Pub Date : 2024-10-16DOI: 10.1088/1361-6579/ad838d
Aurélia Leandri, Louis Lecrosnier, Adel Ghazel, Bastien Faure
The radial artery, one of the terminal branches of the forearm, is utilized for vascular access and in various non-invasive measurement method, providing crucial medical insights. Various sensor technologies have been developed, each suited to specific characterization requirements. The work presented in this paper is based on a systematic literature review of the main publications relating to this topic. Analysis of the forearm vascular system complex array of anatomical structures shows that the radial artery can be characterized by its size, position, elasticity, tissue evaluation, blood flow and blood composition. The survey of medical procedures for patient monitoring, diagnosis and pre-operative validation shows the use of measures for pulse wave, blood pressure, heart rate, skin temperature, tissue response,…By exploring sensor technologies used for artery characterization, we produce a synthesis of measurement principles, measured phenomena and measurement accuracy for capacitive, piezoresistive, bioimpedance, thermography, fiber optic based, piezoelectric and photoacoustic sensors. A comparative study is conducted for sensor technologies by considering the metrics of the information to be collected and the associated accuracy as well as the portability, the complexity of the processing, the cost and the mode of contact with the arm. Finally, a comprehensive framework is proposed to facilitate informed decisions in the development of medical devices tailored to specific characterization needs.
{"title":"Survey on portable sensing technologies for the radial artery characterization.","authors":"Aurélia Leandri, Louis Lecrosnier, Adel Ghazel, Bastien Faure","doi":"10.1088/1361-6579/ad838d","DOIUrl":"10.1088/1361-6579/ad838d","url":null,"abstract":"<p><p>The radial artery, one of the terminal branches of the forearm, is utilized for vascular access and in various non-invasive measurement method, providing crucial medical insights. Various sensor technologies have been developed, each suited to specific characterization requirements. The work presented in this paper is based on a systematic literature review of the main publications relating to this topic. Analysis of the forearm vascular system complex array of anatomical structures shows that the radial artery can be characterized by its size, position, elasticity, tissue evaluation, blood flow and blood composition. The survey of medical procedures for patient monitoring, diagnosis and pre-operative validation shows the use of measures for pulse wave, blood pressure, heart rate, skin temperature, tissue response,…By exploring sensor technologies used for artery characterization, we produce a synthesis of measurement principles, measured phenomena and measurement accuracy for capacitive, piezoresistive, bioimpedance, thermography, fiber optic based, piezoelectric and photoacoustic sensors. A comparative study is conducted for sensor technologies by considering the metrics of the information to be collected and the associated accuracy as well as the portability, the complexity of the processing, the cost and the mode of contact with the arm. Finally, a comprehensive framework is proposed to facilitate informed decisions in the development of medical devices tailored to specific characterization needs.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":"45 10","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1088/1361-6579/ad7fcc
Yinsong Liu, Junsheng Yu, Hanlin Mou
Objective.Continuous monitoring of blood pressure (BP) is crucial for daily healthcare. Although invasive methods provide accurate continuous BP measurements, they are not suitable for routine use. Photoplethysmography (PPG), a non-invasive technique that detects changes in blood volume within the microcirculation using light, shows promise for BP measurement. The primary goal of this study is to develop a novel cuffless method based on PPG for accurately estimating continuous BP.Approach.We introduce BP-Diff, an end-to-end method for cuffless continuous BP waveform estimation utilizing a conditional diffusion probability model combined with a U-Net architecture. This approach takes advantage of the stochastic properties of diffusion models and the strong feature representation capabilities of U-Net. It integrates the continuous BP waveform as the initial status and uses the PPG signal and its derivatives as conditions to guide the training and sampling process.Main results.BP-Diff was evaluated using both uncalibrated and calibrated schemes. The results indicate that, when uncalibrated, BP-Diff can accurately track BP dynamics, including peak and valley positions, as well as timing. After calibration, BP-Diff achieved highly accurate BP estimations. The mean absolute error of the estimated BP waveforms, along with the systolic BP, diastolic BP, and mean arterial pressure from the calibrated BP-Diff model, were 2.99 mmHg, 2.6 mmHg, 1.4 mmHg, and 1.44 mmHg, respectively. Consistency tests, including Bland-Altman analysis and Pearson correlation, confirmed its high reliability compared to reference BP. BP-Diff meets the American Association for Medical Instrumentation standards and has achieved a Grade A from the British Hypertension Society.Significance.This study utilizes PPG signals to develop a novel cuffless continuous BP measurement method, demonstrating superiority over existing approaches. The method is suitable for integration into wearable devices, providing a practical solution for continuous BP monitoring in everyday healthcare.
