首页 > 最新文献

Physical review letters最新文献

英文 中文
Testing Whether Gravity Acts as a Quantum Entity When Measured 测试万有引力在测量时是否作为量子实体运行
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.180201
Farhan Hanif, Debarshi Das, Jonathan Halliwell, Dipankar Home, Anupam Mazumdar, Hendrik Ulbricht, Sougato Bose
A defining signature of classical systems is “in principle measurability” without disturbance: a feature manifestly violated by quantum systems. We describe a multi-interferometer experimental setup that can, in principle, reveal the nonclassicality of a spatial superposition-sourced gravitational field if an irreducible disturbance is caused by a measurement of gravity. While one interferometer sources the field, the others are used to measure the gravitational field created by the superposition. This requires neither any specific form of nonclassical gravity, nor the generation of entanglement between any relevant degrees of freedom at any stage, thus distinguishing it from the experiments proposed so far. This test, when added to the recent entanglement-witness based proposals, enlarges the domain of quantum postulates being tested for gravity. Moreover, the proposed test yields a signature of quantum measurement induced disturbance for any finite rate of decoherence, and is device independent.
经典系统的一个决定性特征是 "原则上可测量 "而不受干扰:量子系统明显违反了这一特征。我们描述了一种多干涉仪实验装置,如果对引力的测量造成不可还原的干扰,那么这种装置原则上可以揭示空间叠加源引力场的非经典性。当一个干涉仪产生引力场时,其他干涉仪用来测量叠加产生的引力场。这既不需要任何特定形式的非经典引力,也不需要在任何阶段产生任何相关自由度之间的纠缠,因此与迄今为止提出的实验有所不同。这一检验方法与最近提出的基于纠缠-见证的建议相结合,扩大了引力量子假设检验的范围。此外,对于任何有限的退相干率,提议的测试都能得到量子测量诱导干扰的特征,而且与设备无关。
{"title":"Testing Whether Gravity Acts as a Quantum Entity When Measured","authors":"Farhan Hanif, Debarshi Das, Jonathan Halliwell, Dipankar Home, Anupam Mazumdar, Hendrik Ulbricht, Sougato Bose","doi":"10.1103/physrevlett.133.180201","DOIUrl":"https://doi.org/10.1103/physrevlett.133.180201","url":null,"abstract":"A defining signature of classical systems is “in principle measurability” without disturbance: a feature manifestly violated by quantum systems. We describe a multi-interferometer experimental setup that can, in principle, reveal the nonclassicality of a spatial superposition-sourced gravitational field if an irreducible disturbance is caused by a measurement of gravity. While one interferometer sources the field, the others are used to measure the gravitational field created by the superposition. This requires neither any specific form of nonclassical gravity, nor the generation of entanglement between any relevant degrees of freedom at any stage, thus distinguishing it from the experiments proposed so far. This test, when added to the recent entanglement-witness based proposals, enlarges the domain of quantum postulates being tested for gravity. Moreover, the proposed test yields a signature of quantum measurement induced disturbance for any finite rate of decoherence, and is device independent.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"6 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sympathetic Mechanism for Vibrational Condensation Enabled by Polariton Optomechanical Interaction 极化子光机械相互作用促成的振动凝聚共鸣机制
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.186903
Vladislav Yu. Shishkov, Evgeny S. Andrianov, Sergei Tretiak, K. Birgitta Whaley, Anton V. Zasedatelev
We demonstrate a macrocoherent regime in exciton-polariton systems, where nonequilibrium polariton Bose-Einstein condensation coexists with macroscopically occupied vibrational states. Strong exciton-vibration coupling induces an effective optomechanical interaction between cavity polaritons and vibrational degrees of freedom of molecules, leading to vibrational amplification in a resonant blue-detuned configuration. This interaction provides a sympathetic mechanism to achieve vibrational condensation with potential applications in cavity-controlled chemistry, nonlinear, and quantum optics.
