首页 > 最新文献

Physical Review X最新文献

英文 中文
Neural Wave Functions for Superfluids 超流体的神经波函数
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-22 DOI: 10.1103/physrevx.14.021030
Wan Tong Lou, Halvard Sutterud, Gino Cassella, W. M. C. Foulkes, Johannes Knolle, David Pfau, James S. Spencer
Understanding superfluidity remains a major goal of condensed matter physics. Here, we tackle this challenge utilizing the recently developed fermionic neural network (FermiNet) wave function Ansatz [D. Pfau et al., Phys. Rev. Res. 2, 033429 (2020).] for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet Ansatz in studying the unitary Fermi gas and propose a simple modification based on the idea of an antisymmetric geminal power singlet (AGPs) wave function. The new AGPs FermiNet outperforms the original FermiNet significantly in paired systems, giving results which are more accurate than fixed-node diffusion Monte Carlo and are consistent with experiment. We prove mathematically that the new Ansatz, which differs from the original Ansatz only by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the original FermiNet: The use of a neural network removes the need for an underlying basis set; sand the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluid.
理解超流仍然是凝聚态物理学的一个主要目标。在这里,我们利用最近开发的费米神经网络(FermiNet)波函数解析[D. Pfau 等人,Phys. Rev. Res. 2, 033429 (2020)。我们研究了单元费米气体,这是一个具有强短程双体相互作用的系统,已知它具有超流体基态,但难以定量描述。我们证明了费米网反演在研究单位费米气体时的主要局限性,并提出了一种基于反不对称geminal power singlet(AGPs)波函数思想的简单修改。在成对系统中,新的 AGPs FermiNet 明显优于原始的 FermiNet,其结果比固定节点扩散蒙特卡洛更精确,并且与实验一致。我们用数学方法证明,尽管使用了更少的参数,但新的安萨茨与原始安萨茨的区别仅在于反对称方法,是对原始 FermiNet 架构的严格概括。我们的方法与最初的 FermiNet 有几个共同的优点:神经网络的使用消除了对底层基集的需要;在变异量子蒙特卡洛框架内,网络的灵活性产生了极其精确的结果,可以对任意基态期望值进行无偏估计。我们讨论了如何将这种方法扩展到研究其他超流体。
{"title":"Neural Wave Functions for Superfluids","authors":"Wan Tong Lou, Halvard Sutterud, Gino Cassella, W. M. C. Foulkes, Johannes Knolle, David Pfau, James S. Spencer","doi":"10.1103/physrevx.14.021030","DOIUrl":"https://doi.org/10.1103/physrevx.14.021030","url":null,"abstract":"Understanding superfluidity remains a major goal of condensed matter physics. Here, we tackle this challenge utilizing the recently developed fermionic neural network (FermiNet) wave function <i>Ansatz</i> [D. Pfau <i>et al.</i>, <span>Phys. Rev. Res.</span> <b>2</b>, 033429 (2020).] for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet <i>Ansatz</i> in studying the unitary Fermi gas and propose a simple modification based on the idea of an antisymmetric geminal power singlet (AGPs) wave function. The new AGPs FermiNet outperforms the original FermiNet significantly in paired systems, giving results which are more accurate than fixed-node diffusion Monte Carlo and are consistent with experiment. We prove mathematically that the new <i>Ansatz</i>, which differs from the original <i>Ansatz</i> only by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the original FermiNet: The use of a neural network removes the need for an underlying basis set; sand the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluid.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave-Function Network Description and Kolmogorov Complexity of Quantum Many-Body Systems 量子多体系统的波函数网络描述和柯尔莫哥洛夫复杂性
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-21 DOI: 10.1103/physrevx.14.021029
T. Mendes-Santos, M. Schmitt, A. Angelone, A. Rodriguez, P. Scholl, H. J. Williams, D. Barredo, T. Lahaye, A. Browaeys, M. Heyl, M. Dalmonte