{"title":"BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net.","authors":"Yinsong Liu, Junsheng Yu, Hanlin Mou","doi":"10.1088/1361-6579/ad7fcc","DOIUrl":"10.1088/1361-6579/ad7fcc","url":null,"abstract":"<p><p><i>Objective.</i>Continuous monitoring of blood pressure (BP) is crucial for daily healthcare. Although invasive methods provide accurate continuous BP measurements, they are not suitable for routine use. Photoplethysmography (PPG), a non-invasive technique that detects changes in blood volume within the microcirculation using light, shows promise for BP measurement. The primary goal of this study is to develop a novel cuffless method based on PPG for accurately estimating continuous BP.<i>Approach.</i>We introduce BP-Diff, an end-to-end method for cuffless continuous BP waveform estimation utilizing a conditional diffusion probability model combined with a U-Net architecture. This approach takes advantage of the stochastic properties of diffusion models and the strong feature representation capabilities of U-Net. It integrates the continuous BP waveform as the initial status and uses the PPG signal and its derivatives as conditions to guide the training and sampling process.<i>Main results.</i>BP-Diff was evaluated using both uncalibrated and calibrated schemes. The results indicate that, when uncalibrated, BP-Diff can accurately track BP dynamics, including peak and valley positions, as well as timing. After calibration, BP-Diff achieved highly accurate BP estimations. The mean absolute error of the estimated BP waveforms, along with the systolic BP, diastolic BP, and mean arterial pressure from the calibrated BP-Diff model, were 2.99 mmHg, 2.6 mmHg, 1.4 mmHg, and 1.44 mmHg, respectively. Consistency tests, including Bland-Altman analysis and Pearson correlation, confirmed its high reliability compared to reference BP. BP-Diff meets the American Association for Medical Instrumentation standards and has achieved a Grade A from the British Hypertension Society.<i>Significance.</i>This study utilizes PPG signals to develop a novel cuffless continuous BP measurement method, demonstrating superiority over existing approaches. The method is suitable for integration into wearable devices, providing a practical solution for continuous BP monitoring in everyday healthcare.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1088/1361-6579/ad814f
Gregorio Dotti, Marco Ghislieri, Cristina Castagneri, Valentina Agostini, Marco Knaflitz, Gabriella Balestra, Samanta Rosati
Objective.The accurate temporal analysis of muscle activations is of great importance in several research areas spanning from the assessment of altered muscle activation patterns in orthopaedic and neurological patients to the monitoring of their motor rehabilitation. Several studies have highlighted the challenge of understanding and interpreting muscle activation patterns due to the high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results and to use sEMG signals in clinical practice. To overcome this limitation, this study aims at presenting a toolbox to help scientists easily characterize and assess muscle activation patterns during cyclical movements.Approach.CIMAP(Clustering for the Identification of Muscle Activation Patterns) is an open-source Python toolbox based on agglomerative hierarchical clustering that aims at characterizing muscle activation patterns during cyclical movements by grouping movement cycles showing similar muscle activity.Main results.From muscle activation intervals to the graphical representation of the agglomerative hierarchical clustering dendrograms, the proposed toolbox offers a complete analysis framework for enabling the assessment of muscle activation patterns. The toolbox can be flexibly modified to comply with the necessities of the scientist.CIMAPis addressed to scientists of any programming skill level working in different research areas such as biomedical engineering, robotics, sports, clinics, biomechanics, and neuroscience. CIMAP is freely available on GitHub (https://github.com/Biolab-PoliTO/CIMAP).Significance.CIMAPtoolbox offers scientists a standardized method for analyzing muscle activation patterns during cyclical movements.
{"title":"An open-source toolbox for enhancing the assessment of muscle activation patterns during cyclical movements.","authors":"Gregorio Dotti, Marco Ghislieri, Cristina Castagneri, Valentina Agostini, Marco Knaflitz, Gabriella Balestra, Samanta Rosati","doi":"10.1088/1361-6579/ad814f","DOIUrl":"10.1088/1361-6579/ad814f","url":null,"abstract":"<p><p><i>Objective.</i>The accurate temporal analysis of muscle activations is of great importance in several research areas spanning from the assessment of altered muscle activation patterns in orthopaedic and neurological patients to the monitoring of their motor rehabilitation. Several studies have highlighted the challenge of understanding and interpreting muscle activation patterns due to the high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results and to use sEMG signals in clinical practice. To overcome this limitation, this study aims at presenting a toolbox to help scientists easily characterize and assess muscle activation patterns during cyclical movements.<i>Approach.</i>CIMAP(Clustering for the Identification of Muscle Activation Patterns) is an open-source Python toolbox based on agglomerative hierarchical clustering that aims at characterizing muscle activation patterns during cyclical movements by grouping movement cycles showing similar muscle activity.<i>Main results.</i>From muscle activation intervals to the graphical representation of the agglomerative hierarchical clustering dendrograms, the proposed toolbox offers a complete analysis framework for enabling the assessment of muscle activation patterns. The toolbox can be flexibly modified to comply with the necessities of the scientist.CIMAPis addressed to scientists of any programming skill level working in different research areas such as biomedical engineering, robotics, sports, clinics, biomechanics, and neuroscience. CIMAP is freely available on GitHub (https://github.com/Biolab-PoliTO/CIMAP).<i>Significance.</i>CIMAPtoolbox offers scientists a standardized method for analyzing muscle activation patterns during cyclical movements.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1088/1361-6579/ad805e
