首页 > 最新文献

Physical Review B最新文献

英文 中文
Limitations of Caldeira-Leggett model for description of phase transitions in superconducting circuits 卡尔代拉-莱格特模型在描述超导电路相变方面的局限性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.184505
O. Kashuba, R.-P. Riwar
The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.
系统-浴相互作用的固有复杂性往往要求进行临界近似,我们在此表明,临界近似对重正化群流和由此产生的相图具有根本性的影响。具体来说,对于卡尔代拉-莱格特模型,施密德和布尔加达耶夫(SB)预言了一种相变,而这种相变在电阻超导电路中的实验验证目前正引起激烈争论。对于普通金属和约瑟夫森结阵列电阻器,我们的研究表明,只有在采用近似方法对超导阶段进行解压缩时,卡尔代拉-莱格特的映射才是精确的。我们的研究表明,存在保留相紧凑性的处理方法,这些方法会立即产生一个取决于四个而非两个参数的相图。虽然我们仍能在跨导机制中发现类似于 SB 的转变,但临界参数完全由电容耦合控制。相比之下,库珀对箱映射到各向异性的近藤模型,在该模型中,常规静电相互作用不允许出现伪铁磁相。
{"title":"Limitations of Caldeira-Leggett model for description of phase transitions in superconducting circuits","authors":"O. Kashuba, R.-P. Riwar","doi":"10.1103/physrevb.110.184505","DOIUrl":"https://doi.org/10.1103/physrevb.110.184505","url":null,"abstract":"The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"80 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable surface electron gas and effect of phonons inSr2⁢CuO3: A first-principles study Sr2CuO3中的可调谐表面电子气和声子效应:第一原理研究
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.195121
Xin Du, Hui-Hui He, Xiao-Xiao Man, Zhong-Yi Lu, Kai Liu
While the conducting <mjx-container ctxtmenu_counter="27" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper C u upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">u</mjx-c><mjx-c style="padding-top: 0.669em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> planes in cuprate superconductors have been widely recognized as a crucial component in producing high superconducting <mjx-container ctxtmenu_counter="28" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="latinletter" data-semantic-speech="upper T Subscript c" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em; margin-left: -0.048em;"><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="text" size="s" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 4px;" variant="-explicitFont">c</mjx-utext></mjx-mtext></mjx-script></mjx-msub></mjx-math></mjx-container>, recent experimental and theoretical studies on <mjx-container ctxtmenu_counter="29" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(17 (5 0 (4 1 2 3)) 15 (8 6 7) 16 (14 9 (13 10 11 12)))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="5,8,14" data-semantic-content="15,16" data-semantic- data-semantic-owns="5 15 8 16 14" data-semantic-role="implicit" data-semantic-speech="upper B a Subscript 2 minus x Baseline upper S r Subscript x Baseline upper C u upper O Subscript 3 plus delta" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,4" data-semantic- data-semantic-ow
尽管人们普遍认为铜氧化物超导体中的导电 CuO2 平面是产生高超导𝑇c 的关键组成部分,但最近对 Ba2-𝑥Sr𝑥CuO3+𝛿 的实验和理论研究也引起了人们对一维(1D)铜氧化物中 Cu-O 链重要性的关注。为了更好地理解含有 Cu-O 链的铜氧化物,我们基于自旋极化密度泛函理论计算研究了 Sr2CuO3 块体和薄膜的电子、磁性和声子特性。我们首先再现了块体 Sr2CuO3 的杯状母体化合物的典型莫特绝缘体特征,然后构建了表面暴露有 Cu-O 链的 Sr2CuO3 薄膜,直接研究其特性。与绝缘体相不同,Sr2CuO3 表面显示出有趣的金属特性。进一步的电子结构计算显示,表面 Sr 原子间存在自旋极化电子气,这种电子气强烈依赖于 Cu 自旋链间耦合。此外,涉及链内和链外 O 原子振动的声子模式能在 Sr2CuO3 薄膜表层诱发强烈的电荷和自旋波动,这表明显著的多自由度耦合可能对一维铜氧化物的超导性非常重要。我们的研究提供了有关 Sr2CuO3 中 Cu-O 链性质的全面观点,有助于全面了解一维铜氧化物超导体。
