首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control. 过度分散泊松数据的预测区间及其在医疗和临床前质量控制中的应用
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-10-30 DOI: 10.1002/pst.2447
Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt

In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.

在临床前和医疗质量控制中,利用历史控制数据来评估监测过程的稳定性或验证当前观察结果是很有意义的。一般来说,这是通过应用历史控制限(HCL)来实现的,以图形方式显示在控制图中。在许多应用中,HCL 被应用于计数数据,例如回复菌落数(艾姆斯检测法)或每位多发性硬化症患者的复发次数。计数数据可能过度分散,可能严重右偏,群集大小或其他基线量(例如,每个对照组的培养皿数量或每个患者的监测时间长度不同)也可能不同。基于准泊松假设或负二项分布,我们提出了用作 HCL 的过度分散计数数据的预测区间。可变基线量可通过偏移量来解释。此外,我们还提供了一种自举校准算法,可考虑倾斜分布并实现等尾概率。通过对八种不同的 HCL 计算方法的覆盖概率进行全面的蒙特卡洛模拟评估发现,自举校准预测区间对 1 类误差的控制效果最佳。控制图中传统使用的启发式方法(如 Shewhart c- 或 u- 图表中的限值或平均值 ± 2 SD)无法控制预先指定的覆盖概率。根据艾姆斯试验的数据和多发性硬化症患者的复发次数,展示了 HCL 的应用。建议的预测区间和自举校准算法可通过 R 软件包 predint 公开获取。
{"title":"Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control.","authors":"Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt","doi":"10.1002/pst.2447","DOIUrl":"10.1002/pst.2447","url":null,"abstract":"<p><p>In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2447"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials. 事件驱动临床试验中盲法样本量重估的灵活样条模型。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-03-01 Epub Date: 2024-12-11 DOI: 10.1002/pst.2459
Tim Mori, Sho Komukai, Satoshi Hattori, Tim Friede

In event-driven trials, the target power under a certain treatment effect is maintained as long as the required number of events is obtained. The misspecification of the survival function in the planning phase does not result in a loss of power. However, the trial might take longer than planned if the event rate is lower than assumed. Blinded sample size reestimation (BSSR) uses non-comparative interim data to adjust the sample size if some planning assumptions are wrong. In the setting of an event-driven trial, the sample size may be adjusted to maintain the chances to obtain the required number of events within the planned time frame. For the purpose of BSSR, the survival function is estimated based on the interim data and often needs to be extrapolated. The current practice is to fit standard parametric models, which may however not always be suitable. Here we propose a flexible spline-based BSSR method. Specifically, we propose to carry out the extrapolation based on the Royston-Parmar spline model. To compare the proposed procedure with parametric approaches, we carried out a simulation study. Although parametric approaches might seriously over- or underestimate the expected number of events, the proposed flexible approach avoided such undesirable behavior. This is also observed in an application to a secondary progressive multiple sclerosis trial. Overall, if planning assumptions are wrong this more robust flexible BSSR method could help event-driven designs to more accurately adjust recruitment numbers and to finish on time.