Christine L Mai, Sara Burns, David A August, Somaletha T Bhattacharya, Ariel Mueller, Timothy T Houle, Thomas A Anderson, Jacquelin Peck
Objective.Pediatric patients undergoing medical procedures often grapple with preoperative anxiety, which can impact postoperative outcomes. While healthcare providers subjectively assess anxiety, objective quantification tools remain limited. This study aimed to evaluate two objective measures-cardiac index (CI) and heart rate (HR) in comparison with validated subjective assessments, the modified Yale Preoperative Anxiety Scale (mYPAS) and the numeric rating scale (NRS).Approach.In this prospective, observational cohort study, children ages 5-17 undergoing ambulatory endoscopy under general anesthesia underwent simultaneous measurement of objective and subjective measures at various time points: baseline, intravenous placement, two-minutes post-IV placement, when departing the preoperative bay, and one-minute prior to anesthesia induction.Main Results.Of the 86 enrolled patients, 77 had analyzable CI data and were included in the analysis. The median age was 15 years (interquartile range 13, 16), 55% were female, and most were American Society of Anesthesiologists (ASA) Physical Status 2 (64%), and had previous endoscopies (53%). HR and CI correlated overall (r= 0.65, 95% CI: 0.62, 0.69;p< 0.001), as did NRS and mYPAS (r= 0.39, 95% CI: 0.34, 0.44;p< 0.001). The correlation between HR and CI was stronger with NRS (r= 0.24, 95% CI: 0.19, 0.29;p< 0.001; andr= 0.13, 95% CI: 0.07, 0.19;p< 0.001, respectively) than with mYPAS (r= 0.06, 95% CI: 0.00, 0.11;p= 0.046; andr= 0.08, 95% CI: 0.02, 0.14;p= 0.006, respectively). The correlation with mYPAS for both HR and CI varied significantly in both direction and magnitude across the different time points.Significance.A modest yet discernable correlation exists between objective measures (HR and CI) and established subjective anxiety assessments.
目的:
接受医疗手术的儿科患者经常会出现术前焦虑,这会影响术后效果。虽然医护人员会主观评估焦虑,但客观量化工具仍然有限。本研究旨在评估两种客观测量方法--心脏指数(CI)和心率(HR)--与经过验证的主观评估方法(改良耶鲁术前焦虑量表(mYPAS)和数字评定量表(NRS))的比较结果。
Approach:
In this prospective, observational cohort study, children ages 5-17 under Ambulatory Endoscopy under general anesthesia undergone simultaneously measurement of objective and subjective measures at various time points: baseline, intravenous placement, two-minutes post-minutes IV placement, when departureing the preoperative bay, and one-minute prior to anesthesia induction.在这项前瞻性、观察性队列研究中,5-17 岁的儿童在全身麻醉下接受流动内窥镜检查,在不同的时间点同时进行客观和主观测量:基线、静脉注射、静脉注射后两分钟、离开术前室时以及麻醉诱导前一分钟。
主要结果:
在 86 名登记的患者中,77 人有可分析的 CI 数据并纳入分析。中位年龄为 15 岁(IQR 13,16),55% 为女性,大多数为 ASA 2(64%),曾接受过内窥镜检查(53%)。HR 与 CI 整体相关(r=0.56,95% CI:0.62,0.69;p
{"title":"Cardiac index as a surrogate marker for anxiety in pediatric patients undergoing ambulatory endoscopy: a prospective cohort study.","authors":"Christine L Mai, Sara Burns, David A August, Somaletha T Bhattacharya, Ariel Mueller, Timothy T Houle, Thomas A Anderson, Jacquelin Peck","doi":"10.1088/1361-6579/ad805e","DOIUrl":"10.1088/1361-6579/ad805e","url":null,"abstract":"<p><p><i>Objective.</i>Pediatric patients undergoing medical procedures often grapple with preoperative anxiety, which can impact postoperative outcomes. While healthcare providers subjectively assess anxiety, objective quantification tools remain limited. This study aimed to evaluate two objective measures-cardiac index (CI) and heart rate (HR) in comparison with validated subjective assessments, the modified Yale Preoperative Anxiety Scale (mYPAS) and the numeric rating scale (NRS).<i>Approach.</i>In this prospective, observational cohort study, children ages 5-17 undergoing ambulatory endoscopy under general anesthesia underwent simultaneous measurement of objective and subjective measures at various time points: baseline, intravenous placement, two-minutes post-IV placement, when departing the preoperative bay, and one-minute prior to anesthesia induction.<i>Main Results.</i>Of the 86 enrolled patients, 77 had analyzable CI data and were included in the analysis. The median age was 15 years (interquartile range 13, 16), 55% were female, and most were American Society of Anesthesiologists (ASA) Physical Status 2 (64%), and had previous endoscopies (53%). HR and CI correlated overall (<i>r</i>= 0.65, 95% CI: 0.62, 0.69;<i>p</i>< 0.001), as did NRS and mYPAS (<i>r</i>= 0.39, 95% CI: 0.34, 0.44;<i>p</i>< 0.001). The correlation between HR and CI was stronger with NRS (<i>r</i>= 0.24, 95% CI: 0.19, 0.29;<i>p</i>< 0.001; and<i>r</i>= 0.13, 95% CI: 0.07, 0.19;<i>p</i>< 0.001, respectively) than with mYPAS (<i>r</i>= 0.06, 95% CI: 0.00, 0.11;<i>p</i>= 0.046; and<i>r</i>= 0.08, 95% CI: 0.02, 0.14;<i>p</i>= 0.006, respectively). The correlation with mYPAS for both HR and CI varied significantly in both direction and magnitude across the different time points.<i>Significance.</i>A modest yet discernable correlation exists between objective measures (HR and CI) and established subjective anxiety assessments.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1088/1361-6579/ad7fcd