{"title":"Tunable surface electron gas and effect of phonons inSr2⁢CuO3: A first-principles study","authors":"Xin Du, Hui-Hui He, Xiao-Xiao Man, Zhong-Yi Lu, Kai Liu","doi":"10.1103/physrevb.110.195121","DOIUrl":"https://doi.org/10.1103/physrevb.110.195121","url":null,"abstract":"While the conducting &lt;mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper C u upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;u&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; planes in cuprate superconductors have been widely recognized as a crucial component in producing high superconducting &lt;mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T Subscript c\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑇&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"&gt;&lt;mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\" size=\"s\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 4px;\" variant=\"-explicitFont\"&gt;c&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;, recent experimental and theoretical studies on &lt;mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(17 (5 0 (4 1 2 3)) 15 (8 6 7) 16 (14 9 (13 10 11 12)))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,8,14\" data-semantic-content=\"15,16\" data-semantic- data-semantic-owns=\"5 15 8 16 14\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper B a Subscript 2 minus x Baseline upper S r Subscript x Baseline upper C u upper O Subscript 3 plus delta\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-ow","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"127 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetism and field-induced effects in the𝑆=52honeycomb lattice antiferromagnetFeP3⁢SiO11 𝑆=52蜂巢晶格反铁磁体FeP3SiO11的磁性和场诱导效应
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.184402
J. Khatua, M. Gomilšek, Kwang-Yong Choi, P. Khuntia
Quantum magnets based on honeycomb lattices with a low coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogs, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in the context of capturing the classical limits of quantum phenomena. Herein, we report the crystal structure, magnetic susceptibility, specific heat, and electron spin resonance (ESR) measurements, complemented by <i>ab initio</i> density functional theory (DFT) calculations, on polycrystalline samples of <mjx-container ctxtmenu_counter="81" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper F e upper P 3 upper S i upper O 11" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">F</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">e</mjx-c><mjx-c style="padding-top: 0.657em;">P</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c style="padding-top: 0.673em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c noic="true" style="padding-top: 0.639em;">1</mjx-c><mjx-c style="padding-top: 0.639em;">1</mjx-c></mjx-mn></mjx-script></mjx-msu
基于低配位数蜂巢晶格的量子磁体为实现奇异的新兴量子激元以及竞争磁相互作用、自旋相关性和空间各向异性之间的相互作用所产生的现象提供了一个可行的基础。然而,与低自旋类似物不同,高自旋蜂巢晶格反铁磁体在捕捉量子现象的经典极限方面的探索仍然相对较少。在此,我们报告了对 FeP3SiO11 多晶样品的晶体结构、磁感应强度、比热和电子自旋共振(ESR)测量结果,并辅以原子序数密度泛函理论(DFT)计算,其中 Fe3+ 离子装饰了近乎完美的𝑆=52 蜂窝晶格,组成原子之间没有任何位点紊乱。在 150 K 以上,观察到反铁磁性韦斯温度𝜃CW=-12K,这与 DFT 计算一致,表明存在较强的平面内近邻和较弱的平面间远邻交换相互作用。在 𝑇𝑁=3.5K 时,比热和磁感应强度出现异常,这表明在零场中存在长程有序基态。在𝑇𝑁以上,ESR 证明了短程自旋相关性和不饱和磁熵,而在𝑇𝑁以下,通过幂律比热可以看到非常规激发。在更高的外加磁场中,𝑇𝑁逐渐被抑制,在𝜇0𝐻c2=5.6T时降至零。在 𝜇0𝐻c2 以上,间隙磁子激发导致的比热出现了一个宽广的最大值,这表明在这种蜂巢晶格反铁磁体中出现了一个有趣的近极化态,由无序态包裹。
{"title":"Magnetism and field-induced effects in the𝑆=52honeycomb lattice antiferromagnetFeP3⁢SiO11","authors":"J. Khatua, M. Gomilšek, Kwang-Yong Choi, P. Khuntia","doi":"10.1103/physrevb.110.184402","DOIUrl":"https://doi.org/10.1103/physrevb.110.184402","url":null,"abstract":"Quantum magnets based on honeycomb lattices with a low coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogs, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in the context of capturing the classical limits of quantum phenomena. Herein, we report the crystal structure, magnetic susceptibility, specific heat, and electron spin resonance (ESR) measurements, complemented by &lt;i&gt;ab initio&lt;/i&gt; density functional theory (DFT) calculations, on polycrystalline samples of &lt;mjx-container