Sami Leon, Elena Rantou, Jessica Kim, Sungwoo Choi, Nam Hee Choi
For topical, dermatological drug products, an in vitro option to determine bioequivalence (BE) between test and reference products is recommended. In particular, in vitro permeation test (IVPT) data analysis uses a reference-scaled approach for two primary endpoints, cumulative penetration amount (AMT) and maximum flux (Jmax), which takes the within donor variability into consideration. In 2022, the Food and Drug Administration (FDA) published a draft IVPT guidance that includes statistical analysis methods for both balanced and unbalanced cases of IVPT study data. This work presents a comprehensive evaluation of various methodologies used to estimate critical parameters essential in assessing BE. Specifically, we investigate the performance of the FDA draft IVPT guidance approach alongside alternative empirical and model-based methods utilizing mixed-effects models. Our analyses include both simulated scenarios and real-world studies. In simulated scenarios, empirical formulas consistently demonstrate robustness in approximating the true model, particularly in effectively addressing treatment-donor interactions. Conversely, the effectiveness of model-based approaches heavily relies on precise model selection, which significantly influences their results. The research emphasizes the importance of accurate model selection in model-based BE assessment methodologies. It sheds light on the advantages of empirical formulas, highlighting their reliability compared to model-based approaches and offers valuable implications for BE assessments. Our findings underscore the significance of robust methodologies and provide essential insights to advance their understanding and application in the assessment of BE, employed in IVPT data analysis.
对于外用皮肤病药物产品,建议采用体外方法来确定试验产品和参照产品之间的生物等效性(BE)。特别是,体外渗透试验(IVPT)数据分析对两个主要终点--累积渗透量(AMT)和最大通量(Jmax)--采用参考标度法,其中考虑了供体内部的变异性。2022 年,美国食品和药物管理局(FDA)发布了 IVPT 指南草案,其中包括 IVPT 研究数据平衡和非平衡情况的统计分析方法。这项工作全面评估了用于估算评估 BE 所必需的关键参数的各种方法。具体来说,我们研究了 FDA IVPT 指南草案方法的性能,以及利用混合效应模型的其他基于经验和模型的方法。我们的分析包括模拟情景和真实世界研究。在模拟场景中,经验公式在逼近真实模型方面始终表现出稳健性,尤其是在有效处理治疗-供体相互作用方面。相反,基于模型的方法的有效性在很大程度上依赖于精确的模型选择,这对其结果有很大影响。这项研究强调了在基于模型的生物多样性评估方法中准确选择模型的重要性。研究揭示了经验公式的优势,强调了与基于模型的方法相比,经验公式的可靠性,并为生物多样性评估提供了有价值的启示。我们的研究结果强调了稳健方法的重要性,并为在 IVPT 数据分析中使用的 BE 评估方法的理解和应用提供了重要启示。
{"title":"Comparative Analyses of Bioequivalence Assessment Methods for In Vitro Permeation Test Data.","authors":"Sami Leon, Elena Rantou, Jessica Kim, Sungwoo Choi, Nam Hee Choi","doi":"10.1002/pst.2434","DOIUrl":"https://doi.org/10.1002/pst.2434","url":null,"abstract":"<p><p>For topical, dermatological drug products, an in vitro option to determine bioequivalence (BE) between test and reference products is recommended. In particular, in vitro permeation test (IVPT) data analysis uses a reference-scaled approach for two primary endpoints, cumulative penetration amount (AMT) and maximum flux (J<sub>max</sub>), which takes the within donor variability into consideration. In 2022, the Food and Drug Administration (FDA) published a draft IVPT guidance that includes statistical analysis methods for both balanced and unbalanced cases of IVPT study data. This work presents a comprehensive evaluation of various methodologies used to estimate critical parameters essential in assessing BE. Specifically, we investigate the performance of the FDA draft IVPT guidance approach alongside alternative empirical and model-based methods utilizing mixed-effects models. Our analyses include both simulated scenarios and real-world studies. In simulated scenarios, empirical formulas consistently demonstrate robustness in approximating the true model, particularly in effectively addressing treatment-donor interactions. Conversely, the effectiveness of model-based approaches heavily relies on precise model selection, which significantly influences their results. The research emphasizes the importance of accurate model selection in model-based BE assessment methodologies. It sheds light on the advantages of empirical formulas, highlighting their reliability compared to model-based approaches and offers valuable implications for BE assessments. Our findings underscore the significance of robust methodologies and provide essential insights to advance their understanding and application in the assessment of BE, employed in IVPT data analysis.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl
This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.
