首页 > 最新文献

Physiologia plantarum最新文献

英文 中文
Effects of microplastics and salt single or combined stresses on growth and physiological responses of maize seedlings.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70106
Xiaodong Liu, Zongshuai Wang, Guiyang Shi, Yingbo Gao, Hui Zhang, Kaichang Liu

Plastic film (mulch film) is widely used in saline and alkaline soils because it can effectively reduce salt stress damage. However, it results in the accumulation of microplastics (MPs) in the soil, which pose a threat to crop growth and production. This study investigates the effects of 50 mg l-1 MPs and 100 mM sodium chloride (NaCl), individually or in combination, on the growth and physiological characteristics of maize (Zea mays) seedlings. The results demonstrated that compared to the control, MPs and NaCl single or combined stress reduced seedling biomass and water content, and the combined stress was more serious. Stress significantly reduced N and K contents in leaves, and Na content under combined stress was lower than under single NaCl stress. Compared to single stress, the combined stress further enhanced oxidative damage by increasing H2O2 and MDA content, a disrupted chloroplast structure, and reduced chlorophyll content, ultimately leading to a decline in chlorophyll fluorescence parameters and photosynthetic efficiency. Single MPs or NaCl stress led to the accumulation of proline, soluble proteins, and soluble sugars, while the combined stresses further increased the content of these osmotic substances in plants. Moreover, single or combined stress increased the activity of CAT, POD, SOD and the content of AsA and GsH. Collectively, NaCl and MPs single or combined stress exert notable toxic effects on maize seedling growth. Although the combined stress inhibited seedling growth more than the single stress, the combined stress of MPs and NaCl showed antagonistic effects. These findings underscore the importance of assessing the ecological risks posed by the combined effects of MPs and salt stresses on maize plants.

{"title":"Effects of microplastics and salt single or combined stresses on growth and physiological responses of maize seedlings.","authors":"Xiaodong Liu, Zongshuai Wang, Guiyang Shi, Yingbo Gao, Hui Zhang, Kaichang Liu","doi":"10.1111/ppl.70106","DOIUrl":"https://doi.org/10.1111/ppl.70106","url":null,"abstract":"<p><p>Plastic film (mulch film) is widely used in saline and alkaline soils because it can effectively reduce salt stress damage. However, it results in the accumulation of microplastics (MPs) in the soil, which pose a threat to crop growth and production. This study investigates the effects of 50 mg l<sup>-1</sup> MPs and 100 mM sodium chloride (NaCl), individually or in combination, on the growth and physiological characteristics of maize (Zea mays) seedlings. The results demonstrated that compared to the control, MPs and NaCl single or combined stress reduced seedling biomass and water content, and the combined stress was more serious. Stress significantly reduced N and K contents in leaves, and Na content under combined stress was lower than under single NaCl stress. Compared to single stress, the combined stress further enhanced oxidative damage by increasing H<sub>2</sub>O<sub>2</sub> and MDA content, a disrupted chloroplast structure, and reduced chlorophyll content, ultimately leading to a decline in chlorophyll fluorescence parameters and photosynthetic efficiency. Single MPs or NaCl stress led to the accumulation of proline, soluble proteins, and soluble sugars, while the combined stresses further increased the content of these osmotic substances in plants. Moreover, single or combined stress increased the activity of CAT, POD, SOD and the content of AsA and GsH. Collectively, NaCl and MPs single or combined stress exert notable toxic effects on maize seedling growth. Although the combined stress inhibited seedling growth more than the single stress, the combined stress of MPs and NaCl showed antagonistic effects. These findings underscore the importance of assessing the ecological risks posed by the combined effects of MPs and salt stresses on maize plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70106"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methionine adenosyltransferase MAT3 positively regulates pear pollen tube growth, possibly through interaction with pectin lyase-like protein PLL1.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70122
Xiaoxuan Zhu, Ting Zhang, Chao Tang, Zhiqi Wang, Lin Guo, Peng Wang, Shaoling Zhang, Juyou Wu