ctxtmenu_counter=\"81\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper F e upper P 3 upper S i upper O 11\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;F&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;e&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;P&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.639em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.639em;\"&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msu","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"244 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferromagnetic ferroelectricity due to the Kugel-Khomskii mechanism of orbital ordering assisted by atomic Hund's second rule effects 库格尔-霍姆斯基轨道有序机制在原子亨德第二规则效应辅助下产生的铁磁铁电性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.205116
I. V. Solovyev, R. Ono, S. A. Nikolaev
The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling <i>and</i> break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet <mjx-container ctxtmenu_counter="652" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper V upper I 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">V</mjx-c><mjx-c style="padding-top: 0.657em;">I</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, employing for this analysis the realistic model derived from first-principles calculations for magnetic <mjx-container ctxtmenu_counter="653" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 2 1)"><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-owns="0 2 1" data-semantic-role="implicit" data-semantic-speech="3 d" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplicat
绝缘体中的交换相互作用取决于磁性离子的轨道状态,服从某些现象学原理,即古德诺-卡纳莫里-安德森规则。特别是,相同轨道的铁阶倾向于稳定反铁磁相互作用,而不相同轨道的反铁阶则有利于铁磁相互作用。库格尔-霍姆斯基(Kugel-Khomskii)理论以超交换过程为基础,为自旋和轨道自由度之间的这种耦合提供了一种普遍的观点:即对于给定的磁序,被占据的轨道倾向于以进一步最小化交换能的方式排列。那么,如果两个磁性位点通过空间反转相连,反铁氧体轨道阶应导致铁磁耦合并打破反转对称性。这就是我们工作的基本思想,它为设计铁磁性铁电体提供了一条途径:这是一种罕见但具有重要基础和实际意义的多铁电体材料。在用玩具模型举例说明基本思想之后,我们提出这种行为确实可以在范德瓦耳斯铁磁体 VI3 中实现,并在分析中采用了根据磁性 3𝑑 带的第一原理计算得出的现实模型。我们认为,造成亨德第二规则的原子内相互作用与晶体场相反,倾向于恢复 VI3 中离子𝑑2 态的轨道退变性,从而为激活轨道有序的库格尔-霍姆斯基机制提供了必要的灵活性。在蜂巢晶格中,这种轨道排序打破了反转对称性,稳定了铁磁-铁电基态。对称性的打破导致了磁化的倾斜,而磁化可进一步受磁场控制,从而产生巨大的电极化变化。
{"title":"Ferromagnetic ferroelectricity due to the Kugel-Khomskii mechanism of orbital ordering assisted by atomic Hund's second rule effects","authors":"I. V. Solovyev, R. Ono, S. A. Nikolaev","doi":"10.1103/physrevb.110.205116","DOIUrl":"https://doi.org/10.1103/physrevb.110.205116","url":null,"abstract":"The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling &lt;i&gt;and&lt;/i&gt; break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet &lt;mjx-container ctxtmenu_counter=\"652\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper I 3\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;V&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;I&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;, employing for this analysis the realistic model derived from first-principles calculations for magnetic &lt;mjx-container ctxtmenu_counter=\"653\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 2 1)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"3 d\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplicat","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"446 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural network enabled molecular dynamics study ofHfO2phase transitions 神经网络支持的二氧化铪相变分子动力学研究
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174105
Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen
The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which <i>ab initio</i> MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the <mjx-container ctxtmenu_counter="23" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 (2 0 1) 4 3)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,3" data-semantic-content="4" data-semantic- data-semantic-owns="2 4 3" data-semantic-role="implicit" data-semantic-speech="normal r squared upper S upper C upper A upper N" data-semantic-type="infixop"><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>r</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.669em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">A</mjx-c><mjx-c style="padding-top: 0.669em;">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> potential energy landscape of <mjx-container ctxtmenu_counter="24" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper H f upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.713em;">H</mjx-c><mjx-c noic="true" style="padding-top: 0.713em;">f</mjx-c><mjx-c style="padding-top: 0.713em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-sema
机器学习力场的进步为分子动力学(MD)模拟开辟了新的途径,可以模拟那些因ab initio MD过于耗费资源而无法进行的化合物,以及那些经典力场无法充分模拟的现象。在此,我们描述了一种神经网络力场,其参数化的目的是重现 HfO2 的 r2SCAN 势能图。基于等温-等压(𝑁𝑃𝑇)集合的自动可微分实现,以及灵活的单元波动,我们研究了 HfO2 的相空间。我们发现晶格常数和 X 射线衍射实验数据具有极佳的预测能力。在 2000 K 左右的温度下,可以清楚地看到单斜相的转变,这与现有的实验数据和以前的计算结果一致。晶格常数的另一个突然变化发生在 3000 K 左右。虽然由此产生的晶格常数更接近立方体,但它们表现出很小的四方畸变,而且体积没有相关变化。我们的研究表明,这种高温结构与现有的高温衍射数据一致。
{"title":"Neural network enabled molecular dynamics study ofHfO2phase transitions","authors":"Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen","doi":"10.1103/physrevb.110.174105","DOIUrl":"https://doi.org/10.1103/physrevb.110.174105","url":null,"abstract":"The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which &lt;i&gt;ab initio&lt;/i&gt; MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the &lt;mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal r squared upper S upper C upper A upper N\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;r&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;C&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;A&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;N&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; potential energy landscape of &lt;mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper H f upper O 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.713em;\"&gt;H&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.713em;\"&gt;f&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.713em;\"&gt;O&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-sema","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"70 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic theory of spin Nernst effect 自旋 Nernst 效应的微观理论
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174411
Junji Fujimoto, Taiki Matsushita, Masao Ogata
We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced by a temperature gradient, employing the linear response theory with Luttinger's gravitational potential method. We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the spin current response to the gravitational potential. Our theory takes into account a contribution of the local equilibrium current modified by Luttinger's gravitational potential and is thus consistent with the thermodynamic principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Furthermore, we microscopically derive the spin-current version of Mott's formula, which associates the spin Nernst coefficient with the spin Hall conductivity. The spin-current version of the Středa formula is also discussed. To demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory is general and can therefore be extended to interacting electron systems, where Mott's formula no longer holds.
