyses of Bioequivalence Assessment Methods for In Vitro Permeation Test Data.","authors":"Sami Leon, Elena Rantou, Jessica Kim, Sungwoo Choi, Nam Hee Choi","doi":"10.1002/pst.2434","DOIUrl":"https://doi.org/10.1002/pst.2434","url":null,"abstract":"<p><p>For topical, dermatological drug products, an in vitro option to determine bioequivalence (BE) between test and reference products is recommended. In particular, in vitro permeation test (IVPT) data analysis uses a reference-scaled approach for two primary endpoints, cumulative penetration amount (AMT) and maximum flux (J<sub>max</sub>), which takes the within donor variability into consideration. In 2022, the Food and Drug Administration (FDA) published a draft IVPT guidance that includes statistical analysis methods for both balanced and unbalanced cases of IVPT study data. This work presents a comprehensive evaluation of various methodologies used to estimate critical parameters essential in assessing BE. Specifically, we investigate the performance of the FDA draft IVPT guidance approach alongside alternative empirical and model-based methods utilizing mixed-effects models. Our analyses include both simulated scenarios and real-world studies. In simulated scenarios, empirical formulas consistently demonstrate robustness in approximating the true model, particularly in effectively addressing treatment-donor interactions. Conversely, the effectiveness of model-based approaches heavily relies on precise model selection, which significantly influences their results. The research emphasizes the importance of accurate model selection in model-based BE assessment methodologies. It sheds light on the advantages of empirical formulas, highlighting their reliability compared to model-based approaches and offers valuable implications for BE assessments. Our findings underscore the significance of robust methodologies and provide essential insights to advance their understanding and application in the assessment of BE, employed in IVPT data analysis.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Inference Using Multiple Marginal Models. 使用多重边际模型进行同步推理。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-21 DOI: 10.1002/pst.2428
Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl

This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.

本教程介绍了单步低维同步推理,重点是调整后 p 值和兼容置信区间的可用性,而不仅仅是通常的均值比较。其基本思想是:首先,利用相关性对多元 t 分布的量值的影响:越高越不保守。此外,第二,使用多重边际模型方法(mmm),使用线性到广义线性混合模型类中的多重模型来估算相关矩阵的可估算性。使用选定的 R 软件包,通过几个真实数据场景讨论了使用 mmm 的基本 maxT 检验。令人惊讶的是,其中突出了不同的特点:(i) 分析不同尺度、相关的多个终点,(ii) 分析多个相关的二进制终点,(iii) 将剂量作为定性因子和/或定量协变量建模,(iv) 在 poly-k 趋势检验中联合考虑多个调整参数,(v) 联合检验剂量和时间、(viii) 多重线性混合效应模型;(ix) 广义估计方程;以及 (x) 非线性回归模型。
{"title":"Simultaneous Inference Using Multiple Marginal Models.","authors":"Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl","doi":"10.1002/pst.2428","DOIUrl":"https://doi.org/10.1002/pst.2428","url":null,"abstract":"<p><p>This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample Size Reestimation in Stochastic Curtailment Tests With Time-to-Events Outcome in the Case of Nonproportional Hazards Utilizing Two Weibull Distributions With Unknown Shape Parameters. 在非比例危害的情况下,利用具有未知形状参数的两个 Weibull 分布,对具有时间到事件结果的随机缩尾试验进行样本量重估。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-18 DOI: 10.1002/pst.2429
Palash Sharma, Milind A Phadnis

Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.

对于采用时间到事件终点的二期双臂试验,传统上采用对数秩检验法进行随机缩减试验。最近在设计时间到事件试验方面取得的进展是利用了从历史研究中估算出的已知形状参数的 Weibull 分布。由于样本量的计算取决于该形状参数的值,当忽略点估计值周围的自然变化时,这些方法要么无法使用,要么可能表现不佳或表现不佳。我们证明,当 Weibull 形状参数的大小发生变化时,有关生存曲线形状的非盲法临时信息可用于丰富最终分析,以重新估计样本量。针对这种情况,我们提出了两种贝叶斯解决方案来估计 Weibull 形状参数的自然变化。我们在新提出的允许非比例危害和非比例时间的相对时间法框架下实施了这些方法。我们还演示了在试验中期使用三种不同方法(内部试验研究法、条件功率法和预测功率法)对相对时间法的样本量进行重新估计。我们用一个假设的例子演示了我们的方法,并就所建议方法的实际限制提供了见解。
{"title":"Sample Size Reestimation in Stochastic Curtailment Tests With Time-to-Events Outcome in the Case of Nonproportional Hazards Utilizing Two Weibull Distributions With Unknown Shape Parameters.","authors":"Palash Sharma, Milind A Phadnis","doi":"10.1002/pst.2429","DOIUrl":"https://doi.org/10.1002/pst.2429","url":null,"abstract":"<p><p>Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles for Defining Estimands in Clinical Trials-A Proposal. 定义临床试验估算值的原则--一项建议。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-13 DOI: 10.1002/pst.2432
Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn

The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.

ICH E9(R1)指南概述了临床试验的规划、设计、实施、分析和解释的估算指标框架。文献中概述了在临床试验中使用该框架的好处和价值,并就如何选择估计指标和定义估计指标属性提供了指导。尽管在临床试验中实施估计指标方面取得了进展,但据我们所知,目前还没有关于临床试验中的估计指标应符合哪些基本原则的公开讨论,这些原则应定义明确,并与 ICH E9(R1) 指南中提出的观点保持一致。因此,在这篇观点文章中,我们提出了定义估算指标的四项关键原则。这些原则构成了定义明确的治疗效果的基础,反映了估计值的思维过程。我们希望本观点能够补充 ICH E9(R1),并激发关于临床试验中的估计指标应具备哪些基本属性的讨论,并希望这些讨论最终能够提高临床试验中定义估计指标的清晰度和精确度。
{"title":"Principles for Defining Estimands in Clinical Trials-A Proposal.","authors":"Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn","doi":"10.1002/pst.2432","DOIUrl":"https://doi.org/10.1002/pst.2432","url":null,"abstract":"<p><p>The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Predictive Probability Based on a Bivariate Index Vector for Single-Arm Phase II Study With Binary Efficacy and Safety Endpoints. 基于双变量指数向量的贝叶斯预测概率,用于具有二元有效性和安全性终点的单臂 II 期研究。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-13 DOI: 10.1002/pst.2431
Takuya Yoshimoto, Satoru Shinoda, Kouji Yamamoto, Kouji Tahata

In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.

在肿瘤学领域,II 期研究对临床开发计划至关重要,因为这类研究可以确定具有足够活性的强效制剂,以便在随后的 III 期试验中继续开发。传统上,II 期研究是单臂研究,主要终点是短期疗效。然而,药物安全性也是一个重要的考虑因素。在这种多结果设计的背景下,人们开发了基于预测概率的贝叶斯监测策略,以评估临床试验是否能提供足够的证据,从而在预定试验结束时继续进行 III 期研究。因此,我们提出了一种新的简单指数向量来总结现有策略无法捕捉的结果。具体来说,我们定义了治疗潜在效果最差和最有希望的两种情况,然后使用提出的指数向量来衡量两种情况之间的偏差。最后,我们进行了模拟研究,以评估设计的运行特性。结果表明,建议的方法能做出适当的 "去/不去 "临时决策。
{"title":"Bayesian Predictive Probability Based on a Bivariate Index Vector for Single-Arm Phase II Study With Binary Efficacy and Safety Endpoints.","authors":"Takuya Yoshimoto, Satoru Shinoda, Kouji Yamamoto, Kouji Tahata","doi":"10.1002/pst.2431","DOIUrl":"https://doi.org/10.1002/pst.2431","url":null,"abstract":"<p><p>In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tutorial on Firth's Logistic Regression Models for Biomarkers in Preclinical Space. 临床前生物标记物的 Firth Logistic 回归模型教程。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-06 DOI: 10.1002/pst.2422
Gina D'Angelo, Di Ran

Preclinical studies are broad and can encompass cellular research, animal trials, and small human trials. Preclinical studies tend to be exploratory and have smaller datasets that often consist of biomarker data. Logistic regression is typically the model of choice for modeling a binary outcome with explanatory variables such as genetic, imaging, and clinical data. Small preclinical studies can have challenging data that may include a complete separation or quasi-complete separation issue that will result in logistic regression inflated coefficient estimates and standard errors. Penalized regression approaches such as Firth's logistic regression are a solution to reduce the bias in the estimates. In this tutorial, a number of examples with separation (complete or quasi-complete) are illustrated and the results from both logistic regression and Firth's logistic regression are compared to demonstrate the inflated estimates from the standard logistic regression model and bias-reduction of the estimates from the penalized Firth's approach. R code and datasets are provided in the supplement.

