首页 > 最新文献

Physical Review B最新文献

英文 中文
Angle-resolved photoelectron spectroscopy of the(8.88×8.88)incommensurate surface reconstruction of Cu on Ge(111) Ge(111) 上铜的(8.88×8.88)不对称表面重构的角度分辨光电子能谱学
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205414
Mathis Cameau, Tristan Cren, Pascal David, François Debontridder, Natalia Olszowska, Marcin Rosmus, Mathieu G. Silly, Marie D'angelo
In this study we revisit the properties of the <mjx-container ctxtmenu_counter="25" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(16 (9 0 (8 1 (7 2 3 4) 5) 6) 14 10 15 (13 11 12))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="9,10,13" data-semantic-content="14,15" data-semantic- data-semantic-owns="9 14 10 15 13" data-semantic-role="implicit" data-semantic-speech="left parenthesis quotation mark 8.88 times 8.88 quotation mark right parenthesis normal upper R 30 Superscript ring" data-semantic-type="infixop"><mjx-mrow data-semantic-children="8" data-semantic-content="0,6" data-semantic- data-semantic-owns="0 8 6" data-semantic-parent="16" data-semantic-role="leftright" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="9" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="1,7,5" data-semantic-content="1,5" data-semantic- data-semantic-owns="1 7 5" data-semantic-parent="9" data-semantic-role="sequence" data-semantic-type="punctuated"><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="8" data-semantic-role="quotes" data-semantic-type="punctuation"><mjx-c>″</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="8" data-semantic-role="multiplication" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.647em;">8</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">8</mjx-c><mjx-c style="padding-top: 0.647em;">8</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,×" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator" space="3"><mjx-c>×</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="float" data-semantic-type="number" space="3"><mjx-c noic="true" style="padding-top: 0.647em;">8</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">8</mjx-c><mjx-c style="padding-top: 0.647em;">8</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="punctuated" data-semantic-parent="8" data-semantic-role="quotes" data-semantic-type="punctuation"><mjx-c>″</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="9" data-semantic-role="close" data-semantic-type="fence" style="ve
在本研究中,我们根据二维 Cu2Ge 单层中狄拉克结点线的预测,重新审视了通过在 Ge(111) 上蒸发 Cu 而获得的 (″8.88×8.88″)R30∘ 表面重构的特性。在通过角度分辨光发射(ARPES)提供了最新版的 Ge(111) 带结构之后,我们提出了 Cu/Ge(111)-(8.88×8.88)R30∘ 表面的带结构,它呈现出两个表面带,在费米级具有线性色散。
{"title":"Angle-resolved photoelectron spectroscopy of the(8.88×8.88)incommensurate surface reconstruction of Cu on Ge(111)","authors":"Mathis Cameau, Tristan Cren, Pascal David, François Debontridder, Natalia Olszowska, Marcin Rosmus, Mathieu G. Silly, Marie D'angelo","doi":"10.1103/physrevb.110.205414","DOIUrl":"https://doi.org/10.1103/physrevb.110.205414","url":null,"abstract":"In this study we revisit the properties of the &lt;mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(16 (9 0 (8 1 (7 2 3 4) 5) 6) 14 10 15 (13 11 12))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"9,10,13\" data-semantic-content=\"14,15\" data-semantic- data-semantic-owns=\"9 14 10 15 13\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis quotation mark 8.88 times 8.88 quotation mark right parenthesis normal upper R 30 Superscript ring\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"0,6\" data-semantic- data-semantic-owns=\"0 8 6\" data-semantic-parent=\"16\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;(&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"1,7,5\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 7 5\" data-semantic-parent=\"9\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"quotes\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;″&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"&gt;&lt;mjx-c&gt;×&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"quotes\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;″&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"ve","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"23 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivation of low-energy Hamiltonians for heavy-fermion materials 重费米子材料的低能哈密顿推导