Programmable quantum devices are now able to probe wave functions at unprecedented levels. This is based on the ability to project the many-body state of atom and qubit arrays onto a measurement basis which produces snapshots of the system wave function. Extracting and processing information from such observations remains, however, an open quest. One often resorts to analyzing low-order correlation functions—that is, discarding most of the available information content. Here, we introduce wave-function networks—a mathematical framework to describe wave-function snapshots based on network theory. For many-body systems, these networks can become scale-free—a mathematical structure that has found tremendous success and applications in a broad set of fields, ranging from biology to epidemics to Internet science. We demonstrate the potential of applying these techniques to quantum science by introducing protocols to extract the Kolmogorov complexity corresponding to the output of a quantum simulator and implementing tools for fully scalable cross-platform certification based on similarity tests between networks. We demonstrate the emergence of scale-free networks analyzing experimental data obtained with a Rydberg quantum simulator manipulating up to 100 atoms. Our approach illustrates how, upon crossing a phase transition, the simulator complexity decreases while correlation length increases—a direct signature of buildup of universal behavior in data space. Comparing experiments with numerical simulations, we achieve cross-certification at the wave-function level up to timescales of 4μs with a confidence level of 90% and determine experimental calibration intervals with unprecedented accuracy. Our framework is generically applicable to the output of quantum computers and simulators with in situ access to the system wave function and requires probing accuracy and repetition rates accessible to most currently available platforms.
可编程量子设备现在能够以前所未有的水平探测波函数。这种能力的基础是将原子和量子比特阵列的多体状态投射到测量基础上,从而产生系统波函数的快照。然而,从这些观测结果中提取和处理信息仍然是一个有待探索的课题。人们往往不得不分析低阶相关函数,即放弃大部分可用的信息内容。在此,我们介绍波函数网络--一种基于网络理论描述波函数快照的数学框架。对于多体系统来说,这些网络可以是无标度的--这种数学结构在从生物学到流行病学再到互联网科学等广泛领域都取得了巨大的成功和应用。我们通过引入协议来提取与量子模拟器输出相对应的柯尔莫哥洛夫复杂性,并实施基于网络间相似性测试的完全可扩展跨平台认证工具,展示了将这些技术应用于量子科学的潜力。我们通过分析利用雷德堡量子模拟器获得的多达 100 个原子的实验数据,展示了无标度网络的出现。我们的方法说明了在跨越相变时,模拟器的复杂性如何降低,而相关长度如何增加--这是在数据空间中建立通用行为的直接标志。通过比较实验与数值模拟,我们在波函数层面实现了高达 4 μs 时标的交叉验证,置信度高达 90%,并以前所未有的精度确定了实验校准区间。我们的框架一般适用于量子计算机和模拟器的输出,可就地获取系统波函数,并要求探测精度和重复率达到目前大多数可用平台的水平。
{"title":"Wave-Function Network Description and Kolmogorov Complexity of Quantum Many-Body Systems","authors":"T. Mendes-Santos, M. Schmitt, A. Angelone, A. Rodriguez, P. Scholl, H. J. Williams, D. Barredo, T. Lahaye, A. Browaeys, M. Heyl, M. Dalmonte","doi":"10.1103/physrevx.14.021029","DOIUrl":"https://doi.org/10.1103/physrevx.14.021029","url":null,"abstract":"Programmable quantum devices are now able to probe wave functions at unprecedented levels. This is based on the ability to project the many-body state of atom and qubit arrays onto a measurement basis which produces snapshots of the system wave function. Extracting and processing information from such observations remains, however, an open quest. One often resorts to analyzing low-order correlation functions—that is, discarding most of the available information content. Here, we introduce wave-function networks—a mathematical framework to describe wave-function snapshots based on network theory. For many-body systems, these networks can become scale-free—a mathematical structure that has found tremendous success and applications in a broad set of fields, ranging from biology to epidemics to