我们展示了激子-极化子系统中的宏观相干机制,其中非平衡极化子玻色-爱因斯坦凝聚与宏观占据的振动状态共存。强烈的激子-振动耦合诱导了空腔极化子与分子振动自由度之间有效的光机械相互作用,从而导致共振蓝调谐构型中的振动放大。这种相互作用为实现振动凝聚提供了一种共鸣机制,有望应用于腔控化学、非线性和量子光学。
{"title":"Sympathetic Mechanism for Vibrational Condensation Enabled by Polariton Optomechanical Interaction","authors":"Vladislav Yu. Shishkov, Evgeny S. Andrianov, Sergei Tretiak, K. Birgitta Whaley, Anton V. Zasedatelev","doi":"10.1103/physrevlett.133.186903","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186903","url":null,"abstract":"We demonstrate a macrocoherent regime in exciton-polariton systems, where nonequilibrium polariton Bose-Einstein condensation coexists with macroscopically occupied vibrational states. Strong exciton-vibration coupling induces an effective optomechanical interaction between cavity polaritons and vibrational degrees of freedom of molecules, leading to vibrational amplification in a resonant blue-detuned configuration. This interaction provides a sympathetic mechanism to achieve vibrational condensation with potential applications in cavity-controlled chemistry, nonlinear, and quantum optics.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"126 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Baryon Charge Carriers through Charge Stopping in Isobar Collisions 通过等边碰撞中的电荷停止揭示重子电荷载体
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.182301
Gregoire Pihan, Akihiko Monnai, Björn Schenke, Chun Shen
Utilizing a comprehensive <mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(9 (7 0 (4 1 2 3) 5) 8 6)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="7,6" data-semantic-content="8" data-semantic- data-semantic-owns="7 8 6" data-semantic-role="implicit" data-semantic-speech="left parenthesis 3 plus 1 right parenthesis upper D" data-semantic-type="infixop"><mjx-mrow data-semantic-added="true" data-semantic-children="4" data-semantic-content="0,5" data-semantic- data-semantic-owns="0 4 5" data-semantic-parent="9" data-semantic-role="leftright" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="7" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-children="1,3" data-semantic-content="2" data-semantic- data-semantic-owns="1 2 3" data-semantic-parent="7" data-semantic-role="addition" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,+" data-semantic-parent="4" data-semantic-role="addition" data-semantic-type="operator" space="3"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number" space="3"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="7" data-semantic-role="close" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="9" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="9" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐷</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> relativistic hydrodynamic framework with multiple conserved charge currents and charge-dependent lattice-QCD-based equation of state, we study the baryon and electric charge number deposition at midrapidity in isobar <mjx-container ctxtmenu_counter="11" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 1 2)"><mjx-mrow data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="addition" data-semantic-speech="upper R u plus upper R u
利用具有多重守恒电荷电流和电荷依赖的基于晶格-QCD 的状态方程的综合 (3+1)𝐷 相对流体力学框架,我们研究了在质心能量 √𝑠NN=200 GeV 的等边 Ru+Ru 和 Zr+Zr 对撞中,中速下的重子和电荷数沉积。将我们的预测与相对论重离子对撞机即将获得的实验数据进行比较,将揭示重子结的存在。
{"title":"Unveiling Baryon Charge Carriers through Charge Stopping in Isobar Collisions","authors":"Gregoire Pihan, Akihiko Monnai, Björn Schenke, Chun Shen","doi":"10.1103/physrevlett.133.182301","DOIUrl":"https://doi.org/10.1103/physrevlett.133.182301","url":null,"abstract":"Utilizing a comprehensive &lt;mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(9 (7 0 (4 1 2 3) 5) 8 6)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"7,6\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 6\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis 3 plus 1 right parenthesis upper D\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"0,5\" data-semantic- data-semantic-owns=\"0 4 5\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;(&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"7\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"4\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;+&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;)&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐷&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; relativistic hydrodynamic framework with multiple conserved charge currents and charge-dependent lattice-QCD-based equation of state, we study the baryon and electric charge number deposition at midrapidity in isobar &lt;mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 1 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"upper R u plus upper R u","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"79 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Subkelvin Thermal Frequency Shifts of Ultranarrow Linewidth Solid State Emitters 超窄线宽固态发射器的反常亚开尔文热频移
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.183803
X. Lin, M. T. Hartman, B. Pointard, R. Le Targat, P. Goldner, S. Seidelin, B. Fang, Y. Le Coq