在事件驱动试验中,只要获得所需的事件数,就能维持一定治疗效果下的目标功率。在计划阶段对生存功能的错误说明不会导致功率的损失。然而,如果事件发生率低于假设,试验可能需要比计划更长的时间。盲法样本量重估(BSSR)是利用非比较性的中间数据来调整某些规划假设错误时的样本量。在事件驱动试验的设置中,可以调整样本量,以保持在计划时间范围内获得所需事件数量的机会。对于BSSR而言,生存函数是基于中期数据估计的,通常需要外推。目前的做法是拟合标准参数模型,但这可能并不总是合适的。本文提出了一种基于灵活样条的BSSR方法。具体而言,我们建议基于Royston-Parmar样条模型进行外推。为了与参数化方法进行比较,我们进行了仿真研究。尽管参数化方法可能严重高估或低估预期的事件数量,但所提出的灵活方法避免了这种不良行为。在继发性进展性多发性硬化试验中也观察到这一点。总的来说,如果计划假设是错误的,这种更健壮灵活的BSSR方法可以帮助事件驱动的设计更准确地调整招聘数量并按时完成。
{"title":"Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials.","authors":"Tim Mori, Sho Komukai, Satoshi Hattori, Tim Friede","doi":"10.1002/pst.2459","DOIUrl":"10.1002/pst.2459","url":null,"abstract":"<p><p>In event-driven trials, the target power under a certain treatment effect is maintained as long as the required number of events is obtained. The misspecification of the survival function in the planning phase does not result in a loss of power. However, the trial might take longer than planned if the event rate is lower than assumed. Blinded sample size reestimation (BSSR) uses non-comparative interim data to adjust the sample size if some planning assumptions are wrong. In the setting of an event-driven trial, the sample size may be adjusted to maintain the chances to obtain the required number of events within the planned time frame. For the purpose of BSSR, the survival function is estimated based on the interim data and often needs to be extrapolated. The current practice is to fit standard parametric models, which may however not always be suitable. Here we propose a flexible spline-based BSSR method. Specifically, we propose to carry out the extrapolation based on the Royston-Parmar spline model. To compare the proposed procedure with parametric approaches, we carried out a simulation study. Although parametric approaches might seriously over- or underestimate the expected number of events, the proposed flexible approach avoided such undesirable behavior. This is also observed in an application to a secondary progressive multiple sclerosis trial. Overall, if planning assumptions are wrong this more robust flexible BSSR method could help event-driven designs to more accurately adjust recruitment numbers and to finish on time.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2459"},"PeriodicalIF":1.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles for Defining Estimands in Clinical Trials-A Proposal. 定义临床试验估算值的原则--一项建议。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-08-13 DOI: 10.1002/pst.2432
Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn

The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.

ICH E9(R1)指南概述了临床试验的规划、设计、实施、分析和解释的估算指标框架。文献中概述了在临床试验中使用该框架的好处和价值,并就如何选择估计指标和定义估计指标属性提供了指导。尽管在临床试验中实施估计指标方面取得了进展,但据我们所知,目前还没有关于临床试验中的估计指标应符合哪些基本原则的公开讨论,这些原则应定义明确,并与 ICH E9(R1) 指南中提出的观点保持一致。因此,在这篇观点文章中,我们提出了定义估算指标的四项关键原则。这些原则构成了定义明确的治疗效果的基础,反映了估计值的思维过程。我们希望本观点能够补充 ICH E9(R1),并激发关于临床试验中的估计指标应具备哪些基本属性的讨论,并希望这些讨论最终能够提高临床试验中定义估计指标的清晰度和精确度。
{"title":"Principles for Defining Estimands in Clinical Trials-A Proposal.","authors":"Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn","doi":"10.1002/pst.2432","DOIUrl":"10.1002/pst.2432","url":null,"abstract":"<p><p>The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2432"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalizing Treatment Effect to a Target Population Without Individual Patient Data in a Real-World Setting. 在真实世界环境中,在没有个体患者数据的情况下,将治疗效果推广到目标人群。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1002/pst.2435
Hui Quan, Tong Li, Xun Chen, Gang Li

The innovative use of real-world data (RWD) can answer questions that cannot be addressed using data from randomized clinical trials (RCTs). While the sponsors of RCTs have a central database containing all individual patient data (IPD) collected from trials, analysts of RWD face a challenge: regulations on patient privacy make access to IPD from all regions logistically prohibitive. In this research, we propose a double inverse probability weighting (DIPW) approach for the analysis sponsor to estimate the population average treatment effect (PATE) for a target population without the need to access IPD. One probability weighting is for achieving comparable distributions in confounders across treatment groups; another probability weighting is for generalizing the result from a subpopulation of patients who have data on the endpoint to the whole target population. The likelihood expressions for propensity scores and the DIPW estimator of the PATE can be written to only rely on regional summary statistics that do not require IPD. Our approach hinges upon the positivity and conditional independency assumptions, prerequisites to most RWD analysis approaches. Simulations are conducted to compare the performances of the proposed method against a modified meta-analysis and a regular meta-analysis.