我们介绍了自旋奈恩斯特效应的微观理论,这是一种由温度梯度直接诱导的横向自旋电流,采用的是线性响应理论和卢廷格重力势能法。我们考虑了一个具有随机分布杂质的通用非相互作用电子系统,并评估了自旋电流对引力势的响应。我们的理论考虑了局部平衡电流经卢廷格引力势修正后的贡献,因此符合热力学原理,即热反应应在绝对零度消失。Ward-Takahashi 特性确保了自旋奈恩斯特电流在低温下以随机杂质电势的任何阶次表现良好。此外,我们还从微观上推导出莫特公式的自旋电流版本,它将自旋奈尔斯特系数与自旋霍尔电导率联系在一起。我们还讨论了斯特里达公式的自旋电流版本。为了证明这些发现,我们计算了三维狄拉克电子的自旋能斯特电流。我们的理论具有普遍性,因此可以扩展到莫特公式不再成立的相互作用电子系统。
{"title":"Microscopic theory of spin Nernst effect","authors":"Junji Fujimoto, Taiki Matsushita, Masao Ogata","doi":"10.1103/physrevb.110.174411","DOIUrl":"https://doi.org/10.1103/physrevb.110.174411","url":null,"abstract":"We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced by a temperature gradient, employing the linear response theory with Luttinger's gravitational potential method. We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the spin current response to the gravitational potential. Our theory takes into account a contribution of the local equilibrium current modified by Luttinger's gravitational potential and is thus consistent with the thermodynamic principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Furthermore, we microscopically derive the spin-current version of Mott's formula, which associates the spin Nernst coefficient with the spin Hall conductivity. The spin-current version of the Středa formula is also discussed. To demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory is general and can therefore be extended to interacting electron systems, where Mott's formula no longer holds.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman spectroscopic study onBi2⁢Rh3⁢Se2: Two-dimensional Ising charge density wave and quantum fluctuations 关于 Bi2Rh3Se2 的拉曼光谱研究:二维伊辛电荷密度波和量子波动
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174505
Fei Jiao, Yonghui Zhou, Shuyang Wang, Chao An, Xuliang Chen, Ying Zhou, Min Zhang, Liang Cao, Xigang Luo, Yimin Xiong, Zhaorong Yang
The ternary chalcogenide <mjx-container ctxtmenu_counter="34" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5,8" data-semantic-content="9,10" data-semantic- data-semantic-owns="2 9 5 10 8" data-semantic-role="implicit" data-semantic-speech="upper B i 2 upper R h 3 upper S e 2" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">B</mjx-c><mjx-c style="padding-top: 0.673em;">i</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.706em;">R</mjx-c><mjx-c style="padding-top: 0.706em;">h</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="11" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="6,7" data-semantic- data-semantic-owns="6 7" data-semantic-parent="11" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">S</mjx-c><mjx-c style="padding-top: 0.669em;">e</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="integer" data-semantic-type="number" size="s"><mj
研究发现,三元瑀 Bi2Rh3Se2 是一种具有 2×2 周期性的电荷密度波(CDW)超导体。关于 CDW 状态的基本机制及其与晶格和电子特性的相互作用等关键问题仍有待探索。在此,我们基于对单晶 Bi2Rh3Se2 的系统拉曼散射研究,观察到了 CDW 态的指纹特征,即 ∼39cm-1 处的集体振幅模式。该振幅模式的拉曼位移和线宽的温度演变可以很好地用二维(2D)伊辛模型的临界行为来描述,这表明当 CDW 态形成时,Bi2Rh3Se2 的层间相互作用可以忽略不计,因此量子波动在低温下发挥了重要作用。此外,当接近 CDW 转变温度 ∼ 240K 时,𝐴9𝑔 模式的拉曼偏移随温度的变化明显偏离了预期的非谐波行为,这表明强电子-声子耦合在 CDW 的形成中起了关键作用。我们的研究结果表明,Bi2Rh3Se2 是一个有趣的准二维系统,可用于探索量子伊辛模型和调节 CDW 与超导之间的相关性。
{"title":"Raman spectroscopic study onBi2⁢Rh3⁢Se2: Two-dimensional Ising charge density wave and quantum fluctuations","authors":"Fei Jiao, Yonghui Zhou, Shuyang Wang, Chao An, Xuliang Chen, Ying Zhou, Min Zhang, Liang Cao, Xigang Luo, Yimin Xiong, Zhaorong Yang","doi":"10.1103/physrevb.110.174505","DOIUrl":"https://doi.org/10.1103/physrevb.110.174505","url":null,"abstract":"The ternary chalcogenide &lt;mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(11 (2 0 1) 9 (5 3 4) 10 (8 6 7))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5,8\" data-semantic-content=\"9,10\" data-semantic- data-semantic-owns=\"2 9 5 10 8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper B i 2 upper R h 3 upper S e 2\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;B&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.706em;\"&gt;R&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.706em;\"&gt;h&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;e&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mj","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between orbital moment anisotropy, magnetocrystalline anisotropy, and Dzyaloshinskii-Moriya interaction in W/Co/Pt trilayers W/Co/Pt 三层膜中轨道力矩各向异性、磁晶各向异性和 Dzyaloshinskii-Moriya 相互作用之间的关系