Brian Benitez, Minyoung Kwak, Pasquale J Succi, Clara J Mitchinson, Joseph P Weir, Haley C Bergstrom
Objective.This study examined sex-related differences in fatigability and neuromuscular responses using surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude (AMP) and frequency (MPF) during fatiguing, maximal, bilateral isometric leg extensions.Approach.Twenty recreationally active males and females with resistance training experience performed continuous, maximal effort, bilateral isometric leg extensions until their force reduced by 50%. Linear mixed effect models analyzed patterns of force, sEMG, and sMMG AMP and MPF responses in the dominant limb. An independent samples t-test compared time-to-task failure (TTF) between sexes.Main Results.There were no significant differences in TTF between males and females. However, males experienced a greater rate of force loss compared to females. Furthermore, sEMG AMP and MPF and sMMG AMP responses followed similar linear trends for both sexes, while sMMG MPF showed non-linear responses with sex-dependent differences.Significance.These data suggest that although TTF was similar, males had a higher rate of force reduction, likely due to greater absolute strength. Furthermore, despite parallel changes in sEMG AMP and MPF, as well as sMMG AMP, the divergent responses observed in sMMG MPF highlight sex-dependent differences in how males and females experience changes in the firing rates of active motor units during sustained maximal contractions.
{"title":"Examination of sex differences in fatigability and neuromuscular responses during continuous, maximal, isometric leg extension.","authors":"Brian Benitez, Minyoung Kwak, Pasquale J Succi, Clara J Mitchinson, Joseph P Weir, Haley C Bergstrom","doi":"10.1088/1361-6579/ad7fcd","DOIUrl":"10.1088/1361-6579/ad7fcd","url":null,"abstract":"<p><p><i>Objective.</i>This study examined sex-related differences in fatigability and neuromuscular responses using surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude (AMP) and frequency (MPF) during fatiguing, maximal, bilateral isometric leg extensions.<i>Approach.</i>Twenty recreationally active males and females with resistance training experience performed continuous, maximal effort, bilateral isometric leg extensions until their force reduced by 50%. Linear mixed effect models analyzed patterns of force, sEMG, and sMMG AMP and MPF responses in the dominant limb. An independent samples t-test compared time-to-task failure (TTF) between sexes.<i>Main Results.</i>There were no significant differences in TTF between males and females. However, males experienced a greater rate of force loss compared to females. Furthermore, sEMG AMP and MPF and sMMG AMP responses followed similar linear trends for both sexes, while sMMG MPF showed non-linear responses with sex-dependent differences.<i>Significance.</i>These data suggest that although TTF was similar, males had a higher rate of force reduction, likely due to greater absolute strength. Furthermore, despite parallel changes in sEMG AMP and MPF, as well as sMMG AMP, the divergent responses observed in sMMG MPF highlight sex-dependent differences in how males and females experience changes in the firing rates of active motor units during sustained maximal contractions.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1088/1361-6579/ad7f1f
Juliette E Francovich, Peter Somhorst, Diederik Gommers, Henrik Endeman, Annemijn H Jonkman
Objective. Geometrical region of interest (ROI) selection in electrical impedance tomography (EIT) monitoring may lack sensitivity to subtle changes in ventilation distribution. Therefore, we demonstrate a new physiological method for ROI definition. This is relevant when using ROIs to compute subsequent EIT-parameters, such as the ventral-to-dorsal ratio during a positive end-expiratory pressure (PEEP) trial.Approach.Our physiological approach divides an EIT image to ensure exactly 50% tidal impedance variation in the ventral and dorsal region. To demonstrate the effects of our new method, EIT measurements during a decremental PEEP trial in 49 mechanically ventilated ICU-patients were used. We compared the center of ventilation (CoV), a robust parameter for changes in ventro-dorsal ventilation distribution, to our physiological ROI selection method and different commonly used ROI selection methods. Moreover, we determined the impact of different ROI selection methods on the PEEP level corresponding to a ventral-to-dorsal ratio closest to 1.Main results.The division line separating the ventral and dorsal ROI was closer to the CoV for our new physiological method for ROI selection compared to geometrical ROI definition. Moreover, the PEEP level corresponding to a ventral-to-dorsal ratio of 1 is strongly influenced by the chosen ROI selection method, which could have a profound clinical impact; the within-subject range of PEEP level was 6.2 cmH2O depending on the chosen ROI selection method.Significance.Our novel physiological method for ROI definition is sensitive to subtle ventilation-induced changes in regional impedance (i.e. due to (de)recruitment) during mechanical ventilation, similar to the CoV.