We investigate the frequency response of narrow spectral holes in a doped crystal structure as a function of temperature below 1 K. We identify a particular regime in which this response significantly deviates from the expected two-phonon Raman scattering theory. Namely, near 290 mK, we observed a behavior exhibiting a temperature-dependent frequency shift of zero to first order. This is of particular interest for applications that require high frequency stability, such as laser frequency stabilization, as by operating the scheme at this specific point would result in the spectral hole frequency being highly immune to temperature fluctuations, providing the potential for a laser fractional frequency instability as low as <mjx-container ctxtmenu_counter="3" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 8 0 (9 1 2 (7 3 (6 4 5))))"><mjx-mrow data-semantic-children="8,9" data-semantic-content="0" data-semantic- data-semantic-owns="8 0 9" data-semantic-role="equality" data-semantic-speech="tilde 2 times 10 Superscript negative 22" data-semantic-type="relseq"><mjx-mrow data-semantic-added="true" data-semantic- data-semantic-parent="10" data-semantic-role="unknown" data-semantic-type="empty"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="relseq,∼" data-semantic-parent="10" data-semantic-role="equality" data-semantic-type="relation"><mjx-c>∼</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="1,7" data-semantic-content="2" data-semantic- data-semantic-owns="1 2 7" data-semantic-parent="10" data-semantic-role="multiplication" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="9" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,×" data-semantic-parent="9" data-semantic-role="multiplication" data-semantic-type="operator" space="3"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children="3,6" data-semantic- data-semantic-owns="3 6" data-semantic-parent="9" data-semantic-role="integer" data-semantic-type="superscript" space="3"><mjx-mrow><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.642em;">1</mjx-c><mjx-c style="padding-top: 0.642em;">0</mjx-c></mjx-mn></mjx-mrow><mjx-script style="vertical-align: 0.369em;"><mjx-mrow data-semantic-annotation="clearspeak:simple" data-semantic-children="5" data-semantic-content="4" data-semantic- data-semantic-owns="4 5" data-semantic-parent="7" data-semantic-role="negative" data-semantic-type="prefixop" size="s"><mjx-mo data-semantic- data-semantic-operator="prefixop,−" data-semantic-parent="6" data-semantic-role=
我们研究了掺杂晶体结构中窄谱孔的频率响应与 1 K 以下温度的函数关系。我们确定了一个特定的机制,在这个机制中,这种响应明显偏离了预期的双声子拉曼散射理论。也就是说,在 290 mK 附近,我们观察到了一种表现为零到一阶的随温度变化的频率偏移的行为。这对于需要高频率稳定性的应用(如激光稳频)特别有意义,因为在这一特定点运行该方案将导致谱孔频率对温度波动高度免疫,从而为 1 秒内低至∼2×10-22 的激光分数频率不稳定性提供了可能性。
{"title":"Anomalous Subkelvin Thermal Frequency Shifts of Ultranarrow Linewidth Solid State Emitters","authors":"X. Lin, M. T. Hartman, B. Pointard, R. Le Targat, P. Goldner, S. Seidelin, B. Fang, Y. Le Coq","doi":"10.1103/physrevlett.133.183803","DOIUrl":"https://doi.org/10.1103/physrevlett.133.183803","url":null,"abstract":"We investigate the frequency response of narrow spectral holes in a doped crystal structure as a function of temperature below 1 K. We identify a particular regime in which this response significantly deviates from the expected two-phonon Raman scattering theory. Namely, near 290 mK, we observed a behavior exhibiting a temperature-dependent frequency shift of zero to first order. This is of particular interest for applications that require high frequency stability, such as laser frequency stabilization, as by operating the scheme at this specific point would result in the spectral hole frequency being highly immune to temperature fluctuations, providing the potential for a laser fractional frequency instability as low as &lt;mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 8 0 (9 1 2 (7 3 (6 4 5))))\"&gt;&lt;mjx-mrow data-semantic-children=\"8,9\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"8 0 9\" data-semantic-role=\"equality\" data-semantic-speech=\"tilde 2 times 10 Superscript negative 22\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"&gt;&lt;mjx-c&gt;∼&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"1,7\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 7\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;×&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msup data-semantic-children=\"3,6\" data-semantic- data-semantic-owns=\"3 6\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.642em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.642em;\"&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: 0.369em;\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"5\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"6\" data-semantic-role=","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"118 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code 在非局部代码中纠缠四个超越盈亏平衡的逻辑丘比特
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.180601
Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas
Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity <mjx-container ctxtmenu_counter="6" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)"><mjx-mrow data-semantic-children="11,3,14,10" data-semantic-content="3,10" data-semantic- data-semantic-owns="11 3 14 10" data-semantic-role="sequence" data-semantic-speech="99.5 plus or minus 0.15 percent sign less than or equals upper F less than or equals 99.7 plus or minus 0.1 percent sign" data-semantic-type="punctuated"><mjx-mrow data-semantic-added="true" data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-parent="15" data-semantic-role="addition" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="11" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.646em;">9</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">9</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">.</mjx-c><mjx-c style="padding-top: 0.646em;">5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,±" data-semantic-parent="11" data-semantic-role="addition" data-semantic-type="operator" space="3"><mjx-c>±</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="11" data-semantic-role="float" data-semantic-type="number" space="3"><mjx-c noic="true" style="padding-top: 0.642em;">0</mjx-c><mjx-c noic="true" style="padding-top: 0.642em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.642em;">1</mjx-c><mjx-c style="padding-top: 0.642em;">5</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="15" data-semantic-role="unknown" data-semantic-type="punctuation"><mjx-c>%</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="12,5,13" data-semantic-content="4,6" data-semantic- data-semantic-owns="12 4 5 6 13" data-semantic-parent="15" data-semantic-role="inequality" data-semantic-type="relseq"><mjx-mrow data-semantic-added="true" data-semantic- data-semantic-parent="14" data-semantic-role="unknown" data-semantic-type="empty"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="relseq,≤" data-semantic-parent="14"
量子纠错通过将逻辑量子比特编码为物理量子比特的纠缠态,保护逻辑量子信息免受环境退相干的影响。构建可扩展量子计算机的近期最重要挑战之一是达到收支平衡点,即纠错量子比特上的逻辑量子电路比未纠错物理量子比特上的等效电路具有更高的保真度。利用 Quantinuum 的 H2 捕获离子量子处理器,我们在四个逻辑量子比特中编码了格林伯格-霍恩-蔡林格(GHZ)态,保真度为 99.5±0.15%≤𝐹≤99.7±0.1% (在对超过 98% 的结果进行后选择后)。使用相同的量子处理器,我们可以在四个物理量子比特上制备未校正的 GHZ 状态,保真度为 97.8±0.2%≤ᵃ≤98.7±0.2%。逻辑量子比特采用⟦25,4,3⟧坦纳变换长程增强表面码编码。逻辑纠缠门是通过简单的交换操作实现的。我们的成果是利用几何非局部量子低密度奇偶校验码编码的逻辑量子比特实现容错量子计算的第一步。
{"title":"Entangling Four Logical Qubits beyond Break-Even in a Nonlocal Code","authors":"Yifan Hong, Elijah Durso-Sabina, David Hayes, Andrew Lucas","doi":"10.1103/physrevlett.133.180601","DOIUrl":"https://doi.org/10.1103/physrevlett.133.180601","url":null,"abstract":"Quantum error correction protects logical quantum information against environmental decoherence by encoding logical qubits into entangled states of physical qubits. One of the most important near-term challenges in building a scalable quantum computer is to reach the break-even point, where logical quantum circuits on error-corrected qubits achieve higher fidelity than equivalent circuits on uncorrected physical qubits. Using Quantinuum’s H2 trapped-ion quantum processor, we encode the Greenberger–Horne–Zeilinger (GHZ) state in four logical qubits with fidelity &lt;mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(15 (11 0 1 2) 3 (14 12 4 5 6 (13 7 8 9)) 10)\"&gt;&lt;mjx-mrow data-semantic-children=\"11,3,14,10\" data-semantic-content=\"3,10\" data-semantic- data-semantic-owns=\"11 3 14 10\" data-semantic-role=\"sequence\" data-semantic-speech=\"99.5 plus or minus 0.15 percent sign less than or equals upper F less than or equals 99.7 plus or minus 0.1 percent sign\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"15\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;9&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;9&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.646em;\"&gt;5&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,±\" data-semantic-parent=\"11\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;±&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.642em;\"&gt;0&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.642em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.642em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.642em;\"&gt;5&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"unknown\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;%&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"12,5,13\" data-semantic-content=\"4,6\" data-semantic- data-semantic-owns=\"12 4 5 6 13\" data-semantic-parent=\"15\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"14\"","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"126 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anyon Interferometry to Detect Braiding Statistics of Neutral Modes 探测中性模式编织统计的安永干涉测量法
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-29 DOI: 10.1103/physrevlett.133.186603
Cheolhee Han, June-Young M. Lee, H.-S. Sim
On the edge of certain fractional quantum Hall states, e.g., at 2/3 and 5/2 filling, a local fractional excitation, occurring by anyon tunneling at a quantum point contact, is further fractionalized into counterpropagating charge and neutral (Abelian or non-Abelian) anyonic excitations. We propose a scheme to detect the braiding statistics of the charge and neutral anyons separately. It is the injection of a dilute beam of a target (charge or neutral) anyon to a Fabry-Perot interferometer. The monodromy of the target anyon is obtained by comparing the amplitude and phase of the interference current with a reference signal of the same setup but without the injection. Our proposal relies on braiding between anyons on the edge, and applies even in the presence of bulk-edge couplings.