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.195123
E. A. Ghioldi, Zhentao Wang, L. M. Chinellato, Jian-Xin Zhu, Yusuke Nomura, Ryotaro Arita, W. Simeth, M. Janoschek, F. Ronning, C. D. Batista
By utilizing a multiorbital periodic Anderson model with parameters obtained from <i>ab initio</i> band structure calculations, combined with degenerate perturbation theory, we derive effective Kondo-Heisenberg and spin Hamiltonians that capture the interaction among the effective magnetic moments. This derivation encompasses fluctuations via both nonmagnetic <mjx-container ctxtmenu_counter="168" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 0 4 (3 1 2))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,3" data-semantic-content="4" data-semantic- data-semantic-owns="0 4 3" data-semantic-role="implicit" data-semantic-speech="4 f Superscript 0" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>4</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msup data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>0</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container> and magnetic <mjx-container ctxtmenu_counter="169" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 0 4 (3 1 2))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,3" data-semantic-content="4" data-semantic- data-semantic-owns="0 4 3" data-semantic-role="implicit" data-semantic-speech="4 f squared" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>4</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msup data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mi data-semantic-a
通过利用多轨道周期性安德森模型和从原子序数带结构计算中获得的参数,并结合变性扰动理论,我们推导出了有效的 Kondo-Heisenberg 和自旋哈密顿,从而捕捉到了有效磁矩之间的相互作用。这一推导包含了通过非磁性 4𝑓0 和磁性 4𝑓2 虚拟态产生的波动,其准确性通过与从 CeIn3 中获得的实验数据进行比较得到了证实。实验结果与理论预测之间观察到的显著一致性强调了从第一原理计算推导出最小模型以实现对 4𝑓材料定量描述的潜力。此外,我们的微观推导揭示了克拉默双特之间交换相互作用各向异性的根本原因,阐明了在什么条件下这种各向异性可能弱于各向同性的贡献。
{"title":"Derivation of low-energy Hamiltonians for heavy-fermion materials","authors":"E. A. Ghioldi, Zhentao Wang, L. M. Chinellato, Jian-Xin Zhu, Yusuke Nomura, Ryotaro Arita, W. Simeth, M. Janoschek, F. Ronning, C. D. Batista","doi":"10.1103/physrevb.110.195123","DOIUrl":"https://doi.org/10.1103/physrevb.110.195123","url":null,"abstract":"By utilizing a multiorbital periodic Anderson model with parameters obtained from &lt;i&gt;ab initio&lt;/i&gt; band structure calculations, combined with degenerate perturbation theory, we derive effective Kondo-Heisenberg and spin Hamiltonians that capture the interaction among the effective magnetic moments. This derivation encompasses fluctuations via both nonmagnetic &lt;mjx-container ctxtmenu_counter=\"168\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"4 f Superscript 0\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msup data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑓&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; and magnetic &lt;mjx-container ctxtmenu_counter=\"169\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"4 f squared\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;4&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msup data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-a","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competitive multiple phase transitions and distinct superconducting states in aR⁢e3⁢G⁢e7single crystal under hydrostatic pressure 静水压力下 Re3Ge7 单晶体中的竞争性多重相变和不同超导态