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.184401
Zhendong Chi, Yong-Chang Lau, Vanessa Li Zhang, Goro Shibata, Shoya Sakamoto, Yosuke Nonaka, Keisuke Ikeda, Yuxuan Wan, Masahiro Suzuki, Masashi Kawaguchi, Masako Suzuki-Sakamaki, Kenta Amemiya, Naomi Kawamura, Masaichiro Mizumaki, Motohiro Suzuki, Hyunsoo Yang, Masamitsu Hayashi, Atsushi Fujimori
We have studied the Co layer thickness dependences of magnetocrystalline anisotropy (MCA), Dzyaloshinskii-Moriya interaction (DMI), and orbital moment anisotropy (OMA) in W/Co/Pt trilayers, in order to clarify their correlations with each other. We find that the MCA favors magnetization along the film normal and monotonically increases with decreasing effective magnetic layer thickness (<mjx-container ctxtmenu_counter="45" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 109.1%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="latinletter" data-semantic-speech="t Subscript e f f" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑡</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier" size="s"><mjx-c noic="true" style="padding-top: 0.705em;">e</mjx-c><mjx-c noic="true" style="padding-top: 0.705em;">f</mjx-c><mjx-c style="padding-top: 0.705em;">f</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>). The magnitude of the Dzyaloshinskii-Moriya exchange constant (<mjx-container ctxtmenu_counter="46" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 109.1%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 1 2)"><mjx-mrow data-semantic-children="1" data-semantic-content="0,2" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="neutral" data-semantic-speech="StartAbsoluteValue upper D EndAbsoluteValue" data-semantic-type="fenced"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="3" data-semantic-role="neutral" data-semantic-type="fence"><mjx-c>|</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="3" data-semantic-role="neutral" data-semantic-type="fence"><mjx-c>|</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container>) increases with decreasing <mjx-container ctxtmenu_counter="47" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 109.1%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="latinletter" data-semantic-speech="t Subscript e f f" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-sem
我们研究了 W/Co/Pt 三层膜中 Co 层厚度对磁晶各向异性(MCA)、Dzyaloshinski-Moriya 相互作用(DMI)和轨道力矩各向异性(OMA)的影响,以阐明它们之间的相互关系。我们发现,MCA 有利于沿薄膜法线的磁化,并随着有效磁层厚度(𝑡eff)的减小而单调增加。Dzyaloshinskii-Moriya 交换常数(|𝐷|)的大小随 𝑡eff 的减小而增大,直到 𝑡eff∼1 nm,低于此值时|𝐷|会减小。当 𝑡eff 大于 ∼1 nm 时,MCA 和 |𝐷|以 1/𝑡eff 的比例变化,这表明存在界面源。随着 𝑡eff 减小,MCA 在 𝑡eff ∼ 1 nm 以下继续增加,但速度较慢。为了弄清 MCA 和 DMI 与 𝑡eff 有关的原因,我们使用 X 射线磁圆二色性研究了 W/Co/Pt 三层膜中 Co 的 OMA。我们发现当 𝑡eff 小于 ∼0.8 nm 时,OMA 不为零。随着 𝑡eff 的减小,OMA 的增加速度比 MCA 预期的更快,这表明在小 𝑡eff 时,OMA 以外的因素也会对 MCA 产生影响。OMA 与 𝑡eff 的关系还表明,在 𝑡eff 小于 ∼1 nm 时,|𝐷| 与界面上的 OMA 无关。我们认为,Co 在 W 上的生长会产生应变和/或纹理,从而降低界面 DMI,并在一定程度上降低小于 𝑡eff 时的 MCA。
{"title":"Relationship between orbital moment anisotropy, magnetocrystalline anisotropy, and Dzyaloshinskii-Moriya interaction in W/Co/Pt trilayers","authors":"Zhendong Chi, Yong-Chang Lau, Vanessa Li Zhang, Goro Shibata, Shoya Sakamoto, Yosuke Nonaka, Keisuke Ikeda, Yuxuan Wan, Masahiro Suzuki, Masashi Kawaguchi, Masako Suzuki-Sakamaki, Kenta Amemiya, Naomi Kawamura, Masaichiro Mizumaki, Motohiro Suzuki, Hyunsoo Yang, Masamitsu Hayashi, Atsushi Fujimori","doi":"10.1103/physrevb.110.184401","DOIUrl":"https://doi.org/10.1103/physrevb.110.184401","url":null,"abstract":"We have studied the Co layer thickness dependences of magnetocrystalline anisotropy (MCA), Dzyaloshinskii-Moriya interaction (DMI), and orbital moment anisotropy (OMA) in W/Co/Pt trilayers, in order to clarify their correlations with each other. We find that the MCA favors