在某些分数量子霍尔态的边缘,例如在 2/3 和 5/2 填充时,由量子点接触处的任子隧穿产生的局部分数激发会进一步分数化为反向传播的电荷和中性(阿贝尔或非阿贝尔)任子激发。我们提出了一种分别探测电荷和中性任子辫状统计的方案。它是将目标(电荷或中性)任子的稀释光束注入法布里-珀罗干涉仪。通过比较干涉电流的振幅和相位与相同设置但没有注入的参考信号,就能获得目标任子的单色性。我们的建议依赖于边缘上的任子之间的编织,甚至适用于存在体边耦合的情况。
{"title":"Anyon Interferometry to Detect Braiding Statistics of Neutral Modes","authors":"Cheolhee Han, June-Young M. Lee, H.-S. Sim","doi":"10.1103/physrevlett.133.186603","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186603","url":null,"abstract":"On the edge of certain fractional quantum Hall states, e.g., at <mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"division\" data-semantic-speech=\"2 divided by 3\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"division\" data-semantic-speech=\"5 divided by 2\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>5</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> filling, a local fractional excitation, occurring by anyon tunneling at a quantum point contact, is further fractionalized into counterpropagating charge and neutral (Abelian or non-Abelian) anyonic excitations. We propose a scheme to detect the braiding statistics of the charge and neutral anyons separately. It is the injection of a dilute beam of a target (charge or neutral) anyon to a Fabry-Perot interferometer. The monodromy of the target anyon is obtained by comparing the amplitude and phase of the interference current with a reference signal of the same setup but without the injection. Our proposal relies on braiding between anyons on the edge, and applies even in the presence of bulk-edge couplings.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"32 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantized Integrated Shift Effect in Multigap Topological Phases 多隙拓扑相位中的量化集成移位效应
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1103/physrevlett.133.186601
Wojciech J. Jankowski, Robert-Jan Slager
We show that certain three-dimensional multigap topological insulators can host quantized integrated shift photoconductivities due to bulk invariants that are defined under reality conditions imposed by additional symmetries. We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms. Physically, we recognize that the topological quantization emerges purely from virtual transitions contributing to the optical response. Our findings provide another quantized electromagnetic dc response due to the nontrivial band topology, beyond the quantum anomalous Hall effect of Chern insulators and quantized circular photogalvanic effect found in Weyl semimetals.