创新性地使用真实世界数据(RWD)可以回答随机临床试验(RCT)数据无法回答的问题。随机临床试验的赞助商拥有一个中央数据库,其中包含从试验中收集的所有患者个人数据(IPD),而真实世界数据的分析人员却面临着一个挑战:由于患者隐私方面的规定,从所有地区获取 IPD 在逻辑上是不可能的。在这项研究中,我们为分析发起人提出了一种双反概率加权(DIPW)方法,以便在无需获取 IPD 的情况下估算目标人群的人群平均治疗效果(PATE)。一种概率加权是为了实现各治疗组混杂因素分布的可比性;另一种概率加权是为了将结果从拥有终点数据的亚群患者推广到整个目标人群。倾向评分的似然表达式和 PATE 的 DIPW 估计器可以写成只依赖于不需要 IPD 的区域汇总统计。我们的方法取决于正相关性和条件独立性假设,这是大多数 RWD 分析方法的先决条件。我们进行了模拟,以比较所提议的方法与修正元分析和常规元分析的性能。
{"title":"Generalizing Treatment Effect to a Target Population Without Individual Patient Data in a Real-World Setting.","authors":"Hui Quan, Tong Li, Xun Chen, Gang Li","doi":"10.1002/pst.2435","DOIUrl":"10.1002/pst.2435","url":null,"abstract":"<p><p>The innovative use of real-world data (RWD) can answer questions that cannot be addressed using data from randomized clinical trials (RCTs). While the sponsors of RCTs have a central database containing all individual patient data (IPD) collected from trials, analysts of RWD face a challenge: regulations on patient privacy make access to IPD from all regions logistically prohibitive. In this research, we propose a double inverse probability weighting (DIPW) approach for the analysis sponsor to estimate the population average treatment effect (PATE) for a target population without the need to access IPD. One probability weighting is for achieving comparable distributions in confounders across treatment groups; another probability weighting is for generalizing the result from a subpopulation of patients who have data on the endpoint to the whole target population. The likelihood expressions for propensity scores and the DIPW estimator of the PATE can be written to only rely on regional summary statistics that do not require IPD. Our approach hinges upon the positivity and conditional independency assumptions, prerequisites to most RWD analysis approaches. Simulations are conducted to compare the performances of the proposed method against a modified meta-analysis and a regular meta-analysis.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2435"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Sample Size Calculation in Small n, Sequential Multiple Assignment Randomized Trials (snSMART). 小n次连续多分配随机试验(snSMART)中的贝叶斯样本量计算。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 DOI: 10.1002/pst.2465
Fang Fang, Roy N Tamura, Thomas M Braun, Kelley M Kidwell

A recent study design for clinical trials with small sample sizes is the small n, sequential, multiple assignment, randomized trial (snSMART). An snSMART design has been previously proposed to compare the efficacy of two dose levels versus placebo. In such a trial, participants are initially randomized to receive either low dose, high dose or placebo in stage 1. In stage 2, participants are re-randomized to either dose level depending on their initial treatment and a dichotomous response. A Bayesian analytic approach borrowing information from both stages was proposed and shown to improve the efficiency of estimation. In this paper, we propose two sample size determination (SSD) methods for the proposed snSMART comparing two dose levels with placebo. Both methods adopt the average coverage criterion (ACC) approach. In the first approach, the sample size is calculated in one step, taking advantage of the explicit posterior variance of the treatment effect. In the other two step approach, we update the sample size needed for a single-stage parallel design with a proposed adjustment factor (AF). Through simulations, we demonstrate that the required sample sizes calculated using the two SSD approaches both provide the desired power. We also provide an applet to allow for convenient and fast sample size calculation in this snSMART setting.