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.184507
Chenglin Li, BinBin Ruan, Qingxin Dong, Pengtao Yang, Guorui Xiao, Tong Shi, Zhaoming Tian, Jianping Sun, Yoshiya Uwatoko, Genfu Chen, Zhi Ren, Gang Wang, Zhian Ren, Bosen Wang, Jinguang Cheng
We report the growth and physical properties of high-quality needle-shaped <mjx-container ctxtmenu_counter="38" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(11 0 8 (3 1 2) 9 4 10 (7 5 6))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,3,4,7" data-semantic-content="8,9,10" data-semantic- data-semantic-owns="0 8 3 9 4 10 7" data-semantic-role="implicit" data-semantic-speech="normal upper R normal e 3 normal upper G normal e 7" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="11" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>R</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="11" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="11" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>G</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="5,6" data-semantic- data-semantic-owns="5 6" data-semantic-parent="11" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>7</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> sin
我们报告了高质量针状 Re3Ge7 单晶的生长和物理性质。它表现出一种类似于金属-绝缘体(MI)的间隙相变,具有明显的舒布尼科夫-德哈斯(Shubnikov-de Haas)低电阻率振荡。通过在高达 12 GPa 的各种静水压力下测量立方砧电池 (CAC) 中的电阻率,我们重新研究了超导相图。与钻石砧电池(DAC)中的单晶和立方砧电池(CAC)中的多晶结果不同,单晶 Re3Ge7 的间隙 MI 型相变演化为三个电荷密度波(CDW)型相变,它们在施加的压力下逐渐减小,然后在几个临界压力下坍缩;接近 CDW 型量子临界点时,出现了两个不同的超导相,并在较窄的压力范围内从一个过渡到另一个;超导宽度的显著增加表明它们之间存在强烈的竞争关系。通过结合密度泛函理论计算,讨论了由压力和掺杂镓引起的熔化 MI 样转变以及竞争性 CDW 样相变和不同超导性的起源。
{"title":"Competitive multiple phase transitions and distinct superconducting states in aR⁢e3⁢G⁢e7single crystal under hydrostatic pressure","authors":"Chenglin Li, BinBin Ruan, Qingxin Dong, Pengtao Yang, Guorui Xiao, Tong Shi, Zhaoming Tian, Jianping Sun, Yoshiya Uwatoko, Genfu Chen, Zhi Ren, Gang Wang, Zhian Ren, Bosen Wang, Jinguang Cheng","doi":"10.1103/physrevb.110.184507","DOIUrl":"https://doi.org/10.1103/physrevb.110.184507","url":null,"abstract":"We report the growth and physical properties of high-quality needle-shaped &lt;mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(11 0 8 (3 1 2) 9 4 10 (7 5 6))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4,7\" data-semantic-content=\"8,9,10\" data-semantic- data-semantic-owns=\"0 8 3 9 4 10 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper R normal e 3 normal upper G normal e 7\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;R&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;G&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;7&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; sin","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacancy-induced pseudogap formation in antiferromagneticCr0.86⁢ZnSb 反铁磁性铬 0.86ZnSb 中空位诱导的伪缺口形成
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.195124
Michael Parzer, Fabian Garmroudi, Herwig Michor, Xinlin Yan, Ernst Bauer, Gerda Rogl, Jiri Bursik, Stephen Cottrell, Raimund Podloucky, Peter Rogl
Structural defects are important for both solid-state chemistry and physics, as they can have a significant impact on chemical stability and physical properties. Here, we identify a vacancy-induced pseudogap formation in antiferromagnetic <mjx-container ctxtmenu_counter="57" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 0 5 (3 1 2) 6 4)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,3,4" data-semantic-content="5,6" data-semantic- data-semantic-owns="0 5 3 6 4" data-semantic-role="implicit" data-semantic-speech="normal upper C normal r 0.86 upper Z n upper S b" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>C</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>r</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mrow