我们的研究表明,某些三维多隙拓扑绝缘体可以承载量子化的集成移位光电导,这是由于在附加对称性施加的现实条件下定义了体不变式。我们用构成 Chern-Simons 形式的积分扭转张量和非阿贝尔贝里连接来重构量子化。在物理上,我们认识到拓扑量子化纯粹是由有助于光学响应的虚拟转换产生的。我们的研究结果提供了另一种量子化的电磁直流响应,它是非琐碎带拓扑引起的,超越了切尔绝缘体的量子反常霍尔效应和韦尔半金属中的量子化圆光电效应。
{"title":"Quantized Integrated Shift Effect in Multigap Topological Phases","authors":"Wojciech J. Jankowski, Robert-Jan Slager","doi":"10.1103/physrevlett.133.186601","DOIUrl":"https://doi.org/10.1103/physrevlett.133.186601","url":null,"abstract":"We show that certain three-dimensional multigap topological insulators can host quantized integrated shift photoconductivities due to bulk invariants that are defined under reality conditions imposed by additional symmetries. We recast the quantization in terms of the integrated torsion tensor and the non-Abelian Berry connection constituting Chern-Simons forms. Physically, we recognize that the topological quantization emerges purely from virtual transitions contributing to the optical response. Our findings provide another quantized electromagnetic dc response due to the nontrivial band topology, beyond the quantum anomalous Hall effect of Chern insulators and quantized circular photogalvanic effect found in Weyl semimetals.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"67 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Hermitian Sensing in the Absence of Exceptional Points 无异常点的非ermitian传感
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1103/physrevlett.133.180801
Lei Xiao, Yaoming Chu, Quan Lin, Haiqing Lin, Wei Yi, Jianming Cai, Peng Xue
Open systems possess unique potentials in high-precision sensing, yet the majority of previous studies rely on the spectral singularities known as “exceptional points.” Here, we theoretically propose and experimentally demonstrate universal non-Hermitian sensing in the absence of exceptional points. The scheme makes use of the intrinsic sensitivity of a non-Hermitian probe to weak external fields, which can be understood as the direct consequence of non-Hermiticity. We confirm the basic mechanism by simulating the sensor-field dynamics using photon interferometry, and, as a concrete example, demonstrate the enhanced sensing of signals encoded in the setting angle of a wave plate. While the sensitivity of the probe is ultimately limited by the measurement noise, we find the non-Hermitian sensor showing superior performance under background noises that cannot be suppressed through repetitive measurements. Our experiment opens the avenue of enhanced sensing without exceptional points, complementing existing efforts aimed at harnessing the unique features of open systems.
开放系统在高精度传感方面具有独特的潜力,然而之前的大多数研究都依赖于被称为 "例外点 "的光谱奇异性。在这里,我们从理论上提出并通过实验证明了在没有例外点的情况下的通用非赫米梯度传感。该方案利用了非超常探针对外部弱场的内在敏感性,这可以理解为非超常性的直接结果。我们利用光子干涉测量法模拟了探头-场动态,证实了这一基本机制,并举例说明了对波板设置角编码信号的增强感应。虽然探头的灵敏度最终受限于测量噪声,但我们发现非赫米提传感器在背景噪声下表现出卓越的性能,而背景噪声是无法通过重复测量来抑制的。我们的实验开辟了一条无特殊点增强传感的途径,补充了旨在利用开放系统独特功能的现有努力。
{"title":"Non-Hermitian Sensing in the Absence of Exceptional Points","authors":"Lei Xiao, Yaoming Chu, Quan Lin, Haiqing Lin, Wei Yi, Jianming Cai, Peng Xue","doi":"10.1103/physrevlett.133.180801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.180801","url":null,"abstract":"Open systems possess unique potentials in high-precision sensing, yet the majority of previous studies rely on the spectral singularities known as “exceptional points.” Here, we theoretically propose and experimentally demonstrate universal non-Hermitian sensing in the absence of exceptional points. The scheme makes use of the intrinsic sensitivity of a non-Hermitian probe to weak external fields, which can be understood as the direct consequence of non-Hermiticity. We confirm the basic mechanism by simulating the sensor-field dynamics using photon interferometry, and, as a concrete example, demonstrate the enhanced sensing of signals encoded in the setting angle of a wave plate. While the sensitivity of the probe is ultimately limited by the measurement noise, we find the non-Hermitian sensor showing superior performance under background noises that cannot be suppressed through repetitive measurements. Our experiment opens the avenue of enhanced sensing without exceptional points, complementing existing efforts aimed at harnessing the unique features of open systems.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"16 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Two-Dimensional Dam Break Flow and a Gaseous Phase of Solitons in a Photon Fluid 观测光子流体中的二维断坝流和气态孤子相
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1103/physrevlett.133.183801
Ludovica Dieli, Davide Pierangeli, Eugenio DelRe, Claudio Conti
We report the observation of a two-dimensional (2D) dam break flow of a photon fluid in a nonlinear optical crystal. By precisely shaping the amplitude and phase of the input wave, we investigate the transition from one-dimensional (1D) to 2D nonlinear dynamics. We observe wave breaking in both transverse spatial dimensions with characteristic timescales determined by the aspect ratio of the input box–shaped field. The interaction of dispersive shock waves propagating in orthogonal directions gives rise to a 2D ensemble of solitons. Depending on the box size, we report the evidence of a dynamic phase characterized by a constant number of solitons, resembling a 1D soliton gas in integrable systems. We measure the statistical features of this gaslike phase. Our findings pave the way to the investigation of collective solitonic phenomena in two dimensions, demonstrating that the loss of integrability does not disrupt the dominant phenomenology.