目的:
在电阻抗断层成像(EIT)监测中选择感兴趣区(ROI)的几何方法可能对通气分布的细微变化缺乏敏感性。因此,我们展示了一种定义 ROI 的新生理方法。这与使用 ROI 计算后续 EIT 参数(如呼气末正压(PEEP)试验过程中的腹背比)相关。为了证明我们的新方法的效果,我们对 49 名接受机械通气的 ICU 患者进行了递减 PEEP 试验期间的 EIT 测量。我们比较了通气中心(CoV)与我们的生理 ROI 选择方法和不同的常用 ROI 选择方法,前者是通气背侧分布变化的可靠参数。此外,我们还确定了不同 ROI 选择方法对腹背比例最接近 1 时 PEEP 水平的影响。主要结果:
与几何 ROI 定义相比,我们新的生理 ROI 选择方法中腹背 ROI 的分界线更接近 CoV。此外,腹背比为 1 时的 PEEP 水平受所选 ROI 选择方法的影响很大,这可能会对临床产生深远影响;根据所选 ROI 选择方法的不同,PEEP 水平的受试者范围为 6.2 cmH2O。
意义:
我们用于 ROI 定义的新型生理学方法对机械通气过程中通气引起的区域阻抗的微妙变化(即由于(去)募集)非常敏感,与 CoV 相似。
{"title":"Physiological definition for region of interest selection in electrical impedance tomography data: description and validation of a novel method.","authors":"Juliette E Francovich, Peter Somhorst, Diederik Gommers, Henrik Endeman, Annemijn H Jonkman","doi":"10.1088/1361-6579/ad7f1f","DOIUrl":"10.1088/1361-6579/ad7f1f","url":null,"abstract":"<p><p><i>Objective</i>. Geometrical region of interest (ROI) selection in electrical impedance tomography (EIT) monitoring may lack sensitivity to subtle changes in ventilation distribution. Therefore, we demonstrate a new physiological method for ROI definition. This is relevant when using ROIs to compute subsequent EIT-parameters, such as the ventral-to-dorsal ratio during a positive end-expiratory pressure (PEEP) trial.<i>Approach.</i>Our physiological approach divides an EIT image to ensure exactly 50% tidal impedance variation in the ventral and dorsal region. To demonstrate the effects of our new method, EIT measurements during a decremental PEEP trial in 49 mechanically ventilated ICU-patients were used. We compared the center of ventilation (CoV), a robust parameter for changes in ventro-dorsal ventilation distribution, to our physiological ROI selection method and different commonly used ROI selection methods. Moreover, we determined the impact of different ROI selection methods on the PEEP level corresponding to a ventral-to-dorsal ratio closest to 1.<i>Main results.</i>The division line separating the ventral and dorsal ROI was closer to the CoV for our new physiological method for ROI selection compared to geometrical ROI definition. Moreover, the PEEP level corresponding to a ventral-to-dorsal ratio of 1 is strongly influenced by the chosen ROI selection method, which could have a profound clinical impact; the within-subject range of PEEP level was 6.2 cmH<sub>2</sub>O depending on the chosen ROI selection method.<i>Significance.</i>Our novel physiological method for ROI definition is sensitive to subtle ventilation-induced changes in regional impedance (i.e. due to (de)recruitment) during mechanical ventilation, similar to the CoV.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Pulse transit time (PTT) is a popular indicator of blood pressure (BP) changes. However, the relationship between PTT and BP is somehow individual dependent, resulting in the inaccuracy of PTT-based BP estimation. Confounding factors, e.g., heart rate (HR), of PTT and BP could be the primary cause. In this study we attempt to explore the impact of HR as a window to look at the influence of confounding factors on the relationship between PTT and BP.
Approach: We investigated the relationship between PTT and systolic BP (SBP) at different HR levels by introducing the heterogeneous treatment effects (HTE) as a quantitative indicator. Compared to the average HR calculated using traditional indicators (e. g. regression coefficient, correlation coefficient), the HTE calculation method can compute the relationship between PTT and SBP at different HR levels, and reduce the influence of confounding factors.