Methionine adenosyltransferase (MAT) is the only enzyme that synthesises S-adenosylmethionine (SAM) from ATP and methionine in organisms. While MAT has been extensively studied in plant development and responses to abiotic stress, its role in plant fertilization, particularly in pear pollen tube growth, has been scarcely researched. Here, we demonstrate that the homologous gene of AtMAT3 in pear, PbrMAT3, is positively involved in pear pollen tube elongation. PbrMAT3 is predominantly expressed in pear pollen. Transient knockdown of PbrMAT3 inhibits pollen tube growth. Ethionine, a toxic methionine analogue, suppressed pollen tube growth in control samples but had no inhibitory effect on PbrMAT3-knockdown pollen tubes, suggesting increased methionine accumulation in the latter. However, this accumulation is not responsible for the observed growth inhibition. PbrMAT3 interacts with a pectin lyase-like protein, PbrPLL1, both in vivo and in vitro. Transient knockdown of PbrPLL1 promotes pollen tube growth, suggesting its negative role in pear pollen tube elongation. Additionally, the pectate lyase activity of the pear pollen tube was increased when PbrMAT3 was knocked down. Thus, the inhibition of pollen tube growth due to PbrMAT3 knockdown is not caused by methionine accumulation but may be mediated by PbrPLL1. This study provides new insight into the relationship between S-adenosylmethionine synthesis and pollen tube growth.

{"title":"Methionine adenosyltransferase MAT3 positively regulates pear pollen tube growth, possibly through interaction with pectin lyase-like protein PLL1.","authors":"Xiaoxuan Zhu, Ting Zhang, Chao Tang, Zhiqi Wang, Lin Guo, Peng Wang, Shaoling Zhang, Juyou Wu","doi":"10.1111/ppl.70122","DOIUrl":"https://doi.org/10.1111/ppl.70122","url":null,"abstract":"<p><p>Methionine adenosyltransferase (MAT) is the only enzyme that synthesises S-adenosylmethionine (SAM) from ATP and methionine in organisms. While MAT has been extensively studied in plant development and responses to abiotic stress, its role in plant fertilization, particularly in pear pollen tube growth, has been scarcely researched. Here, we demonstrate that the homologous gene of AtMAT3 in pear, PbrMAT3, is positively involved in pear pollen tube elongation. PbrMAT3 is predominantly expressed in pear pollen. Transient knockdown of PbrMAT3 inhibits pollen tube growth. Ethionine, a toxic methionine analogue, suppressed pollen tube growth in control samples but had no inhibitory effect on PbrMAT3-knockdown pollen tubes, suggesting increased methionine accumulation in the latter. However, this accumulation is not responsible for the observed growth inhibition. PbrMAT3 interacts with a pectin lyase-like protein, PbrPLL1, both in vivo and in vitro. Transient knockdown of PbrPLL1 promotes pollen tube growth, suggesting its negative role in pear pollen tube elongation. Additionally, the pectate lyase activity of the pear pollen tube was increased when PbrMAT3 was knocked down. Thus, the inhibition of pollen tube growth due to PbrMAT3 knockdown is not caused by methionine accumulation but may be mediated by PbrPLL1. This study provides new insight into the relationship between S-adenosylmethionine synthesis and pollen tube growth.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70122"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The promotive and repressive effects of exogenous H2O2 on Arabidopsis seed germination and seedling establishment depend on application dose.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70098
Yakong Wang, Xiaohong Liu, Xiangyang Sun, Xiaonan Mao, Zhaoye Wang, Jun Peng, Zuoren Yang, Faiza Ali, Zhi Wang, Fuguang Li