我们报告了在非线性光学晶体中观察到的光子流体的二维(2D)溃坝流。通过精确调节输入波的振幅和相位,我们研究了从一维(1D)到二维非线性动力学的过渡。我们在两个横向空间维度上都观察到了断波现象,其特征时标由输入盒形场的长宽比决定。在正交方向传播的色散冲击波相互作用产生了二维孤子群。根据盒子的大小,我们报告了一个动态阶段的证据,其特点是孤子数量恒定,类似于可积分系统中的一维孤子气体。我们测量了这种气体状阶段的统计特征。我们的发现为研究二维的集体孤子现象铺平了道路,证明了可整性的丧失并不会破坏主导现象学。
{"title":"Observation of Two-Dimensional Dam Break Flow and a Gaseous Phase of Solitons in a Photon Fluid","authors":"Ludovica Dieli, Davide Pierangeli, Eugenio DelRe, Claudio Conti","doi":"10.1103/physrevlett.133.183801","DOIUrl":"https://doi.org/10.1103/physrevlett.133.183801","url":null,"abstract":"We report the observation of a two-dimensional (2D) dam break flow of a photon fluid in a nonlinear optical crystal. By precisely shaping the amplitude and phase of the input wave, we investigate the transition from one-dimensional (1D) to 2D nonlinear dynamics. We observe wave breaking in both transverse spatial dimensions with characteristic timescales determined by the aspect ratio of the input box–shaped field. The interaction of dispersive shock waves propagating in orthogonal directions gives rise to a 2D ensemble of solitons. Depending on the box size, we report the evidence of a dynamic phase characterized by a constant number of solitons, resembling a 1D soliton gas in integrable systems. We measure the statistical features of this gaslike phase. Our findings pave the way to the investigation of collective solitonic phenomena in two dimensions, demonstrating that the loss of integrability does not disrupt the dominant phenomenology.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"15 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Coherent Ergotropy in a Single Spin System 单自旋系统中相干各向异性的实验研究
IF 8.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1103/physrevlett.133.180401
Zhibo Niu, Yang Wu, Yunhan Wang, Xing Rong, Jiangfeng Du
Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts. However, an experimental study of the coherent ergotropy remains absent. Here, we report an experimental investigation of the coherent ergotropy in a single spin system. Based on the method of measuring ergotropy with an ancilla qubit, both the coherent and incoherent components of the ergotropy for the nonequilibrium state were successfully extracted. The increase in ergotropy induced by the increase in the coherence of the system was observed by varying the coherence of the state. Our work reveals the interplay between quantum thermodynamics and quantum information theory, future investigations could further explore the role other quantum attributes play in thermodynamic protocols.
各向异性被定义为通过单元循环演化可以提取的最大功。它在评估量子系统的做功能力方面起着至关重要的作用。最近,量子相干性在功提取中的重要性在理论上得到了确认,它揭示了相干性更强的量子态与非相干的量子态相比具有更强的各向异性。然而,关于相干各向异性的实验研究仍然缺失。在此,我们报告了对单自旋系统中相干各向异性的实验研究。基于使用安其拉量子比特测量各向异性的方法,我们成功提取了非平衡态各向异性的相干和非相干成分。通过改变该状态的相干性,观察到了系统相干性的增加所引起的各向异性的增加。我们的工作揭示了量子热力学与量子信息论之间的相互作用,未来的研究可以进一步探索其他量子属性在热力学协议中的作用。
{"title":"Experimental Investigation of Coherent Ergotropy in a Single Spin System","authors":"Zhibo Niu, Yang Wu, Yunhan Wang, Xing Rong, Jiangfeng Du","doi":"10.1103/physrevlett.133.180401","DOIUrl":"https://doi.org/10.1103/physrevlett.133.180401","url":null,"abstract":"Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts. However, an experimental study of the coherent ergotropy remains absent. Here, we report an experimental investigation of the coherent ergotropy in a single spin system. Based on the method of measuring ergotropy with an ancilla qubit, both the coherent and incoherent components of the ergotropy for the nonequilibrium state were successfully extracted. The increase in ergotropy induced by the increase in the coherence of the system was observed by varying the coherence of the state. Our work reveals the interplay between quantum thermodynamics and quantum information theory, future investigations could further explore the role other quantum attributes play in thermodynamic protocols.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"67 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical review letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1