Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.184505
O. Kashuba, R.-P. Riwar
The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.
{"title":"Limitations of Caldeira-Leggett model for description of phase transitions in superconducting circuits","authors":"O. Kashuba, R.-P. Riwar","doi":"10.1103/physrevb.110.184505","DOIUrl":"https://doi.org/10.1103/physrevb.110.184505","url":null,"abstract":"The inherent complexity of system-bath interactions often requires making critical approximations, which we here show to have a radical influence on the renormalization group flow and the resulting phase diagram. Specifically, for the Caldeira-Leggett model Schmid and Bulgadaev (SB) predicted a phase transition, whose experimental verification in resistive superconducting circuits is currently hotly debated. For normal metal and Josephson junction array resistors, we show that the mapping to Caldeira-Leggett is only exact when applying approximations which decompactify the superconducting phase. We show that there exist treatments that retain phase compactness, which immediately lead to a phase diagram depending on four instead of two parameters. While we still find an SB-like transition in the transmon regime, the critical parameter is controlled exclusively by the capacitive coupling. In contrast, the Cooper pair box maps to the anisotropic Kondo model, where a pseudoferromagnetic phase is not allowed for regular electrostatic interactions.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"80 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.184402
J. Khatua, M. Gomilšek, Kwang-Yong Choi, P. Khuntia
Quantum magnets based on honeycomb lattices with a low coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogs, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in the context of capturing the classical limits of quantum phenomena. Herein, we report the crystal structure, magnetic susceptibility, specific heat, and electron spin resonance (ESR) measurements, complemented by <i>ab initio</i> density functional theory (DFT) calculations, on polycrystalline samples of <mjx-container ctxtmenu_counter="81" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="upper F e upper P 3 upper S i upper O 11" data-semantic-type="infixop"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">F</mjx-c><mjx-c noic="true" style="padding-top: 0.657em;">e</mjx-c><mjx-c style="padding-top: 0.657em;">P</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop," data-semantic-parent="7" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-owns="3 4" data-semantic-parent="7" data-semantic-role="unknown" data-semantic-type="subscript" space="2"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c style="padding-top: 0.673em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c noic="true" style="padding-top: 0.639em;">1</mjx-c><mjx-c style="padding-top: 0.639em;">1</mjx-c></mjx-mn></mjx-script></mjx-msu
{"title":"Magnetism and field-induced effects in the𝑆=52honeycomb lattice antiferromagnetFeP3SiO11","authors":"J. Khatua, M. Gomilšek, Kwang-Yong Choi, P. Khuntia","doi":"10.1103/physrevb.110.184402","DOIUrl":"https://doi.org/10.1103/physrevb.110.184402","url":null,"abstract":"Quantum magnets based on honeycomb lattices with a low coordination number offer a viable ground to realize exotic emergent quantum excitations and phenomena arising from the interplay between competing magnetic interactions, spin correlations, and spatial anisotropy. However, unlike their low-spin analogs, high-spin honeycomb lattice antiferromagnets have remained comparatively less explored in the context of capturing the classical limits of quantum phenomena. Herein, we report the crystal structure, magnetic susceptibility, specific heat, and electron spin resonance (ESR) measurements, complemented by <i>ab initio</i> density functional theory (DFT) calculations, on polycrystalline samples of <mjx-container ctxtmenu_counter=\"81\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper F e upper P 3 upper S i upper O 11\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">e</mjx-c><mjx-c style=\"padding-top: 0.657em;\">P</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c style=\"padding-top: 0.673em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c style=\"padding-top: 0.639em;\">1</mjx-c></mjx-mn></mjx-script></mjx-msu","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"244 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.205116
I. V. Solovyev, R. Ono, S. A. Nikolaev
The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling <i>and</i> break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet <mjx-container ctxtmenu_counter="652" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper V upper I 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.657em;">V</mjx-c><mjx-c style="padding-top: 0.657em;">I</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, employing for this analysis the realistic model derived from first-principles calculations for magnetic <mjx-container ctxtmenu_counter="653" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(3 0 2 1)"><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-owns="0 2 1" data-semantic-role="implicit" data-semantic-speech="3 d" data-semantic-type="infixop"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="integer" data-semantic-type="number"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop," data-semantic-parent="3" data-semantic-role="multiplicat
{"title":"Ferromagnetic ferroelectricity due to the Kugel-Khomskii mechanism of orbital ordering assisted by atomic Hund's second rule effects","authors":"I. V. Solovyev, R. Ono, S. A. Nikolaev","doi":"10.1103/physrevb.110.205116","DOIUrl":"https://doi.org/10.1103/physrevb.110.205116","url":null,"abstract":"The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling <i>and</i> break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet <mjx-container ctxtmenu_counter=\"652\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper I 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">V</mjx-c><mjx-c style=\"padding-top: 0.657em;\">I</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, employing for this analysis the realistic model derived from first-principles calculations for magnetic <mjx-container ctxtmenu_counter=\"653\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 2 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"3 d\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"3\" data-semantic-role=\"multiplicat","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"446 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.174105
Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen
The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which <i>ab initio</i> MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the <mjx-container ctxtmenu_counter="23" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(5 (2 0 1) 4 3)"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,3" data-semantic-content="4" data-semantic- data-semantic-owns="2 4 3" data-semantic-role="implicit" data-semantic-speech="normal r squared upper S upper C upper A upper N" data-semantic-type="infixop"><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="superscript"><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>r</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: 0.363em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop," data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unknown" data-semantic-type="identifier" space="2"><mjx-c noic="true" style="padding-top: 0.669em;">S</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">C</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">A</mjx-c><mjx-c style="padding-top: 0.669em;">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> potential energy landscape of <mjx-container ctxtmenu_counter="24" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper H f upper O 2" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.713em;">H</mjx-c><mjx-c noic="true" style="padding-top: 0.713em;">f</mjx-c><mjx-c style="padding-top: 0.713em;">O</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-sema
机器学习力场的进步为分子动力学(MD)模拟开辟了新的途径,可以模拟那些因ab initio MD过于耗费资源而无法进行的化合物,以及那些经典力场无法充分模拟的现象。在此,我们描述了一种神经网络力场,其参数化的目的是重现 HfO2 的 r2SCAN 势能图。基于等温-等压(𝑁𝑃𝑇)集合的自动可微分实现,以及灵活的单元波动,我们研究了 HfO2 的相空间。我们发现晶格常数和 X 射线衍射实验数据具有极佳的预测能力。在 2000 K 左右的温度下,可以清楚地看到单斜相的转变,这与现有的实验数据和以前的计算结果一致。晶格常数的另一个突然变化发生在 3000 K 左右。虽然由此产生的晶格常数更接近立方体,但它们表现出很小的四方畸变,而且体积没有相关变化。我们的研究表明,这种高温结构与现有的高温衍射数据一致。
{"title":"Neural network enabled molecular dynamics study ofHfO2phase transitions","authors":"Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen","doi":"10.1103/physrevb.110.174105","DOIUrl":"https://doi.org/10.1103/physrevb.110.174105","url":null,"abstract":"The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which <i>ab initio</i> MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal r squared upper S upper C upper A upper N\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>r</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">A</mjx-c><mjx-c style=\"padding-top: 0.669em;\">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> potential energy landscape of <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper H f upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">H</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">f</mjx-c><mjx-c style=\"padding-top: 0.713em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-sema","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"70 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.174411
Junji Fujimoto, Taiki Matsushita, Masao Ogata
We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced by a temperature gradient, employing the linear response theory with Luttinger's gravitational potential method. We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the spin current response to the gravitational potential. Our theory takes into account a contribution of the local equilibrium current modified by Luttinger's gravitational potential and is thus consistent with the thermodynamic principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Furthermore, we microscopically derive the spin-current version of Mott's formula, which associates the spin Nernst coefficient with the spin Hall conductivity. The spin-current version of the Středa formula is also discussed. To demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory is general and can therefore be extended to interacting electron systems, where Mott's formula no longer holds.
{"title":"Microscopic theory of spin Nernst effect","authors":"Junji Fujimoto, Taiki Matsushita, Masao Ogata","doi":"10.1103/physrevb.110.174411","DOIUrl":"https://doi.org/10.1103/physrevb.110.174411","url":null,"abstract":"We present the microscopic theory of the spin Nernst effect, which is a transverse spin current directly induced by a temperature gradient, employing the linear response theory with Luttinger's gravitational potential method. We consider a generic, noninteracting electron system with randomly distributed impurities and evaluate the spin current response to the gravitational potential. Our theory takes into account a contribution of the local equilibrium current modified by Luttinger's gravitational potential and is thus consistent with the thermodynamic principle that thermal responses should vanish at absolute zero. The Ward-Takahashi identities ensure that the spin Nernst current is well-behaved at low temperatures in any order of the random impurity potentials. Furthermore, we microscopically derive the spin-current version of Mott's formula, which associates the spin Nernst coefficient with the spin Hall conductivity. The spin-current version of the Středa formula is also discussed. To demonstrate these findings, the spin Nernst current of three-dimensional Dirac electrons is computed. Our theory is general and can therefore be extended to interacting electron systems, where Mott's formula no longer holds.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1103/physrevb.110.195120
P. Warzanowski, M. Magnaterra, Ch. J. Sahle, M. Moretti Sala, P. Becker, L. Bohatý, I. Císařová, G. Monaco, T. Lorenz, P. H. M. van Loosdrecht, J. van den Brink, M. Grüninger