Main results: We analyzed the HTE of PTT and SBP of 47 subjects who are resting healthy young people with varying levels of HR. The results showed that the strength of the HTE of PTT and SBP varied with HR, indicating that the strength of the causal relationship between PTT and SBP is subject to HR levels. Whereas the correlation between SBP and PTT was individual dependent; either the strength or the direction of the correlation can vary with HR. We further investigated the group in which PTT and SBP exhibited a negative correlation, and found that about 50% of the subjects showed enhanced strength of HTE in with an increase in HR and the remaining showed the opposite.
Significance: This study means that HR needs to be considered when PTT is used as an indicator of SBP.
目的:脉搏转运时间(PTT)是血压(BP)变化的常用指标。然而,PTT 和 BP 之间的关系在某种程度上取决于个体,导致基于 PTT 的 BP 估算不准确。PTT 和 BP 的干扰因素(如心率)可能是主要原因。在本研究中,我们试图将心率作为一个窗口,探讨混杂因素对 PTT 和 BP 关系的影响:方法:我们通过引入异质性治疗效果(HTE)作为定量指标,研究了不同心率水平下 PTT 与收缩压(SBP)之间的关系。与使用传统指标(如回归系数、相关系数)计算平均心率相比,HTE计算方法可以计算不同心率水平下PTT与SBP之间的关系,并减少混杂因素的影响:我们分析了 47 名静息健康年轻人在不同 HR 水平下 PTT 和 SBP 的 HTE。结果显示,PTT 和 SBP 的 HTE 强度随心率的变化而变化,这表明 PTT 和 SBP 之间因果关系的强度受心率水平的影响。而 SBP 与 PTT 之间的相关性取决于个体;相关性的强度或方向可随心率变化而变化。我们进一步调查了 PTT 和 SBP 呈负相关的一组受试者,发现约 50%的受试者在心率增加时 HTE 强度增强,而其余受试者则相反:本研究表明,在使用 PTT 作为 SBP 的指标时,需要考虑心率。
{"title":"The influence of heart rate on the relationship between pulse transit time and systolic blood pressure.","authors":"Zhizhong Fu, Xinyue Song, Tianyi Qin, Yifan Chen, Xiaorong Ding","doi":"10.1088/1361-6579/ad8299","DOIUrl":"https://doi.org/10.1088/1361-6579/ad8299","url":null,"abstract":"<p><strong>Objective: </strong>Pulse transit time (PTT) is a popular indicator of blood pressure (BP) changes. However, the relationship between PTT and BP is somehow individual dependent, resulting in the inaccuracy of PTT-based BP estimation. Confounding factors, e.g., heart rate (HR), of PTT and BP could be the primary cause. In this study we attempt to explore the impact of HR as a window to look at the influence of confounding factors on the relationship between PTT and BP.</p><p><strong>Approach: </strong>We investigated the relationship between PTT and systolic BP (SBP) at different HR levels by introducing the heterogeneous treatment effects (HTE) as a quantitative indicator. Compared to the average HR calculated using traditional indicators (e. g. regression coefficient, correlation coefficient), the HTE calculation method can compute the relationship between PTT and SBP at different HR levels, and reduce the influence of confounding factors.</p><p><strong>Main results: </strong>We analyzed the HTE of PTT and SBP of 47 subjects who are resting healthy young people with varying levels of HR. The results showed that the strength of the HTE of PTT and SBP varied with HR, indicating that the strength of the causal relationship between PTT and SBP is subject to HR levels. Whereas the correlation between SBP and PTT was individual dependent; either the strength or the direction of the correlation can vary with HR. We further investigated the group in which PTT and SBP exhibited a negative correlation, and found that about 50% of the subjects showed enhanced strength of HTE in with an increase in HR and the remaining showed the opposite.</p><p><strong>Significance: </strong>This study means that HR needs to be considered when PTT is used as an indicator of SBP.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective.Accurate prediction of unmeasured muscle excitations can reduce the required wearable surface electromyography (sEMG) sensors, which is a critical factor in the study of physiological measurement. Synergy extrapolation uses synergy excitations as building blocks to reconstruct muscle excitations. However, the practical application of synergy extrapolation is still limited as the extrapolation process utilizes unmeasured muscle excitations it seeks to reconstruct. This paper aims to propose and derive methods to provide an avenue for the practical application of synergy extrapolation with non-negative matrix factorization (NMF) methods.Approach.Specifically, a tunable Gaussian-Laplacian mixture distribution NMF (GLD-NMF) method and related multiplicative update rules are derived to yield appropriate synergy excitations for extrapolation. Furthermore, a template-based extrapolation structure (TBES) is proposed to extrapolate unmeasured muscle excitations based on synergy weighting matrix templates totally extracted from measured sEMG datasets, improving the extrapolation performance. Moreover, we applied the proposed GLD-NMF method and TBES to selected muscle excitations acquired from a series of single-leg stance tests, walking tests and upper limb reaching tests.Main results.Experimental results show that the proposed GLD-NMF and TBES could extrapolate unmeasured muscle excitations accurately. Moreover, introducing synergy weighting matrix templates could decrease the number of sEMG sensors in a series of experiments. In addition, verification results demonstrate the feasibility of applying synergy extrapolation with NMF methods.Significance.With the TBES method, synergy extrapolation could play a significant role in reducing data dimensions of sEMG sensors, which will improve the portability of sEMG sensors-based systems and promotes applications of sEMG signals in human-machine interfaces scenarios.