Hydrogen peroxide (H2O2) displays significant and dual effects on seed germination and seedling development, depending on the application dosage. However, the definition of H2O2 thresholds and the mechanisms underlying the dual actions in Arabidopsis seed germination and seedling development are not yet clear. Here, we analyzed the Arabidopsis seed germination profiles in response to different concentrations of exogenous H2O2 and found that 2 mM functions as the key threshold, above this threshold, both seed germination and seedling establishment were gradually inhibited. By RNA-seq analysis and function verification, we identified pathways of abscisic acid (ABA) signalling, seed post-ripening, energy metabolism, ROS homeostasis, and cell wall loosening play positive roles in seed germination and seedling establishment downstream of the H2O2 signalling. Further physio-chemical approaches revealed that exogenous H2O2 affected the accumulation and distribution of O2 •- and H2O2 in embryonic tissues by regulating the tissue-specific expression of SDH2-3, RHD2, and PRXs. Collectively, we found that germination rate and aerial growth were positively correlated with endogenous H2O2 content and root length was positively correlated with O2 •- accumulation, demonstrating that different ROS signals played specific functions in different tissues and development processes. On the other hand, excessive H2O2 (10 mM) represses these two processes for radicle cell damage caused by oxidation stress. Finally, we put forward the mechanism model of the dual effects of exogenous H2O2 on seed germination and seedling establishment.

{"title":"The promotive and repressive effects of exogenous H<sub>2</sub>O<sub>2</sub> on Arabidopsis seed germination and seedling establishment depend on application dose.","authors":"Yakong Wang, Xiaohong Liu, Xiangyang Sun, Xiaonan Mao, Zhaoye Wang, Jun Peng, Zuoren Yang, Faiza Ali, Zhi Wang, Fuguang Li","doi":"10.1111/ppl.70098","DOIUrl":"https://doi.org/10.1111/ppl.70098","url":null,"abstract":"<p><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) displays significant and dual effects on seed germination and seedling development, depending on the application dosage. However, the definition of H<sub>2</sub>O<sub>2</sub> thresholds and the mechanisms underlying the dual actions in Arabidopsis seed germination and seedling development are not yet clear. Here, we analyzed the Arabidopsis seed germination profiles in response to different concentrations of exogenous H<sub>2</sub>O<sub>2</sub> and found that 2 mM functions as the key threshold, above this threshold, both seed germination and seedling establishment were gradually inhibited. By RNA-seq analysis and function verification, we identified pathways of abscisic acid (ABA) signalling, seed post-ripening, energy metabolism, ROS homeostasis, and cell wall loosening play positive roles in seed germination and seedling establishment downstream of the H<sub>2</sub>O<sub>2</sub> signalling. Further physio-chemical approaches revealed that exogenous H<sub>2</sub>O<sub>2</sub> affected the accumulation and distribution of O<sub>2</sub> <sup>•-</sup> and H<sub>2</sub>O<sub>2</sub> in embryonic tissues by regulating the tissue-specific expression of SDH2-3, RHD2, and PRXs. Collectively, we found that germination rate and aerial growth were positively correlated with endogenous H<sub>2</sub>O<sub>2</sub> content and root length was positively correlated with O<sub>2</sub> <sup>•-</sup> accumulation, demonstrating that different ROS signals played specific functions in different tissues and development processes. On the other hand, excessive H<sub>2</sub>O<sub>2</sub> (10 mM) represses these two processes for radicle cell damage caused by oxidation stress. Finally, we put forward the mechanism model of the dual effects of exogenous H<sub>2</sub>O<sub>2</sub> on seed germination and seedling establishment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70098"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70121
Ming Luo, Xinyao Li, Jingyi Zhang, Yuhuan Miao, Dahui Liu

Pinellia ternata (Thunb.) Breit is a member of the Araceae family and is globally distributed. The dry tuber has been used as a traditional Chinese medicine for over 2,000 years. With agricultural development, the harm of soft rot to P. ternata is an increasing problem. The lack of germplasm resources resistant to soft rot leads to less research on resistance mechanisms. In our study, we screened disease-resistant P. ternata P-1 and disease-susceptible P. ternata P-4 for the first time. Then, the infection of soft rot for 0, 24, and 48 hours was performed, and a de novo transcriptome analysis explored key genes associated with soft rot resistance. A total of 260,169 unigenes were identified and differentially expressed gene analysis was conducted. In total, 33 C3H-type ZFP genes were differentially expressed under Pectobacterium carotovorum infection. Transient expression of ZFP2-like (Cluster-5189.85444) resulted in a twofold increase at 24 hour post infection (hpi) and a threefold increase at 48 hpi in P-1 with soft rot infection, but no significant difference at P-4 enhanced the resistance of Nicotiana benthamiana to soft rot. Stable overexpression in P. ternata with a 2 ~ 11-fold increase in gene expression and reduced the lesion size from 6 mm to 2 ~ 4 mm at 24 hpi, demonstrating increased resistance to P. carotovorum. These findings indicated the ZFP2-like gene plays a pivotal role in soft rot resistance, enriches genetic data on disease resistance in P. ternata, and contributes to breed selection and improvement.