Internet science. We demonstrate the potential of applying these techniques to quantum science by introducing protocols to extract the Kolmogorov complexity corresponding to the output of a quantum simulator and implementing tools for fully scalable cross-platform certification based on similarity tests between networks. We demonstrate the emergence of scale-free networks analyzing experimental data obtained with a Rydberg quantum simulator manipulating up to 100 atoms. Our approach illustrates how, upon crossing a phase transition, the simulator complexity decreases while correlation length increases—a direct signature of buildup of universal behavior in data space. Comparing experiments with numerical simulations, we achieve cross-certification at the wave-function level up to timescales of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi mathvariant=\"normal\">s</mi></mrow></math> with a confidence level of 90% and determine experimental calibration intervals with unprecedented accuracy. Our framework is generically applicable to the output of quantum computers and simulators with <i>in situ</i> access to the system wave function and requires probing accuracy and repetition rates accessible to most currently available platforms.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Coauthor! Coauthor! 社论:共同作者合著者
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-21 DOI: 10.1103/physrevx.14.020001
Randall D. Kamien, Daniel Ucko
DOI:https://doi.org/10.1103/PhysRevX.14.020001
DOI:https://doi.org/10.1103/PhysRevX.14.020001
{"title":"Editorial: Coauthor! Coauthor!","authors":"Randall D. Kamien, Daniel Ucko","doi":"10.1103/physrevx.14.020001","DOIUrl":"https://doi.org/10.1103/physrevx.14.020001","url":null,"abstract":"<span>DOI:</span><span>https://doi.org/10.1103/PhysRevX.14.020001</span>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization 边界驱动双自旋链的精确结果与资源效率型远程纠缠稳定
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-20 DOI: 10.1103/physrevx.14.021028
Andrew Lingenfelter, Mingxing Yao, Andrew Pocklington, Yu-Xin Wang (王语馨), Abdullah Irfan, Wolfgang Pfaff, Aashish A. Clerk
We derive an exact solution for the steady state of a setup where two XX-coupled N-qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative XX spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED.
我们推导出了两个 XX 耦合 N 量子自旋链(可能具有非均匀耦合)受边界拉比驱动和波导(双向或单向)产生的共同边界损耗影响时的稳定状态的精确解。在很宽的参数范围内,该系统具有纯纠缠稳态,为稳定远程多量子比特纠缠提供了一种无需使用挤压光的方法。我们的解决方案还提供了对单一边界驱动耗散 XX 自旋链的见解,该自旋链映射到一个相互作用的费米子模型。非平衡稳态表现出令人惊讶的相关效应,包括由动态受限跳变产生的空穴激元配对。我们的系统可以在许多实验平台上实现,包括电路 QED。
{"title":"Exact Results for a Boundary-Driven Double Spin Chain and Resource-Efficient Remote Entanglement Stabilization","authors":"Andrew Lingenfelter, Mingxing Yao, Andrew Pocklington, Yu-Xin Wang (王语馨), Abdullah Irfan, Wolfgang Pfaff, Aashish A. Clerk","doi":"10.1103/physrevx.14.021028","DOIUrl":"https://doi.org/10.1103/physrevx.14.021028","url":null,"abstract":"We derive an exact solution for the steady state of a setup where two <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi><mi>X</mi></math>-coupled <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>-qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi><mi>X</mi></math> spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jamming Memory into Acoustically Trained Dense Suspensions under Shear 在剪切力作用下将记忆植入声学训练致密悬架
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-14 DOI: 10.1103/physrevx.14.021027
Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen
Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.