最近一项针对小样本量临床试验的研究设计是小n、顺序、多任务、随机试验(snSMART)。先前提出了一种snSMART设计来比较两种剂量水平与安慰剂的疗效。在这样的试验中,参与者最初在第一阶段随机接受低剂量、高剂量或安慰剂。在第二阶段,参与者根据他们的初始治疗和二分反应被重新随机分配到两种剂量水平。利用这两个阶段的信息,提出了一种贝叶斯分析方法,并证明了该方法可以提高估计效率。在本文中,我们提出了两种样本量测定(SSD)方法,将两种剂量水平与安慰剂进行比较。两种方法均采用平均覆盖准则(ACC)方法。在第一种方法中,利用治疗效果的显式后验方差,一步计算样本量。在其他两步方法中,我们使用建议的调整因子(AF)更新单级并行设计所需的样本量。通过模拟,我们证明了使用两种SSD方法计算所需的样本大小都提供了所需的功率。我们还提供了一个applet,以便在此snSMART设置中方便快速地计算样本大小。
{"title":"Bayesian Sample Size Calculation in Small n, Sequential Multiple Assignment Randomized Trials (snSMART).","authors":"Fang Fang, Roy N Tamura, Thomas M Braun, Kelley M Kidwell","doi":"10.1002/pst.2465","DOIUrl":"10.1002/pst.2465","url":null,"abstract":"<p><p>A recent study design for clinical trials with small sample sizes is the small n, sequential, multiple assignment, randomized trial (snSMART). An snSMART design has been previously proposed to compare the efficacy of two dose levels versus placebo. In such a trial, participants are initially randomized to receive either low dose, high dose or placebo in stage 1. In stage 2, participants are re-randomized to either dose level depending on their initial treatment and a dichotomous response. A Bayesian analytic approach borrowing information from both stages was proposed and shown to improve the efficiency of estimation. In this paper, we propose two sample size determination (SSD) methods for the proposed snSMART comparing two dose levels with placebo. Both methods adopt the average coverage criterion (ACC) approach. In the first approach, the sample size is calculated in one step, taking advantage of the explicit posterior variance of the treatment effect. In the other two step approach, we update the sample size needed for a single-stage parallel design with a proposed adjustment factor (AF). Through simulations, we demonstrate that the required sample sizes calculated using the two SSD approaches both provide the desired power. We also provide an applet to allow for convenient and fast sample size calculation in this snSMART setting.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 1","pages":"e2465"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Adaptive Three-Arm Comparative Clinical Endpoint Bioequivalence Study Design With Unblinded Sample Size Re-Estimation and Optimized Allocation Ratio. 采用非盲样本量再估计和优化分配比例的自适应三臂临床终点生物等效性比较研究设计
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1002/pst.2439
David Hinds, Wanjie Sun

A three-arm comparative clinical endpoint bioequivalence (BE) study is often used to establish bioequivalence (BE) between a locally acting generic drug (T) and reference drug (R), where superiority needs to be established for T and R over Placebo (P) and equivalence needs to be established for T vs. R. Sometimes, when study design parameters are uncertain, a fixed design study may be under- or over-powered and result in study failure or unnecessary cost. In this paper, we propose a two-stage adaptive clinical endpoint BE study with unblinded sample size re-estimation, standard or maximum combination method, optimized allocation ratio, optional re-estimation of the effect size based on likelihood estimation, and optional re-estimation of the R and P treatment means at interim analysis, which have not been done previously. Our proposed method guarantees control of Type 1 error rate analytically. It helps to reduce the average sample size when the original fixed design is overpowered and increases the sample size and power when the original study and group sequential design are under-powered. Our proposed adaptive design can help generic drug sponsors cut cost and improve success rate, making clinical study endpoint BE studies more affordable and more generic drugs accessible to the public.