{"title":"The C3H gene PtZFP2-like in Pinellia ternata acts as a positive regulator of the resistance to soft rot caused by Pectobacterium carotovorum.","authors":"Ming Luo, Xinyao Li, Jingyi Zhang, Yuhuan Miao, Dahui Liu","doi":"10.1111/ppl.70121","DOIUrl":"10.1111/ppl.70121","url":null,"abstract":"<p><p>Pinellia ternata (Thunb.) Breit is a member of the Araceae family and is globally distributed. The dry tuber has been used as a traditional Chinese medicine for over 2,000 years. With agricultural development, the harm of soft rot to P. ternata is an increasing problem. The lack of germplasm resources resistant to soft rot leads to less research on resistance mechanisms. In our study, we screened disease-resistant P. ternata P-1 and disease-susceptible P. ternata P-4 for the first time. Then, the infection of soft rot for 0, 24, and 48 hours was performed, and a de novo transcriptome analysis explored key genes associated with soft rot resistance. A total of 260,169 unigenes were identified and differentially expressed gene analysis was conducted. In total, 33 C3H-type ZFP genes were differentially expressed under Pectobacterium carotovorum infection. Transient expression of ZFP2-like (Cluster-5189.85444) resulted in a twofold increase at 24 hour post infection (hpi) and a threefold increase at 48 hpi in P-1 with soft rot infection, but no significant difference at P-4 enhanced the resistance of Nicotiana benthamiana to soft rot. Stable overexpression in P. ternata with a 2 ~ 11-fold increase in gene expression and reduced the lesion size from 6 mm to 2 ~ 4 mm at 24 hpi, demonstrating increased resistance to P. carotovorum. These findings indicated the ZFP2-like gene plays a pivotal role in soft rot resistance, enriches genetic data on disease resistance in P. ternata, and contributes to breed selection and improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70121"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70109
Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra

Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H2S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H2S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H2S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H2S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.

{"title":"Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seedlings.","authors":"Ritu Kumari, M Nasir Khan, Zubair Ahmad Parrey, Preedhi Kapoor, Bilal Ahmad Mir, Tuba Taziun, Parul Parihar, Gurmeen Rakhra","doi":"10.1111/ppl.70109","DOIUrl":"https://doi.org/10.1111/ppl.70109","url":null,"abstract":"<p><p>Salinity stress poses a significant threat to plant growth and agricultural productivity, affecting millions of hectares of land worldwide. The adverse effects of salt toxicity, primarily caused by high levels of sodium chloride in soil and water, disrupt essential physiological processes in plants, leading to reduced yields and degraded soil quality. The present study thoroughly investigated the potential involvement of hydrogen sulphide (H<sub>2</sub>S) and nitric oxide (NO) in facilitating salt stress tolerance in cucumbers. In this investigation, NaHS (sodium hydrogen sulfide), which is the donor of H<sub>2</sub>S, and SNP (sodium nitroprusside), which is the donor of NO, were used as treatments for cucumber seedlings exposed to salt stress. Additionally, L-NAME (N-nitro-L-arginine: 100 μM) and cPTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), which are inhibitors and scavengers of NO respectively, were used to verify the involvement of NO in the presence of salinity. NaHS and SNP supplementation significantly boosted fresh weight, dry weight, plant height, and chlorophyll content, promoting growth under salt stress. These treatments raised endogenous H<sub>2</sub>S and NO levels, upregulating antioxidative enzymes like SOD, CAT, APX, GR, GPX, and GSTs. This response reduced oxidative damages by lowering reactive oxygen species (ROS) and lipid peroxidation. The combined application of NaHS and SNP under salt stress offers a promising and cost-effective strategy to improve plant resilience to salinity, reduce oxidative stress, and ultimately enhance crop productivity. These findings provide important insights into the potential use of H<sub>2</sub>S and NO donors for sustaining agricultural production in saline environments, addressing a critical global challenge for food security.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70109"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143459273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70092
Dongfa Wang, Baolin Zhao, Xuan Zhou, Shaoli Zhou, Liling Yang, Yawen Mao, Quanzi Bai, Weiyue Zhao, Mingzhu Sun, Mingli Liu, Zhijia Gu, Liangliang He, Jianghua Chen