远离平衡状态的系统往往会保留其加工历史的结构记忆。在某些情况下,这种记忆会显著改变材料的反应。例如,结晶金属的加工硬化可以改变硬度、屈服强度和抗拉强度,从而防止灾难性的破坏。在流动系统中,结构可能会发生更大的变化,而加工历史的记忆是否也能在流动系统中得到类似的利用,人们对此还知之甚少。在此,我们展示了嵌入这种有用记忆的可行途径。我们的研究表明,将剪切致密悬浮液暴露在不同功率的声学扰动下,可以极大地调整剪切悬浮液的粘度和底层结构。我们发现,对于足够致密的悬浮液来说,在移除声学扰动后,悬浮液会发生剪切堵塞,来自最大压缩轴和最大扩展轴的剪切应力会反映或 "记住 "声学训练。由于这两个正交轴对总剪应力的贡献是对立的,因此有可能以令人惊讶的方式调整由此产生的悬浮响应。例如,我们发现不同训练的剪切悬浮液会表现出:(1)对相同声学扰动的敏感性不同;(2)剪切反转时瞬时粘度的数量级变化;以及(3)甚至在剪切停止时剪切应力的量级会增加。我们通过这些例子来解释每种行为的基本机制。然后,为了说明这种方法在控制悬浮特性方面的威力,我们演示了通过声学训练可以剪切干扰远低于剪切干扰阈值的流动状态。总之,我们的工作为在致密悬浮液中利用声学诱导记忆生成快速、广泛的可调材料铺平了道路。
{"title":"Jamming Memory into Acoustically Trained Dense Suspensions under Shear","authors":"Edward Y. X. Ong, Anna R. Barth, Navneet Singh, Meera Ramaswamy, Abhishek Shetty, Bulbul Chakraborty, James P. Sethna, Itai Cohen","doi":"10.1103/physrevx.14.021027","DOIUrl":"https://doi.org/10.1103/physrevx.14.021027","url":null,"abstract":"Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that increases in magnitude upon shear cessation. We work through these examples to explain the underlying mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge-4e and Charge-6e Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices 卡戈米超导体环形器件中的电荷-4e 和电荷-6e 通量量化与高电荷超导性
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-13 DOI: 10.1103/physrevx.14.021025
Jun Ge, Pinyuan Wang, Ying Xing, Qiangwei Yin, Anqi Wang, Jie Shen, Hechang Lei, Ziqiang Wang, Jian Wang
The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known h/2e flux quantization is considered strong evidence for the existence of charge-2e, two-electron Cooper pairs. Here we report evidence for multicharge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor CsV3Sb5. We perform systematic magnetotransport measurements and observe unprecedented quantization of magnetic flux in units of h/4e and h/6e in magnetoresistance oscillations. Specifically, at low temperatures, magnetoresistance oscillations with period h/2e are detected, as expected from the flux quantization for charge-2e superconductivity. We find that the h/2e oscillations are suppressed and replaced by resistance oscillations with h/4e periodicity when the temperature is increased. Increasing the temperature further suppresses the h/4e oscillations, and robust resistance oscillations with h/6e periodicity emerge as evidence for charge-6e flux quantization. Our observations provide the first experimental evidence for the existence of multicharge flux quanta and emergent quantum matter exhibiting higher-charge superconductivity in the strongly fluctuating region above the charge-2e Cooper pair condensate, revealing new insights into the intertwined and vestigial electronic order in kagome superconductors.