size="s"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.647em;">0</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.647em;">8</mjx-c><mjx-c style="padding-top: 0.647em;">6</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.706em;">Z</mjx-c><mjx-c noic="true" style="padding-top: 0.706em;">n</mjx-c><mjx-c noic="true" style="padding-top: 0.706em;">S</mjx-c><mjx-c style="padding-top: 0.706em;">b</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container>. <mjx-container ctxtmenu_counter="58" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 0 8 (6 1 (5 2 3 4)) 9 7)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="0,6,7" data-semantic-content="8,9" data-
结构缺陷对固态化学和物理学都很重要,因为它们会对化学稳定性和物理性质产生重大影响。在这里,我们确定了反铁磁性 Cr0.86ZnSb 中的空位诱导伪缺口形成。我们结合密度泛函理论(DFT)计算和实验方法对 Cr1-𝑥ZnSb 合金进行了研究,以阐明空位的影响。对 Cr1-𝑥ZnSb,0<𝑥<0.20 的详细分析(X 射线粉末和单晶衍射、透射和二次扫描电子显微镜)表明,Cr0.86ZnSb 是唯一稳定的化合物,其结晶为 MnAlGe 型结构。通过 DFT 计算,发现 Cr 局部磁矩的反铁磁自旋构型对完全化学计量的 CrZnSb 和 Cr0.875ZnSb 都有利。通过随温度和磁场变化的磁化测量,实验观察到了 Cr0.86ZnSb 的磁序,揭示了在 220 K 附近的磁性相变,零场μ介子自旋弛豫研究证实了这一点。根据三重抛物线能带模型和 DFT 模拟对测量数据进行分析,其特征可追溯到由特定空位排列引起的电子结构中的伪缺口。这些发现为了解空位在缺陷材料中的作用提供了宝贵的见解,有助于更广泛地了解结构缺陷及其对电子结构的影响。
{"title":"Vacancy-induced pseudogap formation in antiferromagneticCr0.86⁢ZnSb","authors":"Michael Parzer, Fabian Garmroudi, Herwig Michor, Xinlin Yan, Ernst Bauer, Gerda Rogl, Jiri Bursik, Stephen Cottrell, Raimund Podloucky, Peter Rogl","doi":"10.1103/physrevb.110.195124","DOIUrl":"https://doi.org/10.1103/physrevb.110.195124","url":null,"abstract":"Structural defects are important for both solid-state chemistry and physics, as they can have a significant impact on chemical stability and physical properties. Here, we identify a vacancy-induced pseudogap formation in antiferromagnetic &lt;mjx-container ctxtmenu_counter=\"57\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 0 5 (3 1 2) 6 4)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"5,6\" data-semantic- data-semantic-owns=\"0 5 3 6 4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal r 0.86 upper Z n upper S b\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;C&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;r&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mrow size=\"s\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;0&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.647em;\"&gt;8&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.647em;\"&gt;6&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;Z&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;n&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;b&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;. &lt;mjx-container ctxtmenu_counter=\"58\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 0 8 (6 1 (5 2 3 4)) 9 7)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,6,7\" data-semantic-content=\"8,9\" data-","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"38 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absorption of electromagnetic waves in a screened two-dimensional electron system 屏蔽二维电子系统对电磁波的吸收
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205416
V. M. Muravev, I. V. Andreev, N. D. Semenov, P. A. Gusikhin, I. V. Kukushkin
We studied the absorption of microwave electromagnetic radiation incident normal to a two-dimensional electron system on a dielectric substrate with a metallic back reflector. We have shown that the presence of a back gate strongly modifies the spectrum of plasmon polaritons in such a structure. We observe a transverse plasmon mode which starts from zero frequency at zero magnetic field and follows renormalized cyclotron resonance. This renormalization occurs from the hybridization of plasma modes with Fabry-Pérot photonic resonances in the substrate, which indicates their transverse nature. Finally, we speculate that the observed modes resemble helicon waves in three-dimensional metals.