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC). Recent studies have highlighted LFY genes' role in regulating leaflet initiation across legumes. The LFY functions in leaf development are well understood in IRLC legumes but remain unclear in non-IRLC legumes. Soybean, a major crop belonging to non-IRLC legumes, has limited research on the trifoliate leaf morphogenesis. Here, we comprehensively analyzed soybean trifoliate leaf development and characterized two GmLFY gene copies, GmLFYa and GmLFYb, in compound leaf morphogenesis. Analyzing the loss-of-function mutants revealed that Gmlfya displayed a low frequency of simple-like leaves, while the Gmlfyb showed no visible phenotype. However, the Gmlfya Gmlfyb double mutant predominantly displayed simple-like leaves. Additionally, mutations in two genes also affect floral development: each single mutant exhibited slightly deformed floral organs, while double mutant produced inflorescence-like structures. The transformation from floral meristems to inflorescence-like structures is similar to lfy mutant in Arabidopsis but quite different from M. truncatula and L. japonicus. These findings suggest that the two GmLFY genes in soybean collaboratively regulate both compound leaf and flower morphogenesis. Our study not only creates foundational mutant materials for future research on leaf and flower development in soybean but also reinforces the role of LFY orthologs as master regulators in compound leaf morphogenesis across a broader range of legume taxa than previously recognized.

{"title":"Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.","authors":"Dongfa Wang, Baolin Zhao, Xuan Zhou, Shaoli Zhou, Liling Yang, Yawen Mao, Quanzi Bai, Weiyue Zhao, Mingzhu Sun, Mingli Liu, Zhijia Gu, Liangliang He, Jianghua Chen","doi":"10.1111/ppl.70092","DOIUrl":"https://doi.org/10.1111/ppl.70092","url":null,"abstract":"<p><p>Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC). Recent studies have highlighted LFY genes' role in regulating leaflet initiation across legumes. The LFY functions in leaf development are well understood in IRLC legumes but remain unclear in non-IRLC legumes. Soybean, a major crop belonging to non-IRLC legumes, has limited research on the trifoliate leaf morphogenesis. Here, we comprehensively analyzed soybean trifoliate leaf development and characterized two GmLFY gene copies, GmLFYa and GmLFYb, in compound leaf morphogenesis. Analyzing the loss-of-function mutants revealed that Gmlfya displayed a low frequency of simple-like leaves, while the Gmlfyb showed no visible phenotype. However, the Gmlfya Gmlfyb double mutant predominantly displayed simple-like leaves. Additionally, mutations in two genes also affect floral development: each single mutant exhibited slightly deformed floral organs, while double mutant produced inflorescence-like structures. The transformation from floral meristems to inflorescence-like structures is similar to lfy mutant in Arabidopsis but quite different from M. truncatula and L. japonicus. These findings suggest that the two GmLFY genes in soybean collaboratively regulate both compound leaf and flower morphogenesis. Our study not only creates foundational mutant materials for future research on leaf and flower development in soybean but also reinforces the role of LFY orthologs as master regulators in compound leaf morphogenesis across a broader range of legume taxa than previously recognized.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70092"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GhRac9 improves cotton resistance to Verticillium dahliae via regulating ROS production and lignin content.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70091
Xincheng Luo, Zongwei Hu, Longyan Chu, Jianping Li, Ziru Tang, Xiangxiang Sun, Hongliu An, Peng Wan, Xiangping Wang, Yazhen Yang, Jianmin Zhang