magnetization along the film normal and monotonically increases with decreasing effective magnetic layer thickness (&lt;mjx-container ctxtmenu_counter=\"45\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 109.1%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript e f f\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑡&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.705em;\"&gt;e&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.705em;\"&gt;f&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.705em;\"&gt;f&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;). The magnitude of the Dzyaloshinskii-Moriya exchange constant (&lt;mjx-container ctxtmenu_counter=\"46\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 109.1%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(3 0 1 2)\"&gt;&lt;mjx-mrow data-semantic-children=\"1\" data-semantic-content=\"0,2\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"neutral\" data-semantic-speech=\"StartAbsoluteValue upper D EndAbsoluteValue\" data-semantic-type=\"fenced\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\"&gt;&lt;mjx-c&gt;|&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝐷&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"3\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\"&gt;&lt;mjx-c&gt;|&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) increases with decreasing &lt;mjx-container ctxtmenu_counter=\"47\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 109.1%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t Subscript e f f\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-sem","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"30 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin orbital lattice entanglement in the ideal𝑗=12compoundK2⁢IrCl6 理想𝑗=12化合物K2IrCl6中的自旋轨道晶格纠缠
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.195120
P. Warzanowski, M. Magnaterra, Ch. J. Sahle, M. Moretti Sala, P. Becker, L. Bohatý, I. Císařová, G. Monaco, T. Lorenz, P. H. M. van Loosdrecht, J. van den Brink, M. Grüninger
Mott insulators with spin-orbit entangled <mjx-container ctxtmenu_counter="59" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 3 4))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="equality" data-semantic-speech="j equals 1 divided by 2" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑗</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,=" data-semantic-parent="6" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="infixop,/" data-semantic-parent="5" data-semantic-role="division" data-semantic-type="operator"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> moments host intriguing magnetic properties. The <mjx-container ctxtmenu_counter="60" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 1 (5 2 3 4))"><mjx-mrow data-semantic-children="0,5" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 5" data-semantic-role="equality" data-semantic-speech="j equals 1 divided by 2" data-semantic-type="relseq"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="6" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑗</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator="relseq,=" data-semantic-parent="6" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2,4" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 4" data-semantic-parent="6" data-semantic-role="division" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number"><mjx-c>1</mjx-c></m
具有自旋轨道纠缠𝑗=1/2 矩的莫特绝缘体蕴藏着奇妙的磁性。𝑗=1/2波函数需要立方对称性,而非立方晶场则混合了𝑗=1/2和3/2特性。对 5𝑑5铱酸盐的光谱研究通常声称其具有非立方对称性,例如基于激发的𝑗=3/2四元组的分裂。反萤石型 K2IrCl6 是一种具有全局立方对称性的受挫 fcc 量子磁体,其显著的分裂尤其令人费解。它提出了𝑗=1/2 矩对磁弹性耦合的稳定性这一根本问题。结合共振非弹性 X 射线散射和光学光谱学,我们证明了 K2IrCl6 中的多峰线形反映了𝑗=3/2 态的振动特性,而不是非立方晶体场。具有分离良好的 IrCl6 八面体的准分子晶体结构解释了通常在固体中模糊不清的清晰边带的存在。我们的研究结果突显了具有理想𝑗=1/2 矩的立方 K2IrCl6 的自旋轨道晶格纠缠特性。