我们研究了电介质基底上带有金属背反射器的二维电子系统对入射法线微波电磁辐射的吸收。我们已经证明,背栅的存在强烈地改变了这种结构中的等离子体极化子频谱。我们观察到一种横向等离子体模式,它在零磁场下从零频率开始,并遵循重正化回旋共振。这种重正化是等离子模式与基底中的法布里-佩罗光子共振杂化产生的,这表明了它们的横向性质。最后,我们推测观测到的模式类似于三维金属中的螺旋波。
{"title":"Absorption of electromagnetic waves in a screened two-dimensional electron system","authors":"V. M. Muravev, I. V. Andreev, N. D. Semenov, P. A. Gusikhin, I. V. Kukushkin","doi":"10.1103/physrevb.110.205416","DOIUrl":"https://doi.org/10.1103/physrevb.110.205416","url":null,"abstract":"We studied the absorption of microwave electromagnetic radiation incident normal to a two-dimensional electron system on a dielectric substrate with a metallic back reflector. We have shown that the presence of a back gate strongly modifies the spectrum of plasmon polaritons in such a structure. We observe a transverse plasmon mode which starts from zero frequency at zero magnetic field and follows renormalized cyclotron resonance. This renormalization occurs from the hybridization of plasma modes with Fabry-Pérot photonic resonances in the substrate, which indicates their transverse nature. Finally, we speculate that the observed modes resemble helicon waves in three-dimensional metals.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interconnected skyrmions in a nanowire structure: Micromagnetic simulations 纳米线结构中相互连接的天幕:微磁模拟
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.174415
Taichi Nishitani, Syuta Honda, Hiroyoshi Itoh, Tomokatsu Ohsawa, Masaaki A. Tanaka
The magnetization dynamics of two skyrmions with antiparallel vortex rotations on a nanowire substrate were investigated using micromagnetic simulations. When positioned in proximity, the skyrmions exhibit attractive interactions that decrease their separation distance. This interaction leads to a magnetic energy transition, resulting in the fusion of the two skyrmions into a single connected entity. Applying a static magnetic field aligned with the magnetization direction of the skyrmion cores causes this connected structure to expand, increasing the distance between their cores. Conversely, exposing the connected skyrmions to a specific alternating magnetic field induces resonant oscillations in the core-to-core distance, with the resonance frequency decreasing as the field amplitude increases. The effective mass of the connected skyrmions at resonance is calculated using the resonance frequency. Notably, excessively high amplitudes can cause these oscillations to converge the skyrmions excessively, leading to their annihilation. In simulations involving both static and alternating magnetic fields, separation of the connected skyrmions was not observed. These findings have potential implications for the advancement of technologies utilizing skyrmion numbers for innovative applications.
利用微磁模拟研究了纳米线基底上两个具有反平行涡旋旋转的天元的磁化动力学。当两个天元靠近时,会产生吸引力相互作用,从而减小它们之间的距离。这种相互作用会导致磁能转换,从而使两个天元融合成一个相连的实体。施加与天球离子核心磁化方向一致的静态磁场会导致这种连接结构膨胀,从而增大它们核心之间的距离。相反,将相连的天体置于特定的交变磁场中,则会引起磁芯与磁芯间距离的共振振荡,共振频率随着磁场振幅的增大而降低。利用共振频率可以计算出共振时相连天元的有效质量。值得注意的是,过高的振幅会导致这些振荡过度收敛天元,从而导致天元湮灭。在涉及静态磁场和交变磁场的模拟中,没有观察到连接的天幕分离。这些发现对利用天幕数进行创新应用的技术进步具有潜在影响。
{"title":"Interconnected skyrmions in a nanowire structure: Micromagnetic simulations","authors":"Taichi Nishitani, Syuta Honda, Hiroyoshi Itoh, Tomokatsu Ohsawa, Masaaki A. Tanaka","doi":"10.1103/physrevb.110.174415","DOIUrl":"https://doi.org/10.1103/physrevb.110.174415","url":null,"abstract":"The magnetization dynamics of two skyrmions with antiparallel vortex rotations on a nanowire substrate were investigated using micromagnetic simulations. When positioned in proximity, the skyrmions exhibit attractive interactions that decrease their separation distance. This interaction leads to a magnetic energy transition, resulting in the fusion of the two skyrmions into a single connected entity. Applying a static magnetic field aligned with the magnetization direction of the skyrmion cores causes this connected structure to expand, increasing the distance between their cores. Conversely, exposing the connected skyrmions to a specific alternating magnetic field induces resonant oscillations in the core-to-core distance, with the resonance frequency decreasing as the field amplitude increases. The effective mass of the connected skyrmions at resonance is calculated using the resonance frequency. Notably, excessively high amplitudes can cause these oscillations to converge the skyrmions excessively, leading to their annihilation. In simulations involving both static and alternating magnetic fields, separation of the connected skyrmions was not observed. These findings have potential implications for the advancement of technologies utilizing skyrmion numbers for innovative applications.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"150 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melting and transport properties ofAl2⁢O3at extreme conditions 极端条件下氧化铝的熔融和传输特性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.174107