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection. The expression level of GhRac9 peaked at 24 h after V. dahliae infection and remained consistently elevated from 24 to 48 h upon SA treatment. Furthermore, silencing GhRac9 using VIGS (Virus-induced gene silence) method attenuated cotton defense response to V. dahliae by reducing ROS (Reactive Oxygen Species) burst, peroxidase activity and lignin content in cotton plants. On the contrary, heterologous overexpression of GhRac9 enhanced Arabidopsis resistance to V. dahliae and significantly increased ROS production in Arabidopsis plants. Furthemore, transient overexpressing of GhRac9 significantly enhanced ROS burst and POD activity in cotton plants. In addition, GhRac9 positively regulated the expression levels of the genes related to SA signaling pathway in cotton plants. In conclusion, GhRac9 functioned as a positive regulator in the cotton defense response to V. dahliae, which provided important insights for breeding new cotton varieties resistant to V. dahliae.

{"title":"GhRac9 improves cotton resistance to Verticillium dahliae via regulating ROS production and lignin content.","authors":"Xincheng Luo, Zongwei Hu, Longyan Chu, Jianping Li, Ziru Tang, Xiangxiang Sun, Hongliu An, Peng Wan, Xiangping Wang, Yazhen Yang, Jianmin Zhang","doi":"10.1111/ppl.70091","DOIUrl":"https://doi.org/10.1111/ppl.70091","url":null,"abstract":"<p><p>Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection. The expression level of GhRac9 peaked at 24 h after V. dahliae infection and remained consistently elevated from 24 to 48 h upon SA treatment. Furthermore, silencing GhRac9 using VIGS (Virus-induced gene silence) method attenuated cotton defense response to V. dahliae by reducing ROS (Reactive Oxygen Species) burst, peroxidase activity and lignin content in cotton plants. On the contrary, heterologous overexpression of GhRac9 enhanced Arabidopsis resistance to V. dahliae and significantly increased ROS production in Arabidopsis plants. Furthemore, transient overexpressing of GhRac9 significantly enhanced ROS burst and POD activity in cotton plants. In addition, GhRac9 positively regulated the expression levels of the genes related to SA signaling pathway in cotton plants. In conclusion, GhRac9 functioned as a positive regulator in the cotton defense response to V. dahliae, which provided important insights for breeding new cotton varieties resistant to V. dahliae.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70091"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport. 硼通过促进植物生长素的极性运输来控制豌豆的顶端优势。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70056
Yutong He, Keren He, Jingwen Mai, Meiyin Ou, Laibin Chen, Yuanyuan Li, Tao Wan, Luping Gu, Sergey Shabala, Xuewen Li, Yalin Li, Min Yu

Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport. Adopting an all-buds phenotyping methodology and employing several complementary approaches, we found that boron deficiency inhibited plant growth and changed the shoot architecture, resulting in the outgrowth of axillary buds at nodes 1-3. This was related to the auxin accumulation in shoot apical parts buds under B deficiency. Applying N-1-naphthylphthalamic acid to inhibit auxin transport from the shoot apex promoted the outgrowth of axillary buds in boron-sufficient (+B) plants. In decapitated plants, the application of exogenous auxin to the shoot apex only inhibited the outgrowth of axillary buds in +B plants. At higher auxin doses, the toxic effect of IAA was observed in the lower part of the shoot, which was more severe in +B plants than in B-deprived (-B) plants. Furthermore, the expression of PsPIN3 was significantly downregulated under -B conditions. These results indicate that B deficiency inhibits PAT from the apical bud through the main stem to the lower parts, leading to an increase of auxin level in the apical bud, which inhibits the growth of apical buds while stimulating the outgrowth of axillary buds.