{"title":"Spin orbital lattice entanglement in the ideal𝑗=12compoundK2⁢IrCl6","authors":"P. Warzanowski, M. Magnaterra, Ch. J. Sahle, M. Moretti Sala, P. Becker, L. Bohatý, I. Císařová, G. Monaco, T. Lorenz, P. H. M. van Loosdrecht, J. van den Brink, M. Grüninger","doi":"10.1103/physrevb.110.195120","DOIUrl":"https://doi.org/10.1103/physrevb.110.195120","url":null,"abstract":"Mott insulators with spin-orbit entangled &lt;mjx-container ctxtmenu_counter=\"59\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"j equals 1 divided by 2\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑗&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;=&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;/&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; moments host intriguing magnetic properties. The &lt;mjx-container ctxtmenu_counter=\"60\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 1 (5 2 3 4))\"&gt;&lt;mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"j equals 1 divided by 2\" data-semantic-type=\"relseq\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑗&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;=&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;1&lt;/mjx-c&gt;&lt;/m","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"245 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological magnon in exchange frustration driven incommensurate spin spiral of kagome-latticeYMn6⁢Sn6 卡戈美晶格YMn6Sn6的交换挫折驱动不相称自旋螺旋中的拓扑磁子
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-07 DOI: 10.1103/physrevb.110.174412
Banasree Sadhukhan, Anders Bergman, Patrik Thunström, Manuel Pereiro Lopez, Olle Eriksson, Anna Delin
<mjx-container ctxtmenu_counter="39" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper Y upper M n 6 upper S n 6" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">Y</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">M</mjx-c><mjx-c style="padding-top: 0.657em;">n</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">S</mjx-c><mjx-c style="padding-top: 0.669em;">n</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>6</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> consists of two types of Mn-based kagome planes stacked along the <mjx-container ctxtmenu_counter="40" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="0"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="c" data-semantic-type="identifier"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container>-axis having a complex magnetic interaction. We report a spin reconstruction in <mjx-container ctxtmenu_counter="41" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-s
YMn6Sn6 由两种沿𝑐轴堆叠的锰基卡戈梅平面组成,具有复杂的磁相互作用。我们报告了 YMn6Sn6 中的自旋重构,它从铁磁性(FM)转变成了两个互不相称的自旋螺旋(SSs)的组合,这两个自旋螺旋源自两种不同类型的锰基 kagome 平面,由沿 𝑐 轴的受挫磁交换驱动,并包含 Hubbard 𝑈。不相称 SS 的俯仰角和波矢量分别为 ∼89.3∘ 和 ∼ (0 0 0.248),与实验结果非常吻合。我们采用了一个由交换相互作用构建的有效模型哈密顿来捕捉实验观察到的两个不相称 SS 的非等价性,这也解释了反铁磁自旋交换与相关性导致的 FM-SS 交叉。通过计算拓扑不变量和贝里曲率曲线,我们进一步报告了在 YMn6Sn6 的不互称 SS 相中存在具有自旋轨道耦合的拓扑磁子。狄拉克磁子在 73 meV 的能谱中的位置与另一份实验报告相吻合。我们通过强调 YMn6Sn6 的实验特征来证明我们结果的准确性。
{"title":"Topological magnon in exchange frustration driven incommensurate spin spiral of kagome-latticeYMn6⁢Sn6","authors":"Banasree Sadhukhan, Anders Bergman, Patrik Thunström, Manuel Pereiro Lopez, Olle Eriksson, Anna Delin","doi":"10.1103/physrevb.110.174412","DOIUrl":"https://doi.org/10.1103/physrevb.110.174412","url":null,"abstract":"&lt;mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper Y upper M n 6 upper S n 6\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;Y&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.657em;\"&gt;M&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.657em;\"&gt;n&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;6&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;S&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;n&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;6&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; consists of two types of Mn-based kagome planes stacked along the &lt;mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"0\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑐&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;-axis having a complex magnetic interaction. We report a spin reconstruction in &lt;mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-s","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1