Maitrayee Ghosh, S. X. Hu, Eric Blackman, Terry-Ann Suer, Shuai Zhang
The high-pressure temperature phase diagram and transport properties of materials are of broad interest to planetary sciences and high-energy-density sciences and applications. Alumina <mjx-container ctxtmenu_counter="133" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(10 0 (9 (3 1 2) 8 (6 4 5)) 7)"><mjx-mrow data-semantic-children="9" data-semantic-content="0,7" data-semantic- data-semantic-owns="0 9 7" data-semantic-role="leftright" data-semantic-speech="left parenthesis upper A l 2 normal upper O 3 right parenthesis" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="10" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:unit" data-semantic-children="3,6" data-semantic-content="8" data-semantic- data-semantic-owns="3 8 6" data-semantic-parent="10" data-semantic-role="implicit" data-semantic-type="infixop"><mjx-msub data-semantic-children="1,2" data-semantic- data-semantic-owns="1 2" data-semantic-parent="9" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">A</mjx-c><mjx-c style="padding-top: 0.706em;">l</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="9" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="4,5" data-semantic- data-semantic-owns="4 5" data-semantic-parent="9" data-semantic-role="latinletter" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="6" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="10" data-semantic-role="close" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> or its various forms (e.g., solutions with other oxides or silicates)
材料的高压温度相图和传输特性对行星科学和高能量密度科学及应用具有广泛的意义。氧化铝(Al2O3)或其各种形态(如与其他氧化物或硅酸盐的溶液)是地球和超地球地幔的重要成分,是动态压缩实验中的常用窗口材料,也是金刚石椭球实验中的标准压力校准器。它的结构和传输特性尤为重要,但在 100 GPa 以上的压力下还没有得到很好的研究。基于广泛的第一性原理分子动力学计算,我们获得了原子水平的结构差异见解,以及在压力为 130-1300GPa 和温度为 4000-20 000 K 时 Al2O3 在几种相中的导电性(𝜎dc)、导热性(𝜅)和反射性的精确结果。我们发现Al2O3的固态到液态变化伴随着绝缘体到半金属的转变,其𝜎dc和𝜅增强,这与其他硅酸盐和氧化物类似,可促进岩质行星内部深处磁场的产生。我们还发现,在 160 GPa 时,固态到固态的转变(从 Rh2O3(II) 到 CaIrO3)伴随着𝜎dc 和𝜅的微小变化,这与之前的预期相反,而另一种更高的压力相变(在 450 GPa 时从 CaIrO3 到 U2S3)则伴随着𝜎dc 和𝜅的增加。此外,我们还发现 Al2O3 中的氧空位可以增强传输特性,但与 MgSiO3 形成溶液对传输特性的影响不大,尤其是在固态时。
{"title":"Melting and transport properties ofAl2⁢O3at extreme conditions","authors":"Maitrayee Ghosh, S. X. Hu, Eric Blackman, Terry-Ann Suer, Shuai Zhang","doi":"10.1103/physrevb.110.174107","DOIUrl":"https://doi.org/10.1103/physrevb.110.174107","url":null,"abstract":"The high-pressure temperature phase diagram and transport properties of materials are of broad interest to planetary sciences and high-energy-density sciences and applications. Alumina &lt;mjx-container ctxtmenu_counter=\"133\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(10 0 (9 (3 1 2) 8 (6 4 5)) 7)\"&gt;&lt;mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"0,7\" data-semantic- data-semantic-owns=\"0 9 7\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper A l 2 normal upper O 3 right parenthesis\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;(&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"3,6\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"3 8 6\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"9\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;A&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;l&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;)&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; or its various forms (e.g., solutions with other oxides or silicates) ","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"95 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-demand population of Andreev levels by their ionization in the presence of Coulomb blockade 在库仑阻滞作用下,安德烈耶夫电离水平的按需增殖
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.184508
Pavel D. Kurilovich, Vladislav D. Kurilovich, Aleksandr E. Svetogorov, Wolfgang Belzig, Michel H. Devoret, Leonid I. Glazman
A mechanism to deterministically prepare a nanowire Josephson junction in an odd parity state is proposed. The mechanism involves population of two Andreev levels by a resonant microwave drive breaking a Cooper pair, and a subsequent ionization of one of the levels by the same drive. Robust preparation of the odd state is allowed by a residual Coulomb repulsion in the junction. A similar resonant process can also be used to prepare the junction in the even state. Our theory explains a recent experiment [J. J. Wesdorp et al., Phys. Rev. Lett. 131, 117001 (2023)].