磁通量化是超导体中电子配对的一个关键指标。例如,众所周知的 h/2e 磁通量化被认为是电荷-2e、双电子库珀对存在的有力证据。在这里,我们报告了使用过渡金属卡戈米超导体 CsV3Sb5 制造的介观环形器件中存在多电荷磁通量化的证据。我们进行了系统的磁传输测量,并在磁阻振荡中观察到以 h/4e 和 h/6e 为单位的前所未有的磁通量子化。具体来说,在低温条件下,我们检测到了周期为 h/2e 的磁阻振荡,这是电荷-2e 超导的磁通量化所预期的。我们发现,当温度升高时,h/2e 振荡被抑制,取而代之的是周期为 h/4e 的电阻振荡。温度升高会进一步抑制 h/4e 振荡,并出现具有 h/6e 周期性的强电阻振荡,这是电荷-6e 通量量子化的证据。我们的观测首次提供了实验证据,证明在电荷-2e 库珀对凝聚体上方的强波动区域存在多电荷通量量子和表现出较高电荷超导性的新兴量子物质,揭示了神户超导体中交织和残留电子秩序的新见解。
{"title":"Charge-4e and Charge-6e Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices","authors":"Jun Ge, Pinyuan Wang, Ying Xing, Qiangwei Yin, Anqi Wang, Jie Shen, Hechang Lei, Ziqiang Wang, Jian Wang","doi":"10.1103/physrevx.14.021025","DOIUrl":"https://doi.org/10.1103/physrevx.14.021025","url":null,"abstract":"The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> flux quantization is considered strong evidence for the existence of charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math>, two-electron Cooper pairs. Here we report evidence for multicharge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>CsV</mi></mrow><mn>3</mn></msub><msub><mrow><mi>Sb</mi></mrow><mn>5</mn></msub></mrow></math>. We perform systematic magnetotransport measurements and observe unprecedented quantization of magnetic flux in units of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>6</mn><mi>e</mi></mrow></math> in magnetoresistance oscillations. Specifically, at low temperatures, magnetoresistance oscillations with period <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> are detected, as expected from the flux quantization for charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math> superconductivity. We find that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>2</mn><mi>e</mi></mrow></math> oscillations are suppressed and replaced by resistance oscillations with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> periodicity when the temperature is increased. Increasing the temperature further suppresses the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>4</mn><mi>e</mi></mrow></math> oscillations, and robust resistance oscillations with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>h</mi><mo>/</mo><mn>6</mn><mi>e</mi></mrow></math> periodicity emerge as evidence for charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><mi>e</mi></mrow></math> flux quantization. Our observations provide the first experimental evidence for the existence of multicharge flux quanta and emergent quantum matter exhibiting higher-charge superconductivity in the strongly fluctuating region above the charge-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn><mi>e</mi></mrow></math> Cooper pair condensate, revealing new insights into the intertwined and vestigial electronic order in kagome superconductors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of Computations with Absolute Irreversibility, Unidirectional Transitions, and Stochastic Computation Times 具有绝对不可逆、单向转换和随机计算时间的计算热力学
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-13 DOI: 10.1103/physrevx.14.021026
Gonzalo Manzano, Gülce Kardeş, Édgar Roldán, David H. Wolpert
Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.
发展计算的热力学理论是非平衡热力学与计算机科学交界处的一项具有挑战性的任务。尤其是,这项任务需要处理诸如随机停止时间、单向(可能是确定性)转换和受限初始条件等现实世界计算机中常见的难题。在这里,我们提出了一个框架,通过将非平衡热力学的马氏理论扩展到一般非平稳马尔可夫过程,包括那些细节平衡被打破和/或绝对不可逆的过程,来解决所有这些难题。我们推导出了几种通用波动关系和类似第二定律的不等式,它们为与任何周期性过程--尤其是当前所有数字计算所依赖的周期性过程--相关的内在耗散(失配成本)提供了下限和上限。重要的是,即使进程具有随机停止时间,这些界限也适用,许多计算机器就是如此。我们通过对处理比特串的确定性有限自动机(理论计算机科学的基本计算模型之一)进行详尽的数值模拟来说明我们的结果。我们还从热力学量的角度为确定性有限自动机接受给定长度单词的概率提供了通用等式和不等式,并概述了计算机科学与随机重置之间的联系。我们的结果虽然是在计算的背景下产生的,但适用范围更广。
{"title":"Thermodynamics of Computations with Absolute Irreversibility, Unidirectional Transitions, and Stochastic Computation Times","authors":"Gonzalo Manzano, Gülce Kardeş, Édgar Roldán, David H. Wolpert","doi":"10.1103/physrevx.14.021026","DOIUrl":"https://doi.org/10.1103/physrevx.14.021026","url":null,"abstract":"Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Lived Circular Rydberg Qubits of Alkaline-Earth Atoms in Optical Tweezers 光学镊子中长寿命的碱土原子环形里德伯质子
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-03 DOI: 10.1103/physrevx.14.021024
C. Hölzl, A. Götzelmann, E. Pultinevicius, M. Wirth, F. Meinert
Coherence time and gate fidelities in Rydberg atom quantum simulators and computers are fundamentally limited by the Rydberg state lifetime. Circular Rydberg states are highly promising candidates to overcome this limitation by orders of magnitude, as they can be effectively protected from decay due to their maximum angular momentum. We report the first realization of alkaline-earth circular Rydberg atoms trapped in optical tweezers, which provide unique and novel control possibilities due to the optically active ionic core. Specifically, we demonstrate creation of very high-n (n=79) circular states of Sr88. We measure lifetimes as long as 2.55 ms at room temperature, which are achieved via cavity-assisted suppression of black-body radiation. We show coherent control of a microwave qubit encoded in circular states of nearby manifolds, and characterize the qubit coherence time via Ramsey and spin-echo spectroscopy. Finally, circular-state tweezer trapping exploiting the Sr+ core polarizability is quantified via measurements of the trap-induced light shift on the qubit. Our work opens routes for quantum simulations with circular Rydberg states of divalent atoms, exploiting the emergent toolbox associated with the optically active core ion.