{"title":"Template-based synergy extrapolation analysis for prediction of muscle excitations.","authors":"Kaitai Li, Daming Wang, Zuobing Chen, Dazhi Guo, Shuyi Pan, Hui Liu, Congcong Zhou, Xuesong Ye","doi":"10.1088/1361-6579/ad7776","DOIUrl":"10.1088/1361-6579/ad7776","url":null,"abstract":"<p><p><i>Objective.</i>Accurate prediction of unmeasured muscle excitations can reduce the required wearable surface electromyography (sEMG) sensors, which is a critical factor in the study of physiological measurement. Synergy extrapolation uses synergy excitations as building blocks to reconstruct muscle excitations. However, the practical application of synergy extrapolation is still limited as the extrapolation process utilizes unmeasured muscle excitations it seeks to reconstruct. This paper aims to propose and derive methods to provide an avenue for the practical application of synergy extrapolation with non-negative matrix factorization (NMF) methods.<i>Approach.</i>Specifically, a tunable Gaussian-Laplacian mixture distribution NMF (GLD-NMF) method and related multiplicative update rules are derived to yield appropriate synergy excitations for extrapolation. Furthermore, a template-based extrapolation structure (TBES) is proposed to extrapolate unmeasured muscle excitations based on synergy weighting matrix templates totally extracted from measured sEMG datasets, improving the extrapolation performance. Moreover, we applied the proposed GLD-NMF method and TBES to selected muscle excitations acquired from a series of single-leg stance tests, walking tests and upper limb reaching tests.<i>Main results.</i>Experimental results show that the proposed GLD-NMF and TBES could extrapolate unmeasured muscle excitations accurately. Moreover, introducing synergy weighting matrix templates could decrease the number of sEMG sensors in a series of experiments. In addition, verification results demonstrate the feasibility of applying synergy extrapolation with NMF methods.<i>Significance.</i>With the TBES method, synergy extrapolation could play a significant role in reducing data dimensions of sEMG sensors, which will improve the portability of sEMG sensors-based systems and promotes applications of sEMG signals in human-machine interfaces scenarios.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1088/1361-6579/ad7fcb
Md Hussain Ali, Md Bashir Uddin
Objective: Sleep arousal, a frequent interruption in sleep with complete or partial wakefulness from sleep, may indicate a breathing disorder, neurological disorder, or sleep-related disorders. These phenomena necessitate the detection of sleep arousals. Uses of deep learning methods to detect features inhibits the scope to understand the specific distinctive nature of the signals and reduces the interpretability of the model. To evade these inconsistencies and to improve the classification performance of the sleep arousal detection model, a model has been proposed in this study on the prospect of understandable features that are useful in detecting sleep arousals.
Approach: Time-frequency analysis of the electroencephalogram (EEG) signals was performed using Short-Time Fourier Transform (STFT). From the STFT coefficients, the spectrogram and instantaneous properties (frequency, bandwidth, power spectrum, band energy, local maxima, and band energy ratios) were investigated. From these properties, instantaneous features were generated by statistical analysis. Additive feature sets and reduced feature sets, formed by adding features successively and reducing features using the analysis of variance test respectively, were subjected to a tri-layered neural network classifier to evaluate the capability of the features to detect sleep arousal and normal sleep segments.
Main results: The reduced feature set (Set 6) has proved to be efficacious in facilitating superior classification performance metrics (accuracy, sensitivity, specificity, and AUC of 89.14%, 83.52%, 89.49%, and 93.84% respectively).
Significance: This efficient model can be incorporated with an automatic sleep apnea detection system where the estimation of hypopnea requires the detection of sleep arousal.
.
{"title":"Detection of sleep arousal from STFT-based instantaneous features of single channel EEG signal.","authors":"Md Hussain Ali, Md Bashir Uddin","doi":"10.1088/1361-6579/ad7fcb","DOIUrl":"https://doi.org/10.1088/1361-6579/ad7fcb","url":null,"abstract":"<p><strong>Objective: </strong>Sleep arousal, a frequent interruption in sleep with complete or partial wakefulness from sleep, may indicate a breathing disorder, neurological disorder, or sleep-related disorders. These phenomena necessitate the detection of sleep arousals. Uses of deep learning methods to detect features inhibits the scope to understand the specific distinctive nature of the signals and reduces the interpretability of the model. To evade these inconsistencies and to improve the classification performance of the sleep arousal detection model, a model has been proposed in this study on the prospect of understandable features that are useful in detecting sleep arousals. 