本文提出了一种以确定方式制备奇奇偶态纳米线约瑟夫森结的机制。该机制包括通过打破库珀对的共振微波驱动产生两个安德烈耶夫电平,以及随后通过相同的驱动使其中一个电平电离。结内残余的库仑斥力允许奇数态的稳健制备。类似的共振过程也可以用来制备偶态的结。我们的理论解释了最近的一项实验[J. J. Wesdorp 等人,Phys. Rev. Lett. 131, 117001 (2023)]。
{"title":"On-demand population of Andreev levels by their ionization in the presence of Coulomb blockade","authors":"Pavel D. Kurilovich, Vladislav D. Kurilovich, Aleksandr E. Svetogorov, Wolfgang Belzig, Michel H. Devoret, Leonid I. Glazman","doi":"10.1103/physrevb.110.184508","DOIUrl":"https://doi.org/10.1103/physrevb.110.184508","url":null,"abstract":"A mechanism to deterministically prepare a nanowire Josephson junction in an odd parity state is proposed. The mechanism involves population of two Andreev levels by a resonant microwave drive breaking a Cooper pair, and a subsequent ionization of one of the levels by the same drive. Robust preparation of the odd state is allowed by a residual Coulomb repulsion in the junction. A similar resonant process can also be used to prepare the junction in the even state. Our theory explains a recent experiment [J. J. Wesdorp <i>et al.</i>, <span>Phys. Rev. Lett.</span> <b>131</b>, 117001 (2023)].","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"35 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic topological transitions in cadmium under pressure studied via theoretical and experimental x-ray absorption spectroscopy 通过理论和实验 X 射线吸收光谱研究压力下镉的电子拓扑转变
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.205118
Jasmine K. Hinton, Daniel Schacher, Wonseok Lee, G. Alexander Smith, Emily Siska, Changyong Park, Paul B. Ellison, Scott K. Cushing, Craig P. Schwartz, Keith V. Lawler, Ashkan Salamat
An electronic topological transition (ETT) in cadmium below 1 GPa is investigated in situ with experimental x-ray absorption spectroscopy and projecting calculated core-valence excitons onto the band structure. These projections are a useful application of the Bethe-Salpeter equation approach that considers many-body effects. The method described herein can be used for systems that are otherwise difficult to probe in situ; therefore, it provides a generalizable approach to identifying and understanding ETTs under high pressure. Although pressure-induced ETTs are often probed using indirect structural responses, our own x-ray diffraction and Raman studies suggest a second-order structural transition around 3 GPa but are largely insensitive to or inconclusive for the previously studied ETT in this region.