三臂比较临床终点生物等效性(BE)研究通常用于确定局部作用仿制药(T)和参比药(R)之间的生物等效性(BE),其中需要确定T和R相对于安慰剂(P)的优越性,以及T相对于R的等效性。有时,当研究设计参数不确定时,固定设计的研究可能功率不足或过高,导致研究失败或不必要的成本。在本文中,我们提出了一种两阶段自适应临床终点 BE 研究,其中包括非盲法样本量重新估计、标准或最大组合法、优化分配比例、基于似然估计的可选效应大小重新估计、中期分析时可选的 R 和 P 治疗均值重新估计,这些都是以前没有做过的。我们提出的方法保证了对第一类错误率的分析控制。当原来的固定设计功率过大时,它有助于减少平均样本量;当原来的研究和分组序列设计功率不足时,它有助于增加样本量和功率。我们提出的自适应设计可以帮助仿制药申办者降低成本,提高成功率,使临床研究终点 BE 研究更加经济实惠,让更多的公众可以获得仿制药。
{"title":"An Adaptive Three-Arm Comparative Clinical Endpoint Bioequivalence Study Design With Unblinded Sample Size Re-Estimation and Optimized Allocation Ratio.","authors":"David Hinds, Wanjie Sun","doi":"10.1002/pst.2439","DOIUrl":"10.1002/pst.2439","url":null,"abstract":"<p><p>A three-arm comparative clinical endpoint bioequivalence (BE) study is often used to establish bioequivalence (BE) between a locally acting generic drug (T) and reference drug (R), where superiority needs to be established for T and R over Placebo (P) and equivalence needs to be established for T vs. R. Sometimes, when study design parameters are uncertain, a fixed design study may be under- or over-powered and result in study failure or unnecessary cost. In this paper, we propose a two-stage adaptive clinical endpoint BE study with unblinded sample size re-estimation, standard or maximum combination method, optimized allocation ratio, optional re-estimation of the effect size based on likelihood estimation, and optional re-estimation of the R and P treatment means at interim analysis, which have not been done previously. Our proposed method guarantees control of Type 1 error rate analytically. It helps to reduce the average sample size when the original fixed design is overpowered and increases the sample size and power when the original study and group sequential design are under-powered. Our proposed adaptive design can help generic drug sponsors cut cost and improve success rate, making clinical study endpoint BE studies more affordable and more generic drugs accessible to the public.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2439"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality by Design for Preclinical In Vitro Assay Development. 临床前体外检测开发的设计质量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-09-24 DOI: 10.1002/pst.2430
Jonathan Jones, Bairu Zhang, Xiang Zhang, Peter Konings, Pia Hansson, Anna Backmark, Alessia Serrano, Ulrike Künzel, Steven Novick

Quality by Design (QbD) is an approach to assay development to determine the design space, which is the range of assay variable settings that should result in satisfactory assay quality. Typically, QbD is applied in manufacturing, but it works just as well in the preclinical space. Through three examples, we illustrate the QbD approach with experimental design and associated data analysis to determine the design space for preclinical assays.

质量源于设计(QbD)是一种化验开发方法,用于确定设计空间,也就是化验变量设置的范围,该范围应能带来令人满意的化验质量。QbD 通常应用于生产领域,但在临床前领域也同样有效。通过三个例子,我们说明了 QbD 方法与实验设计和相关数据分析的关系,以确定临床前检测的设计空间。
{"title":"Quality by Design for Preclinical In Vitro Assay Development.","authors":"Jonathan Jones, Bairu Zhang, Xiang Zhang, Peter Konings, Pia Hansson, Anna Backmark, Alessia Serrano, Ulrike Künzel, Steven Novick","doi":"10.1002/pst.2430","DOIUrl":"10.1002/pst.2430","url":null,"abstract":"<p><p>Quality by Design (QbD) is an approach to assay development to determine the design space, which is the range of assay variable settings that should result in satisfactory assay quality. Typically, QbD is applied in manufacturing, but it works just as well in the preclinical space. Through three examples, we illustrate the QbD approach with experimental design and associated data analysis to determine the design space for preclinical assays.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2430"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The partnership between statisticians and the Institutional Animal Care and Use Committee (IACUC). 统计人员与机构动物护理和使用委员会(IACUC)之间的合作。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-06-11 DOI: 10.1002/pst.2390
David Potter, Thomas Bradstreet, Davit Sargsyan, Xiao Tan, Vinicius Bonato, Dingzhou Li, John Liang, Ondrej Libiger, Jocelyn Sendecki, John Stansfield, Kanaka Tatikola, Jialin Xu, Brandy Campbell

In this tutorial we explore the valuable partnership between statisticians and Institutional Animal Care and Use Committees (IACUCs) in the context of animal research, shedding light on the critical role statisticians play in ensuring the ethical and scientifically rigorous use of animals in research. Pharmaceutical statisticians have increasingly become vital members of these committees, contributing expertise in study design, data analysis, and interpretation, and working more generally to facilitate the integration of good statistical practices into experimental procedures. We review the "3Rs" principles (Replacement, Reduction, and Refinement) which are the foundation for the humane use of animals in scientific research, and how statisticians can partner with IACUC to help ensure robust and reproducible research while adhering to the 3Rs principles. We also highlight emerging areas of interest, such as the use of virtual control groups.