本教程介绍了单步低维同步推理,重点是调整后 p 值和兼容置信区间的可用性,而不仅仅是通常的均值比较。其基本思想是:首先,利用相关性对多元 t 分布的量值的影响:越高越不保守。此外,第二,使用多重边际模型方法(mmm),使用线性到广义线性混合模型类中的多重模型来估算相关矩阵的可估算性。使用选定的 R 软件包,通过几个真实数据场景讨论了使用 mmm 的基本 maxT 检验。令人惊讶的是,其中突出了不同的特点:(i) 分析不同尺度、相关的多个终点,(ii) 分析多个相关的二进制终点,(iii) 将剂量作为定性因子和/或定量协变量建模,(iv) 在 poly-k 趋势检验中联合考虑多个调整参数,(v) 联合检验剂量和时间、(viii) 多重线性混合效应模型;(ix) 广义估计方程;以及 (x) 非线性回归模型。
{"title":"Simultaneous Inference Using Multiple Marginal Models.","authors":"Ludwig A Hothorn, Christian Ritz, Frank Schaarschmidt, Signe M Jensen, Robin Ristl","doi":"10.1002/pst.2428","DOIUrl":"https://doi.org/10.1002/pst.2428","url":null,"abstract":"<p><p>This tutorial describes single-step low-dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t-distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT-test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different-scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly-k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.
{"title":"Sample Size Reestimation in Stochastic Curtailment Tests With Time-to-Events Outcome in the Case of Nonproportional Hazards Utilizing Two Weibull Distributions With Unknown Shape Parameters.","authors":"Palash Sharma, Milind A Phadnis","doi":"10.1002/pst.2429","DOIUrl":"https://doi.org/10.1002/pst.2429","url":null,"abstract":"<p><p>Stochastic curtailment tests for Phase II two-arm trials with time-to-event end points are traditionally performed using the log-rank test. Recent advances in designing time-to-event trials have utilized the Weibull distribution with a known shape parameter estimated from historical studies. As sample size calculations depend on the value of this shape parameter, these methods either cannot be used or likely underperform/overperform when the natural variation around the point estimate is ignored. We demonstrate that when the magnitude of the Weibull shape parameters changes, unblinded interim information on the shape of the survival curves can be useful to enrich the final analysis for reestimation of the sample size. For such scenarios, we propose two Bayesian solutions to estimate the natural variations of the Weibull shape parameter. We implement these approaches under the framework of the newly proposed relative time method that allows nonproportional hazards and nonproportional time. We also demonstrate the sample size reestimation for the relative time method using three different approaches (internal pilot study approach, conditional power, and predictive power approach) at the interim stage of the trial. We demonstrate our methods using a hypothetical example and provide insights regarding the practical constraints for the proposed methods.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn
The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.
ICH E9(R1)指南概述了临床试验的规划、设计、实施、分析和解释的估算指标框架。文献中概述了在临床试验中使用该框架的好处和价值,并就如何选择估计指标和定义估计指标属性提供了指导。尽管在临床试验中实施估计指标方面取得了进展,但据我们所知,目前还没有关于临床试验中的估计指标应符合哪些基本原则的公开讨论,这些原则应定义明确,并与 ICH E9(R1) 指南中提出的观点保持一致。因此,在这篇观点文章中,我们提出了定义估算指标的四项关键原则。这些原则构成了定义明确的治疗效果的基础,反映了估计值的思维过程。我们希望本观点能够补充 ICH E9(R1),并激发关于临床试验中的估计指标应具备哪些基本属性的讨论,并希望这些讨论最终能够提高临床试验中定义估计指标的清晰度和精确度。
{"title":"Principles for Defining Estimands in Clinical Trials-A Proposal.","authors":"Tobias Mütze, James Bell, Stefan Englert, Philip Hougaard, Dan Jackson, Vivian Lanius, Henrik Ravn","doi":"10.1002/pst.2432","DOIUrl":"https://doi.org/10.1002/pst.2432","url":null,"abstract":"<p><p>The ICH E9(R1) guideline outlines the estimand framework, which aligns planning, design, conduct, analysis, and interpretation of a clinical trial. The benefits and value of using this framework in clinical trials have been outlined in the literature, and guidance has been provided on how to choose the estimand and define the estimand attributes. Although progress has been made in the implementation of estimands in clinical trials, to the best of our knowledge, there is no published discussion on the basic principles that estimands in clinical trials should fulfill to be well defined and consistent with the ideas presented in the ICH E9(R1) guideline. Therefore, in this Viewpoint article, we propose four key principles for defining an estimand. These principles form a basis for well-defined treatment effects that reflect the estimand thinking process. We hope that this Viewpoint will complement ICH E9(R1) and stimulate a discussion on which fundamental properties an estimand in a clinical trial should have and that such discussions will eventually lead to an improved clarity and precision for defining estimands in clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.