Approach: Time-frequency analysis of the electroencephalogram (EEG) signals was performed using Short-Time Fourier Transform (STFT). From the STFT coefficients, the spectrogram and instantaneous properties (frequency, bandwidth, power spectrum, band energy, local maxima, and band energy ratios) were investigated. From these properties, instantaneous features were generated by statistical analysis. Additive feature sets and reduced feature sets, formed by adding features successively and reducing features using the analysis of variance test respectively, were subjected to a tri-layered neural network classifier to evaluate the capability of the features to detect sleep arousal and normal sleep segments. 
Main results: The reduced feature set (Set 6) has proved to be efficacious in facilitating superior classification performance metrics (accuracy, sensitivity, specificity, and AUC of 89.14%, 83.52%, 89.49%, and 93.84% respectively). 
Significance: This efficient model can be incorporated with an automatic sleep apnea detection system where the estimation of hypopnea requires the detection of sleep arousal.

.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1088/1361-6579/ad74d6
Y Serinagaoglu Dogrusoz, L R Bear, J A Bergquist, A S Rababah, W Good, J Stoks, J Svehlikova, E van Dam, D H Brooks, R S MacLeod
Objective.This study aims to assess the sensitivity of epicardial potential-based electrocardiographic imaging (ECGI) to the removal or interpolation of bad leads.Approach.We utilized experimental data from two distinct centers. Langendorff-perfused pig (n= 2) and dog (n= 2) hearts were suspended in a human torso-shaped tank and paced from the ventricles. Six different bad lead configurations were designed based on clinical experience. Five interpolation methods were applied to estimate the missing data. Zero-order Tikhonov regularization was used to solve the inverse problem for complete data, data with removed bad leads, and interpolated data. We assessed the quality of interpolated ECG signals and ECGI reconstructions using several metrics, comparing the performance of interpolation methods and the impact of bad lead removal versus interpolation on ECGI.Main results.The performance of ECG interpolation strongly correlated with ECGI reconstruction. The hybrid method exhibited the best performance among interpolation techniques, followed closely by the inverse-forward and Kriging methods. Bad leads located over high amplitude/high gradient areas on the torso significantly impacted ECGI reconstructions, even with minor interpolation errors. The choice between removing or interpolating bad leads depends on the location of missing leads and confidence in interpolation performance. If uncertainty exists, removing bad leads is the safer option, particularly when they are positioned in high amplitude/high gradient regions. In instances where interpolation is necessary, the inverse-forward and Kriging methods, which do not require training, are recommended.Significance.This study represents the first comprehensive evaluation of the advantages and drawbacks of interpolating versus removing bad leads in the context of ECGI, providing valuable insights into ECGI performance.
{"title":"Evaluation of five methods for the interpolation of bad leads in the solution of the inverse electrocardiography problem.","authors":"Y Serinagaoglu Dogrusoz, L R Bear, J A Bergquist, A S Rababah, W Good, J Stoks, J Svehlikova, E van Dam, D H Brooks, R S MacLeod","doi":"10.1088/1361-6579/ad74d6","DOIUrl":"10.1088/1361-6579/ad74d6","url":null,"abstract":"<p><p><i>Objective.</i>This study aims to assess the sensitivity of epicardial potential-based electrocardiographic imaging (ECGI) to the removal or interpolation of bad leads.<i>Approach.</i>We utilized experimental data from two distinct centers. Langendorff-perfused pig (<i>n</i>= 2) and dog (<i>n</i>= 2) hearts were suspended in a human torso-shaped tank and paced from the ventricles. Six different bad lead configurations were designed based on clinical experience. Five interpolation methods were applied to estimate the missing data. Zero-order Tikhonov regularization was used to solve the inverse problem for complete data, data with removed bad leads, and interpolated data. We assessed the quality of interpolated ECG signals and ECGI reconstructions using several metrics, comparing the performance of interpolation methods and the impact of bad lead removal versus interpolation on ECGI.<i>Main results.</i>The performance of ECG interpolation strongly correlated with ECGI reconstruction. The hybrid method exhibited the best performance among interpolation techniques, followed closely by the inverse-forward and Kriging methods. Bad leads located over high amplitude/high gradient areas on the torso significantly impacted ECGI reconstructions, even with minor interpolation errors. The choice between removing or interpolating bad leads depends on the location of missing leads and confidence in interpolation performance. If uncertainty exists, removing bad leads is the safer option, particularly when they are positioned in high amplitude/high gradient regions. In instances where interpolation is necessary, the inverse-forward and Kriging methods, which do not require training, are recommended.<i>Significance.</i>This study represents the first comprehensive evaluation of the advantages and drawbacks of interpolating versus removing bad leads in the context of ECGI, providing valuable insights into ECGI performance.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}