通过实验 X 射线吸收光谱和将计算出的核价激子投射到能带结构上,对低于 1 GPa 的镉电子拓扑转变 (ETT) 进行了现场研究。这些投影是考虑多体效应的 Bethe-Salpeter 方程方法的有用应用。本文描述的方法可用于难以进行原位探测的系统;因此,它为识别和理解高压下的 ETT 提供了一种可推广的方法。虽然压力诱导的 ETT 通常使用间接结构响应进行探测,但我们自己的 X 射线衍射和拉曼研究表明,在 3 GPa 附近存在二阶结构转变,但对之前研究的该区域的 ETT 基本不敏感或没有结论。
{"title":"Electronic topological transitions in cadmium under pressure studied via theoretical and experimental x-ray absorption spectroscopy","authors":"Jasmine K. Hinton, Daniel Schacher, Wonseok Lee, G. Alexander Smith, Emily Siska, Changyong Park, Paul B. Ellison, Scott K. Cushing, Craig P. Schwartz, Keith V. Lawler, Ashkan Salamat","doi":"10.1103/physrevb.110.205118","DOIUrl":"https://doi.org/10.1103/physrevb.110.205118","url":null,"abstract":"An electronic topological transition (ETT) in cadmium below 1 GPa is investigated <i>in situ</i> with experimental x-ray absorption spectroscopy and projecting calculated core-valence excitons onto the band structure. These projections are a useful application of the Bethe-Salpeter equation approach that considers many-body effects. The method described herein can be used for systems that are otherwise difficult to probe <i>in situ</i>; therefore, it provides a generalizable approach to identifying and understanding ETTs under high pressure. Although pressure-induced ETTs are often probed using indirect structural responses, our own x-ray diffraction and Raman studies suggest a second-order structural transition around 3 GPa but are largely insensitive to or inconclusive for the previously studied ETT in this region.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"95 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excitation of fundamental multiple dark solitons from forced biharmonic oscillations in a magnonic active ring 磁子主动环中受迫双谐振荡激发基本多重暗孤子
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174413
Alexey B. Ustinov, Leonid S. Vedernikov, Ivan Y. Tatsenko, Andrey A. Stashkevich
This paper reports an experimental demonstration of efficient excitation of fundamental dark spin wave solitons on a magnonic active ring below self-oscillation threshold by means of a biharmonic technique. This technique is shown to be especially appropriate for implementing multisoliton regimes otherwise unattainable. Theoretical analysis has revealed a very important role played by the phase relations between individual harmonics generated nonlinearly in the process of the formation of multiple solitons. The proposed ad hoc approach making use of the inverse Fourier transform has allowed us to elucidate the mechanisms underlying the formation of investigated nonlinear waveforms from their power spectra.
本文报告了通过双谐波技术在自振阈值以下的磁性有源环上高效激发基本暗自旋波孤子的实验演示。实验表明,这种技术特别适用于实现多孤子机制,否则将无法实现。理论分析表明,在形成多孤子的过程中,非线性产生的各个谐波之间的相位关系发挥着非常重要的作用。利用反傅立叶变换的特别方法,我们可以从功率谱中阐明所研究的非线性波形的形成机制。
{"title":"Excitation of fundamental multiple dark solitons from forced biharmonic oscillations in a magnonic active ring","authors":"Alexey B. Ustinov, Leonid S. Vedernikov, Ivan Y. Tatsenko, Andrey A. Stashkevich","doi":"10.1103/physrevb.110.174413","DOIUrl":"https://doi.org/10.1103/physrevb.110.174413","url":null,"abstract":"This paper reports an experimental demonstration of efficient excitation of fundamental dark spin wave solitons on a magnonic active ring below self-oscillation threshold by means of a biharmonic technique. This technique is shown to be especially appropriate for implementing multisoliton regimes otherwise unattainable. Theoretical analysis has revealed a very important role played by the phase relations between individual harmonics generated nonlinearly in the process of the formation of multiple solitons. The proposed <i>ad hoc</i> approach making use of the inverse Fourier transform has allowed us to elucidate the mechanisms underlying the formation of investigated nonlinear waveforms from their power spectra.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"37 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1