在肿瘤学领域,II 期研究对临床开发计划至关重要,因为这类研究可以确定具有足够活性的强效制剂,以便在随后的 III 期试验中继续开发。传统上,II 期研究是单臂研究,主要终点是短期疗效。然而,药物安全性也是一个重要的考虑因素。在这种多结果设计的背景下,人们开发了基于预测概率的贝叶斯监测策略,以评估临床试验是否能提供足够的证据,从而在预定试验结束时继续进行 III 期研究。因此,我们提出了一种新的简单指数向量来总结现有策略无法捕捉的结果。具体来说,我们定义了治疗潜在效果最差和最有希望的两种情况,然后使用提出的指数向量来衡量两种情况之间的偏差。最后,我们进行了模拟研究,以评估设计的运行特性。结果表明,建议的方法能做出适当的 "去/不去 "临时决策。
{"title":"Bayesian Predictive Probability Based on a Bivariate Index Vector for Single-Arm Phase II Study With Binary Efficacy and Safety Endpoints.","authors":"Takuya Yoshimoto, Satoru Shinoda, Kouji Yamamoto, Kouji Tahata","doi":"10.1002/pst.2431","DOIUrl":"https://doi.org/10.1002/pst.2431","url":null,"abstract":"<p><p>In oncology, Phase II studies are crucial for clinical development plans as such studies identify potent agents with sufficient activity to continue development in the subsequent Phase III trials. Traditionally, Phase II studies are single-arm studies, with the primary endpoint being short-term treatment efficacy. However, drug safety is also an important consideration. In the context of such multiple-outcome designs, predictive probability-based Bayesian monitoring strategies have been developed to assess whether a clinical trial will provide enough evidence to continue with a Phase III study at the scheduled end of the trial. Therefore, we propose a new simple index vector to summarize the results that cannot be captured by existing strategies. Specifically, we define the worst and most promising situations for the potential effect of a treatment, then use the proposed index vector to measure the deviation between the two situations. Finally, simulation studies are performed to evaluate the operating characteristics of the design. The obtained results demonstrate that the proposed method makes appropriate interim go/no-go decisions.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preclinical studies are broad and can encompass cellular research, animal trials, and small human trials. Preclinical studies tend to be exploratory and have smaller datasets that often consist of biomarker data. Logistic regression is typically the model of choice for modeling a binary outcome with explanatory variables such as genetic, imaging, and clinical data. Small preclinical studies can have challenging data that may include a complete separation or quasi-complete separation issue that will result in logistic regression inflated coefficient estimates and standard errors. Penalized regression approaches such as Firth's logistic regression are a solution to reduce the bias in the estimates. In this tutorial, a number of examples with separation (complete or quasi-complete) are illustrated and the results from both logistic regression and Firth's logistic regression are compared to demonstrate the inflated estimates from the standard logistic regression model and bias-reduction of the estimates from the penalized Firth's approach. R code and datasets are provided in the supplement.
临床前研究的范围很广,可以包括细胞研究、动物试验和小型人体试验。临床前研究往往是探索性的,数据集较小,通常由生物标记物数据组成。逻辑回归通常是二元结果建模的首选模型,其解释变量包括基因、成像和临床数据。小型临床前研究的数据可能具有挑战性,其中可能包括完全分离或准完全分离问题,这将导致逻辑回归膨胀的系数估计值和标准误差。Firth逻辑回归等惩罚回归方法是减少估计值偏差的一种解决方案。本教程将举例说明一些分离(完全或准完全)的例子,并对逻辑回归和 Firth 逻辑回归的结果进行比较,以展示标准逻辑回归模型的估计值膨胀和 Firth 惩罚回归方法的估计值偏差减小。附录中提供了 R 代码和数据集。
{"title":"Tutorial on Firth's Logistic Regression Models for Biomarkers in Preclinical Space.","authors":"Gina D'Angelo, Di Ran","doi":"10.1002/pst.2422","DOIUrl":"https://doi.org/10.1002/pst.2422","url":null,"abstract":"<p><p>Preclinical studies are broad and can encompass cellular research, animal trials, and small human trials. Preclinical studies tend to be exploratory and have smaller datasets that often consist of biomarker data. Logistic regression is typically the model of choice for modeling a binary outcome with explanatory variables such as genetic, imaging, and clinical data. Small preclinical studies can have challenging data that may include a complete separation or quasi-complete separation issue that will result in logistic regression inflated coefficient estimates and standard errors. Penalized regression approaches such as Firth's logistic regression are a solution to reduce the bias in the estimates. In this tutorial, a number of examples with separation (complete or quasi-complete) are illustrated and the results from both logistic regression and Firth's logistic regression are compared to demonstrate the inflated estimates from the standard logistic regression model and bias-reduction of the estimates from the penalized Firth's approach. R code and datasets are provided in the supplement.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mixture experimentation is commonly seen in pharmaceutical formulation studies, where the relative proportions of the individual components are modeled for effects on product attributes. The requirement that the sum of the component proportions equals 1 has given rise to the class of designs, known as mixture designs. The first mixture designs were published by Quenouille in 1953 but it took nearly 40 years for the earliest mixture design applications to be published in the pharmaceutical sciences literature by Kettaneh-Wold in 1991 and Waaler in 1992. Since then, the advent of efficient computer algorithms to generate designs has made this class of designs easily accessible to pharmaceutical statisticians, although the use of these designs appears to be an underutilized experimental strategy even today. One goal of this tutorial is to draw the attention of experimental statisticians to this class of designs and their advantages in pursuing formulation studies such as excipient compatibility studies. We present sufficient materials to introduce the novice practitioner to this class of design, associated models, and analysis strategies. An example of a mixture-process variable design is given as a case study.