雷德贝格原子量子模拟器和计算机的相干时间和栅极保真度从根本上受到雷德贝格态寿命的限制。圆雷德贝格态具有最大角动量,可以有效防止衰变,因此很有希望在数量级上克服这一限制。我们首次在光镊中实现了碱土环状里德伯原子的捕获,其光学活性离子核心提供了独特而新颖的控制可能性。具体来说,我们展示了 Sr88 的超高 n(n=79)圆态的产生。我们测量了室温下长达 2.55 毫秒的寿命,这是通过空腔辅助抑制黑体辐射实现的。我们展示了对附近流形的圆环态编码的微波量子比特的相干控制,并通过拉姆齐和自旋回波光谱测定了量子比特的相干时间。最后,通过测量陷阱诱导的量子比特光偏移,量化了利用 Sr+ 内核极化性的圆态镊子陷阱。我们的工作开辟了利用二价原子的圆形雷德贝格态进行量子模拟的途径,利用了与光学活性核心离子相关的新兴工具箱。
{"title":"Long-Lived Circular Rydberg Qubits of Alkaline-Earth Atoms in Optical Tweezers","authors":"C. Hölzl, A. Götzelmann, E. Pultinevicius, M. Wirth, F. Meinert","doi":"10.1103/physrevx.14.021024","DOIUrl":"https://doi.org/10.1103/physrevx.14.021024","url":null,"abstract":"Coherence time and gate fidelities in Rydberg atom quantum simulators and computers are fundamentally limited by the Rydberg state lifetime. Circular Rydberg states are highly promising candidates to overcome this limitation by orders of magnitude, as they can be effectively protected from decay due to their maximum angular momentum. We report the first realization of alkaline-earth circular Rydberg atoms trapped in optical tweezers, which provide unique and novel control possibilities due to the optically active ionic core. Specifically, we demonstrate creation of very high-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi><mo>=</mo><mn>79</mn></math>) circular states of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mrow><mi>Sr</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>88</mn></mrow></mmultiscripts></mrow></math>. We measure lifetimes as long as 2.55 ms at room temperature, which are achieved via cavity-assisted suppression of black-body radiation. We show coherent control of a microwave qubit encoded in circular states of nearby manifolds, and characterize the qubit coherence time via Ramsey and spin-echo spectroscopy. Finally, circular-state tweezer trapping exploiting the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msup><mrow><mi>Sr</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math> core polarizability is quantified via measurements of the trap-induced light shift on the qubit. Our work opens routes for quantum simulations with circular Rydberg states of divalent atoms, exploiting the emergent toolbox associated with the optically active core ion.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing the Quantumness of Gravity without Entanglement 测试无纠缠引力的量子性
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-01 DOI: 10.1103/physrevx.14.021022
Ludovico Lami, Julen S. Pedernales, Martin B. Plenio
Given a unitary evolution U on a multipartite quantum system and an ensemble of initial states, how well can U be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity—what we call an “LOCC inequality.” We then apply our findings to the fundamental setting where U implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the nonclassicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialized in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalized states of motion nor the detection of entanglement, which is never created at any point in the process.