植物的结构和随后的生产力是由茎尖优势决定的,而这一优势受到植物生长和繁殖所必需的微量元素之一硼缺乏的干扰。然而,缺B条件下B控制芽顶优势或腋芽外生的机制尚不清楚。本工作旨在探讨这一过程的机制基础,重点研究B与极性生长素运输之间的相互作用。采用全芽表型分析方法和多种互补方法,我们发现缺硼抑制植株生长并改变芽结构,导致1-3节腋芽长出。这与缺B条件下茎尖部芽中生长素的积累有关。利用n- 1-萘酞酸抑制生长素从茎尖的运输,促进了富硼(+B)植物腋芽的生长。在无头植物中,外源生长素只对+B植株腋芽的生长有抑制作用。在较高的生长素剂量下,IAA的毒性作用在茎下部,且在+B植株中比在-B植株中更为严重。此外,PsPIN3的表达在-B条件下显著下调。上述结果表明,B缺乏抑制了从顶芽开始经主茎向下的PAT,导致顶芽中生长素水平升高,从而抑制了顶芽的生长,刺激了腋芽的生长。
{"title":"Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport.","authors":"Yutong He, Keren He, Jingwen Mai, Meiyin Ou, Laibin Chen, Yuanyuan Li, Tao Wan, Luping Gu, Sergey Shabala, Xuewen Li, Yalin Li, Min Yu","doi":"10.1111/ppl.70056","DOIUrl":"https://doi.org/10.1111/ppl.70056","url":null,"abstract":"<p><p>Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport. Adopting an all-buds phenotyping methodology and employing several complementary approaches, we found that boron deficiency inhibited plant growth and changed the shoot architecture, resulting in the outgrowth of axillary buds at nodes 1-3. This was related to the auxin accumulation in shoot apical parts buds under B deficiency. Applying N-1-naphthylphthalamic acid to inhibit auxin transport from the shoot apex promoted the outgrowth of axillary buds in boron-sufficient (+B) plants. In decapitated plants, the application of exogenous auxin to the shoot apex only inhibited the outgrowth of axillary buds in +B plants. At higher auxin doses, the toxic effect of IAA was observed in the lower part of the shoot, which was more severe in +B plants than in B-deprived (-B) plants. Furthermore, the expression of PsPIN3 was significantly downregulated under -B conditions. These results indicate that B deficiency inhibits PAT from the apical bud through the main stem to the lower parts, leading to an increase of auxin level in the apical bud, which inhibits the growth of apical buds while stimulating the outgrowth of axillary buds.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70056"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep metabolomics revealed trajectories of jasmonate signaling-mediated primary metabolism in Arabidopsis upon Spodoptera litura herbivory. 深层代谢组学揭示了拟南芥在斜纹夜蛾(Spodoptera litura)草食过程中茉莉酸信号介导的初级代谢轨迹。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.70035
Anish Kundu, Paramita Bera, Shruti Mishra, Jyothilakshmi Vadassery

Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored. Here, we applied gas chromatography-mass spectrometry-based untargeted metabolomics aided with computational statistical frameworks on wild type Arabidopsis, mutants of active JA receptor (i.e., CORONATINE-INSENSITIVE 1, COI1-1) and downstream transcription factor (i.e., MYC2) to navigate the JA signaling-mediated primary metabolism alterations during herbivory. Pathway and metabolite's chemical class enrichment analysis revealed JA signaling is crucial for constitutive as well as herbivore-induced primary metabolism and topology of their interaction networks. JA signaling majorly modulated alterations of sugars, amino acids and related metabolites. Herbivory-mediated sugar depletion and induction of methionine for aliphatic glucosinolates are also dependent on JA signaling. Taken together, our results demonstrate trails of JA signaling-mediated primary metabolic alterations associated with herbivory.