{"title":"Mixture Experimentation in Pharmaceutical Formulations: A Tutorial.","authors":"Lynne B Hare, Stan Altan, Hans Coppenolle","doi":"10.1002/pst.2426","DOIUrl":"https://doi.org/10.1002/pst.2426","url":null,"abstract":"<p><p>Mixture experimentation is commonly seen in pharmaceutical formulation studies, where the relative proportions of the individual components are modeled for effects on product attributes. The requirement that the sum of the component proportions equals 1 has given rise to the class of designs, known as mixture designs. The first mixture designs were published by Quenouille in 1953 but it took nearly 40 years for the earliest mixture design applications to be published in the pharmaceutical sciences literature by Kettaneh-Wold in 1991 and Waaler in 1992. Since then, the advent of efficient computer algorithms to generate designs has made this class of designs easily accessible to pharmaceutical statisticians, although the use of these designs appears to be an underutilized experimental strategy even today. One goal of this tutorial is to draw the attention of experimental statisticians to this class of designs and their advantages in pursuing formulation studies such as excipient compatibility studies. We present sufficient materials to introduce the novice practitioner to this class of design, associated models, and analysis strategies. An example of a mixture-process variable design is given as a case study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.
{"title":"Strategy for Designing In Vivo Dose-Response Comparison Studies.","authors":"Steven Novick, Tianhui Zhang","doi":"10.1002/pst.2421","DOIUrl":"https://doi.org/10.1002/pst.2421","url":null,"abstract":"<p><p>In preclinical drug discovery, at the step of lead optimization of a compound, in vivo experimentation can differentiate several compounds in terms of efficacy and potency in a biological system of whole living organisms. For the lead optimization study, it may be desirable to implement a dose-response design so that compound comparisons can be made from nonlinear curves fitted to the data. A dose-response design requires more thought relative to a simpler study design, needing parameters for the number of doses, the dose values, and the sample size per dose. This tutorial illustrates how to calculate statistical power, choose doses, and determine sample size per dose for a comparison of two or more dose-response curves for a future in vivo study.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.
{"title":"The Role of CMC Statisticians: Co-Practitioners of the Scientific Method.","authors":"Timothy Schofield","doi":"10.1002/pst.2420","DOIUrl":"https://doi.org/10.1002/pst.2420","url":null,"abstract":"<p><p>Chemistry, manufacturing, and control (CMC) statisticians play a key role in the development and lifecycle management of pharmaceutical and biological products, working with their non-statistician partners to manage product quality. Information used to make quality decisions comes from studies, where success is facilitated through adherence to the scientific method. This is carried out in four steps: (1) an objective, (2) design, (3) conduct, and (4) analysis. Careful consideration of each step helps to ensure that a study conclusion and associated decision is correct. This can be a development decision related to the validity of an assay or a quality decision like conformance to specifications. Importantly, all decisions are made with risk. Conventional statistical risks such as Type 1 and Type 2 errors can be coupled with associated impacts to manage patient value as well as development and commercial costs. The CMC statistician brings focus on managing risk across the steps of the scientific method, leading to optimal product development and robust supply of life saving drugs and biologicals.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson
During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.
{"title":"Potency Assay Variability Estimation in Practice.","authors":"Hang Li, Tomasz M Witkos, Scott Umlauf, Christopher Thompson","doi":"10.1002/pst.2408","DOIUrl":"https://doi.org/10.1002/pst.2408","url":null,"abstract":"<p><p>During the drug development process, testing potency plays an important role in the quality assessment required for the manufacturing and marketing of biologics. Due to multiple operational and biological factors, higher variability is usually observed in bioassays compared with physicochemical methods. In this paper, we discuss different sources of bioassay variability and how this variability can be statistically estimated. In addition, we propose an algorithm to estimate the variability of reportable results associated with different numbers of runs and their corresponding OOS rates under a given specification. Numerical experiments are conducted on multiple assay formats to elucidate the empirical distribution of bioassay variability.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}