临床前研究的范围很广,可以包括细胞研究、动物试验和小型人体试验。临床前研究往往是探索性的,数据集较小,通常由生物标记物数据组成。逻辑回归通常是二元结果建模的首选模型,其解释变量包括基因、成像和临床数据。小型临床前研究的数据可能具有挑战性,其中可能包括完全分离或准完全分离问题,这将导致逻辑回归膨胀的系数估计值和标准误差。Firth逻辑回归等惩罚回归方法是减少估计值偏差的一种解决方案。本教程将举例说明一些分离(完全或准完全)的例子,并对逻辑回归和 Firth 逻辑回归的结果进行比较,以展示标准逻辑回归模型的估计值膨胀和 Firth 惩罚回归方法的估计值偏差减小。附录中提供了 R 代码和数据集。
{"title":"Tutorial on Firth's Logistic Regression Models for Biomarkers in Preclinical Space.","authors":"Gina D'Angelo, Di Ran","doi":"10.1002/pst.2422","DOIUrl":"https://doi.org/10.1002/pst.2422","url":null,"abstract":"<p><p>Preclinical studies are broad and can encompass cellular research, animal trials, and small human trials. Preclinical studies tend to be exploratory and have smaller datasets that often consist of biomarker data. Logistic regression is typically the model of choice for modeling a binary outcome with explanatory variables such as genetic, imaging, and clinical data. Small preclinical studies can have challenging data that may include a complete separation or quasi-complete separation issue that will result in logistic regression inflated coefficient estimates and standard errors. Penalized regression approaches such as Firth's logistic regression are a solution to reduce the bias in the estimates. In this tutorial, a number of examples with separation (complete or quasi-complete) are illustrated and the results from both logistic regression and Firth's logistic regression are compared to demonstrate the inflated estimates from the standard logistic regression model and bias-reduction of the estimates from the penalized Firth's approach. R code and datasets are provided in the supplement.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixture Experimentation in Pharmaceutical Formulations: A Tutorial. 药物制剂中的混合物实验:教程。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-05 DOI: 10.1002/pst.2426
Lynne B Hare, Stan Altan, Hans Coppenolle

Mixture experimentation is commonly seen in pharmaceutical formulation studies, where the relative proportions of the individual components are modeled for effects on product attributes. The requirement that the sum of the component proportions equals 1 has given rise to the class of designs, known as mixture designs. The first mixture designs were published by Quenouille in 1953 but it took nearly 40 years for the earliest mixture design applications to be published in the pharmaceutical sciences literature by Kettaneh-Wold in 1991 and Waaler in 1992. Since then, the advent of efficient computer algorithms to generate designs has made this class of designs easily accessible to pharmaceutical statisticians, although the use of these designs appears to be an underutilized experimental strategy even today. One goal of this tutorial is to draw the attention of experimental statisticians to this class of designs and their advantages in pursuing formulation studies such as excipient compatibility studies. We present sufficient materials to introduce the novice practitioner to this class of design, associated models, and analysis strategies. An example of a mixture-process variable design is given as a case study.