在本教程中,我们将探讨统计学家与动物研究机构动物护理和使用委员会 (IACUC) 在动物研究方面的宝贵合作关系,阐明统计学家在确保研究中合乎伦理和科学严谨地使用动物方面发挥的关键作用。医药统计学家日益成为这些委员会的重要成员,在研究设计、数据分析和解释方面贡献专业知识,并在更大范围内促进将良好的统计实践融入实验程序。我们回顾了 "3R "原则(Replacement、Reduction、Refinement),这是在科学研究中人道使用动物的基础,以及统计人员如何与 IACUC 合作,在遵守 3R 原则的同时帮助确保研究的稳健性和可重复性。我们还强调了新出现的关注领域,例如虚拟对照组的使用。
{"title":"The partnership between statisticians and the Institutional Animal Care and Use Committee (IACUC).","authors":"David Potter, Thomas Bradstreet, Davit Sargsyan, Xiao Tan, Vinicius Bonato, Dingzhou Li, John Liang, Ondrej Libiger, Jocelyn Sendecki, John Stansfield, Kanaka Tatikola, Jialin Xu, Brandy Campbell","doi":"10.1002/pst.2390","DOIUrl":"10.1002/pst.2390","url":null,"abstract":"<p><p>In this tutorial we explore the valuable partnership between statisticians and Institutional Animal Care and Use Committees (IACUCs) in the context of animal research, shedding light on the critical role statisticians play in ensuring the ethical and scientifically rigorous use of animals in research. Pharmaceutical statisticians have increasingly become vital members of these committees, contributing expertise in study design, data analysis, and interpretation, and working more generally to facilitate the integration of good statistical practices into experimental procedures. We review the \"3Rs\" principles (Replacement, Reduction, and Refinement) which are the foundation for the humane use of animals in scientific research, and how statisticians can partner with IACUC to help ensure robust and reproducible research while adhering to the 3Rs principles. We also highlight emerging areas of interest, such as the use of virtual control groups.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2390"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to qualification and validation of an immunoassay. 免疫测定的鉴定和验证简介。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-02-13 DOI: 10.1002/pst.2370
Sarah Janssen

Immunoassays play an important role in drug development of products targeting the immune system. Consistent quality of the results from an immunoassay is essential to make unbiased and accurate claims about the drug product during preclinical and clinical development stages. Assay qualification and validation shed light on the performance of the assay. It is the first evaluation and the verification, respectively, of the assay's performance. This tutorial explains and illustrates the calculation methodology for important assay qualification parameters including precision, relative accuracy, linearity, the lower limit of quantification (LLOQ), the upper limit of quantification (ULOQ), the assay range and dilutability. This tutorial focuses on assays used for (pre-) clinical purposes, characterized by a lognormal distribution of the measurements on its original untransformed scale and by the lack of well characterized reference material. Statistical calculations are illustrated with qualification data from an enzyme-linked immunosorbent assay (ELISA) vaccine immunoassay.