植物通过上调茉莉酸信号来防御食草动物的咀嚼,茉莉酸信号激活下游信号级联反应,产生大量次生代谢物,作为防御食草动物的防御分子。虽然次级代谢一直是研究的焦点,但据报道,初级代谢也与草食代谢有关。然而,JA信号介导的植物初级代谢物及其代谢途径的调节大多未被探索。在这里,我们应用基于气相色谱-质谱的非靶向代谢组学,辅助计算统计框架,对野生型拟南芥、活性JA受体突变体(即冠状碱不敏感1,coi -1)和下游转录因子(即MYC2)进行分析,以导航JA信号介导的草食过程中初级代谢改变。途径和代谢物的化学类富集分析表明,JA信号对于草食诱导的初级代谢及其相互作用网络的拓扑结构至关重要。JA信号主要调节糖、氨基酸和相关代谢物的改变。草食介导的糖消耗和脂肪族硫代葡萄糖苷的蛋氨酸诱导也依赖于JA信号。综上所述,我们的结果证明了JA信号介导的与草食相关的初级代谢改变的踪迹。
{"title":"Deep metabolomics revealed trajectories of jasmonate signaling-mediated primary metabolism in Arabidopsis upon Spodoptera litura herbivory.","authors":"Anish Kundu, Paramita Bera, Shruti Mishra, Jyothilakshmi Vadassery","doi":"10.1111/ppl.70035","DOIUrl":"https://doi.org/10.1111/ppl.70035","url":null,"abstract":"<p><p>Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored. Here, we applied gas chromatography-mass spectrometry-based untargeted metabolomics aided with computational statistical frameworks on wild type Arabidopsis, mutants of active JA receptor (i.e., CORONATINE-INSENSITIVE 1, COI1-1) and downstream transcription factor (i.e., MYC2) to navigate the JA signaling-mediated primary metabolism alterations during herbivory. Pathway and metabolite's chemical class enrichment analysis revealed JA signaling is crucial for constitutive as well as herbivore-induced primary metabolism and topology of their interaction networks. JA signaling majorly modulated alterations of sugars, amino acids and related metabolites. Herbivory-mediated sugar depletion and induction of methionine for aliphatic glucosinolates are also dependent on JA signaling. Taken together, our results demonstrate trails of JA signaling-mediated primary metabolic alterations associated with herbivory.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70035"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic in vivo monitoring of granum structural changes of Ctenanthe setosa (Roscoe) Eichler during drought stress and subsequent recovery.
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-01 DOI: 10.1111/ppl.14621
Richard Hembrom, Renáta Ünnep, Éva Sárvári, Gergely Nagy, Katalin Solymosi

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery. Upon drought stress, no significant changes occurred in the chloroplast ultrastructure, chlorophyll content, 77K fluorescence emission spectra and maximal quantum efficiency of PSII (Qy dark), but the actual quantum efficiency of PSII (Qy light) decreased, the amounts of PSI-LHCII complexes and PSII monomers declined, and that of PSII supercomplexes increased. Thickness of the leaf and of the adaxial hypodermis, chloroplast length and granum repeat distance (RD) values decreased upon drought stress, as shown by light microscopy and SANS, respectively. Because of the very slight (nm-range) changes in RD values, the large biological variability (significant differences in RD values among the leaves and studied leaf regions) and the invasive sampling required for this method, transmission electron microscopy (TEM) hardly showed significant differences. On the other side, in situ SANS analyses provided a unique insight in vivo into the fast structural recovery of the granum structure of drought-stressed leaves, which happened already 18 h after re-watering, while functional and biochemical recovery took place on a longer time scale.

{"title":"Dynamic in vivo monitoring of granum structural changes of Ctenanthe setosa (Roscoe) Eichler during drought stress and subsequent recovery.","authors":"Richard Hembrom, Renáta Ünnep, Éva Sárvári, Gergely Nagy, Katalin Solymosi","doi":"10.1111/ppl.14621","DOIUrl":"10.1111/ppl.14621","url":null,"abstract":"<p><p>Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery. Upon drought stress, no significant changes occurred in the chloroplast ultrastructure, chlorophyll content, 77K fluorescence emission spectra and maximal quantum efficiency of PSII (Qy dark), but the actual quantum efficiency of PSII (Qy light) decreased, the amounts of PSI-LHCII complexes and PSII monomers declined, and that of PSII supercomplexes increased. Thickness of the leaf and of the adaxial hypodermis, chloroplast length and granum repeat distance (RD) values decreased upon drought stress, as shown by light microscopy and SANS, respectively. Because of the very slight (nm-range) changes in RD values, the large biological variability (significant differences in RD values among the leaves and studied leaf regions) and the invasive sampling required for this method, transmission electron microscopy (TEM) hardly showed significant differences. On the other side, in situ SANS analyses provided a unique insight in vivo into the fast structural recovery of the granum structure of drought-stressed leaves, which happened already 18 h after re-watering, while functional and biochemical recovery took place on a longer time scale.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e14621"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiologia plantarum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1