给定一个多方量子系统上的单元演化U和一个初始状态集合,那么通过对该集合进行局部运算和经典通信(LOCC),可以在多大程度上模拟U呢?为了回答这个问题,我们建立了一个通用的、可高效计算的最大 LOCC 模拟保真度上限--我们称之为 "LOCC 不等式"。然后,我们将研究结果应用于U在引力相互作用系统上实现量子牛顿哈密顿的基本环境。违反我们的LOCC不等式可以排除基本演化的LOCC性,从而确定引力动力学的非经典性,它不再能用局部经典场来解释。作为该方案的一个突出应用,我们研究了初始化为相干态的量子谐振子系统,该系统遵循正态分布,并通过牛顿引力相互作用,我们还讨论了扭转垂体的可能物理实现。我们的主要技术贡献之一是分析计算了这一系列系统的上述 LOCC 不等式。与现有的基于引力介导的纠缠检测方法不同,我们的建议仅适用于相干态,因此它既不需要产生基本脱域的运动态,也不需要检测纠缠,因为纠缠在这一过程的任何时候都不会产生。
{"title":"Testing the Quantumness of Gravity without Entanglement","authors":"Ludovico Lami, Julen S. Pedernales, Martin B. Plenio","doi":"10.1103/physrevx.14.021022","DOIUrl":"https://doi.org/10.1103/physrevx.14.021022","url":null,"abstract":"Given a unitary evolution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> on a multipartite quantum system and an ensemble of initial states, how well can <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity—what we call an “LOCC inequality.” We then apply our findings to the fundamental setting where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math> implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the nonclassicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialized in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalized states of motion nor the detection of entanglement, which is never created at any point in the process.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Compression of Electron-Phonon Interactions 数据驱动的电子-鹭鸶相互作用压缩
IF 12.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-01 DOI: 10.1103/physrevx.14.021023
Yao Luo, Dhruv Desai, Benjamin K. Chang, Jinsoo Park, Marco Bernardi
First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (eph) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For eph interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress eph interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to eph interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of eph interactions. Furthermore, they accelerate state-of-the-art first-principles eph calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of eph interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.
近年来,材料中电子相互作用的第一性原理计算进展迅速,电子-声子(e-ph)相互作用就是一个典型的例子。然而,这些技术使用大型矩阵在密集动量网格上对相互作用进行编码,从而降低了计算效率,模糊了可解释性。对于 e-ph 相互作用,现有的插值技术利用了实空间的局部性,但数据的高维度仍然是平衡成本和精度的瓶颈。在这里,我们展示了一种基于奇异值分解(SVD)的高效方法来压缩电子相位相互作用,奇异值分解是一种广泛使用的矩阵和图像压缩技术。利用(无)约束的 SVD 方法,我们准确地预测了与 e-ph 相互作用相关的材料特性--包括电荷迁移率、自旋弛豫时间、带重正化和超导临界温度--同时只使用了一小部分(1%-2%)的相互作用数据。这些发现揭示了电子ph相互作用隐藏的低维性质。此外,它们还在不牺牲精度的情况下,将最先进的第一原理 e-ph 计算速度提高了约 2 个数量级。我们对 e-ph 相互作用的帕累托最优参数化很容易推广到电子-电子和电子-缺陷相互作用以及其他耦合,从而推进凝聚态物质的定量研究。
{"title":"Data-Driven Compression of Electron-Phonon Interactions","authors":"Yao Luo, Dhruv Desai, Benjamin K. Chang, Jinsoo Park, Marco Bernardi","doi":"10.1103/physrevx.14.021023","DOIUrl":"https://doi.org/10.1103/physrevx.14.021023","url":null,"abstract":"First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math>) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions. Furthermore, they accelerate state-of-the-art first-principles <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mtext>−</mtext><mrow><mi>ph</mi></mrow></mrow></math> interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1