免疫测定在针对免疫系统的药物开发中发挥着重要作用。要想在临床前和临床开发阶段对药物产品做出公正准确的评价,就必须保证免疫测定结果的质量始终如一。化验鉴定和验证揭示了化验的性能。这分别是对检测性能的首次评估和验证。本教程解释并说明了重要化验鉴定参数的计算方法,包括精密度、相对准确度、线性度、定量下限 (LLOQ)、定量上限 (ULOQ)、化验范围和稀释性。本教程的重点是用于(预)临床目的的检测,其特点是原始未转换标度上的测量值呈对数正态分布,并且缺乏特征明确的参照材料。用酶联免疫吸附试验(ELISA)疫苗免疫测定的合格数据来说明统计计算。
{"title":"Introduction to qualification and validation of an immunoassay.","authors":"Sarah Janssen","doi":"10.1002/pst.2370","DOIUrl":"10.1002/pst.2370","url":null,"abstract":"<p><p>Immunoassays play an important role in drug development of products targeting the immune system. Consistent quality of the results from an immunoassay is essential to make unbiased and accurate claims about the drug product during preclinical and clinical development stages. Assay qualification and validation shed light on the performance of the assay. It is the first evaluation and the verification, respectively, of the assay's performance. This tutorial explains and illustrates the calculation methodology for important assay qualification parameters including precision, relative accuracy, linearity, the lower limit of quantification (LLOQ), the upper limit of quantification (ULOQ), the assay range and dilutability. This tutorial focuses on assays used for (pre-) clinical purposes, characterized by a lognormal distribution of the measurements on its original untransformed scale and by the lack of well characterized reference material. Statistical calculations are illustrated with qualification data from an enzyme-linked immunosorbent assay (ELISA) vaccine immunoassay.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"e2370"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Commensurate Prior Model With Random Effects for Survival and Competing Risk Outcomes to Accommodate Historical Controls. 适应历史控制的具有生存和竞争风险结果随机效应的相称先验模型。
IF 1.4 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 DOI: 10.1002/pst.2464
Manoj Khanal, Brent R Logan, Anjishnu Banerjee, Xi Fang, Kwang Woo Ahn

Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity. In addition, they studied the survival outcome only, not competing risk outcomes. Therefore, we propose a clustering-based commensurate prior model with random effects for both survival and competing risk outcomes that effectively borrows information based on the degree of comparability between historical and CT data. Simulation results show that the proposed method controls type I errors better and has a lower bias than some competing methods. We apply our method to a phase III CT which compares the effectiveness of bone marrow donated from family members with only partially matched bone marrow versus two partially matched cord blood units to treat leukemia and lymphoma.

由于有限的预算和患者登记的挑战,临床试验(ct)经常受到样本量小的困扰。使用历史数据进行CT数据分析可以提高统计能力,减少所需的样本量。现有的从历史数据中提取信息的方法没有考虑历史数据与CT数据之间的匹配,以减少异质性。此外,他们只研究了生存结果,而不是竞争风险结果。因此,我们提出了一个基于聚类的相称先验模型,该模型具有生存和竞争风险结果的随机效应,有效地借鉴了基于历史和CT数据之间可比性程度的信息。仿真结果表明,该方法能较好地控制I类误差,且偏差较小。我们将我们的方法应用于III期CT,比较来自家庭成员捐献的骨髓与两个部分匹配的脐带血单位治疗白血病和淋巴瘤的有效性。
{"title":"A Commensurate Prior Model With Random Effects for Survival and Competing Risk Outcomes to Accommodate Historical Controls.","authors":"Manoj Khanal, Brent R Logan, Anjishnu Banerjee, Xi Fang, Kwang Woo Ahn","doi":"10.1002/pst.2464","DOIUrl":"10.1002/pst.2464","url":null,"abstract":"<p><p>Clinical trials (CTs) often suffer from small sample sizes due to limited budgets and patient enrollment challenges. Using historical data for the CT data analysis may boost statistical power and reduce the required sample size. Existing methods on borrowing information from historical data with right-censored outcomes did not consider matching between historical data and CT data to reduce the heterogeneity. In addition, they studied the survival outcome only, not competing risk outcomes. Therefore, we propose a clustering-based commensurate prior model with random effects for both survival and competing risk outcomes that effectively borrows information based on the degree of comparability between historical and CT data. Simulation results show that the proposed method controls type I errors better and has a lower bias than some competing methods. We apply our method to a phase III CT which compares the effectiveness of bone marrow donated from family members with only partially matched bone marrow versus two partially matched cord blood units to treat leukemia and lymphoma.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 1","pages":"e2464"},"PeriodicalIF":1.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1