混合物实验常见于药物制剂研究中,通过模拟单个成分的相对比例来确定对产品属性的影响。各组分比例之和等于 1 的要求产生了一类设计,即混合物设计。最早的混合设计由 Quenouille 于 1953 年发表,但过了近 40 年,Kettaneh-Wold 和 Waaler 才分别于 1991 年和 1992 年在制药科学文献中发表了最早的混合设计应用。从那时起,生成设计的高效计算机算法的出现使这一类设计很容易为制药统计学家所使用,尽管时至今日,使用这些设计似乎仍是一种未得到充分利用的实验策略。本教程的目的之一是提请实验统计人员注意这类设计及其在辅料相容性研究等制剂研究中的优势。我们将提供足够的材料,向新手介绍这类设计、相关模型和分析策略。我们还给出了一个混合过程变量设计的案例。
{"title":"Mixture Experimentation in Pharmaceutical Formulations: A Tutorial.","authors":"Lynne B Hare, Stan Altan, Hans Coppenolle","doi":"10.1002/pst.2426","DOIUrl":"https://doi.org/10.1002/pst.2426","url":null,"abstract":"<p><p>Mixture experimentation is commonly seen in pharmaceutical formulation studies, where the relative proportions of the individual components are modeled for effects on product attributes. The requirement that the sum of the component proportions equals 1 has given rise to the class of designs, known as mixture designs. The first mixture designs were published by Quenouille in 1953 but it took nearly 40 years for the earliest mixture design applications to be published in the pharmaceutical sciences literature by Kettaneh-Wold in 1991 and Waaler in 1992. Since then, the advent of efficient computer algorithms to generate designs has made this class of designs easily accessible to pharmaceutical statisticians, although the use of these designs appears to be an underutilized experimental strategy even today. One goal of this tutorial is to draw the attention of experimental statisticians to this class of designs and their advantages in pursuing formulation studies such as excipient compatibility studies. We present sufficient materials to introduce the novice practitioner to this class of design, associated models, and analysis strategies. An example of a mixture-process variable design is given as a case study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy for Designing In Vivo Dose-Response Comparison Studies. 设计体内剂量-反应比较研究的策略
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-17 DOI: 10.1002/pst.2421
Steven Novick, Tianhui Zhang

In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.

在临床前药物发现中,在化合物的先导优化步骤中,体内实验可以区分几种化合物在整个生物体的生物系统中的疗效和效力。在先导优化研究中,最好采用剂量-反应设计,这样就可以通过与数据拟合的非线性曲线对化合物进行比较。与简单的研究设计相比,剂量反应设计需要更多的考虑,需要剂量数、剂量值和每个剂量的样本量等参数。本教程说明了如何计算统计功率、选择剂量以及确定每个剂量的样本量,以便在未来的体内研究中比较两个或多个剂量-反应曲线。
{"title":"Strategy for Designing In Vivo Dose-Response Comparison Studies.","authors":"Steven Novick, Tianhui Zhang","doi":"10.1002/pst.2421","DOIUrl":"https://doi.org/10.1002/pst.2421","url":null,"abstract":"<p><p>In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of CMC Statisticians: Co-Practitioners of the Scientific Method. CMC 统计人员的作用:科学方法的共同实践者。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-10 DOI: 10.1002/pst.2420
Timothy Schofield

Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.

化学、制造和控制(CMC)统计人员在药品和生物制品的开发和生命周期管理中发挥着关键作用,他们与非统计人员伙伴合作管理产品质量。用于做出质量决策的信息来自于研究,而研究的成功离不开科学方法的支持。研究分为四个步骤:(1) 目标,(2) 设计,(3) 实施,(4) 分析。仔细考虑每个步骤有助于确保研究结论和相关决策的正确性。这可以是与化验的有效性有关的开发决策,也可以是符合规格等质量决策。重要的是,所有决策都有风险。传统的统计风险(如 1 类和 2 类错误)可与相关影响相结合,以管理患者价值以及开发和商业成本。CMC 统计学家将重点放在科学方法各步骤的风险管理上,从而实现最佳的产品开发和挽救生命的药物和生物制剂的稳健供应。
{"title":"The Role of CMC Statisticians: Co-Practitioners of the Scientific Method.","authors":"Timothy Schofield","doi":"10.1002/pst.2420","DOIUrl":"https://doi.org/10.1002/pst.2420","url":null,"abstract":"<p><p>Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potency Assay Variability Estimation in Practice. 实践中的药效测定变异性估算。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-08 DOI: 10.1002/pst.2408
Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson

During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.

在药物开发过程中,药效测试在生物制剂生产和营销所需的质量评估中发挥着重要作用。由于多种操作和生物因素的影响,与理化方法相比,生物测定的变异性通常更高。在本文中,我们将讨论生物测定变异性的不同来源以及如何对这种变异性进行统计估算。此外,我们还提出了一种算法,用于估算与不同运行次数相关的可报告结果的变异性,以及在给定规范下相应的 OOS 率。我们对多种检测形式进行了数值实验,以阐明生物检测变异性的经验分布。
{"title":"Potency Assay Variability Estimation in Practice.","authors":"Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson","doi":"10.1002/pst.2408","DOIUrl":"https://doi.org/10.1002/pst.2408","url":null,"abstract":"<p><p>During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1