首页 > 最新文献

Physiologia plantarum最新文献

英文 中文
The adaptation of lichen symbiosis to desert saline-alkali stress depends more on their symbiotic algae. 地衣共生体对沙漠盐碱压力的适应更多地取决于它们的共生藻。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14510
Biting Li, Reyim Mamuti, Liting Xiao, Ben Qian, Yanyan Wang, Xinli Wei

Soil salinization is a major environmental threat to the entire terrestrial ecosystem. Lichens arose from the symbiosis of fungi and algae or cyanobacteria. They have a high tolerance to various extreme environments, including adaptation to saline-alkali habitats. Thus, lichens are pioneer species on saline-alkali soil. However, the separate resilience of the two symbiotic partners under saline-alkali conditions remains insufficiently understood. In this study, two representative symbiotic algae, Diplosphaera chodatii and Trebouxia jamesii, were studied for their physiological response to the saline-alkali stress by adjusting different concentrations of NaHCO3, together with their respective symbiotic fungi Endocarpon pusillum (terricolous lichen) and Umbilicaria muhlenbergii (saxicolous lichen). The results indicate that cell growth rate and biomass in all four cultures decreased in alkali-alkaline substrate, while cellular activities and ultrastructure were affected to a distinct extent. Compared with the symbiotic fungi, the algae were found to be more active in coordinating oxidative stress and lipid peroxidation damage under the saline-alkali stress. The antioxidant system of the alga was especially shown as a key adaptive trait and it provides an important strategy for species survival and persistence in arid saline-alkali desert. The specific survival ability of the lichen symbiosis relies on the stress resilience advantages of the symbiotic partners in combination. Our study provided new insights into understanding the adaptation of lichen symbiosis to desert saline-alkali soil, and the potential of lichen symbiotic algae in the future desert ecological restoration.

土壤盐碱化是整个陆地生态系统面临的主要环境威胁。地衣是由真菌和藻类或蓝藻共生产生的。它们对各种极端环境具有很强的耐受性,包括对盐碱地生境的适应性。因此,地衣是盐碱地上的先锋物种。然而,人们对这两种共生伙伴在盐碱条件下各自的恢复能力仍缺乏足够的了解。本研究通过调节不同浓度的 NaHCO3,研究了两种具有代表性的共生藻类 Diplosphaera chodatii 和 Trebouxia jamesii 以及它们各自的共生真菌 Endocarpon pusillum(三叶地衣)和 Umbilicaria muhlenbergii(半三叶地衣)对盐碱胁迫的生理反应。结果表明,在碱性-碱性基质中,四种培养物的细胞生长率和生物量都有所下降,而细胞活性和超微结构则受到不同程度的影响。与共生真菌相比,盐碱胁迫下藻类在协调氧化应激和脂质过氧化损伤方面更为活跃。藻类的抗氧化系统尤其被证明是一种关键的适应性特征,它为物种在干旱的盐碱荒漠中生存和存活提供了重要策略。地衣共生的特殊生存能力依赖于共生伙伴共同的抗逆优势。我们的研究为了解地衣共生对沙漠盐碱土壤的适应性以及地衣共生藻在未来沙漠生态恢复中的潜力提供了新的见解。
{"title":"The adaptation of lichen symbiosis to desert saline-alkali stress depends more on their symbiotic algae.","authors":"Biting Li, Reyim Mamuti, Liting Xiao, Ben Qian, Yanyan Wang, Xinli Wei","doi":"10.1111/ppl.14510","DOIUrl":"https://doi.org/10.1111/ppl.14510","url":null,"abstract":"<p><p>Soil salinization is a major environmental threat to the entire terrestrial ecosystem. Lichens arose from the symbiosis of fungi and algae or cyanobacteria. They have a high tolerance to various extreme environments, including adaptation to saline-alkali habitats. Thus, lichens are pioneer species on saline-alkali soil. However, the separate resilience of the two symbiotic partners under saline-alkali conditions remains insufficiently understood. In this study, two representative symbiotic algae, Diplosphaera chodatii and Trebouxia jamesii, were studied for their physiological response to the saline-alkali stress by adjusting different concentrations of NaHCO<sub>3</sub>, together with their respective symbiotic fungi Endocarpon pusillum (terricolous lichen) and Umbilicaria muhlenbergii (saxicolous lichen). The results indicate that cell growth rate and biomass in all four cultures decreased in alkali-alkaline substrate, while cellular activities and ultrastructure were affected to a distinct extent. Compared with the symbiotic fungi, the algae were found to be more active in coordinating oxidative stress and lipid peroxidation damage under the saline-alkali stress. The antioxidant system of the alga was especially shown as a key adaptive trait and it provides an important strategy for species survival and persistence in arid saline-alkali desert. The specific survival ability of the lichen symbiosis relies on the stress resilience advantages of the symbiotic partners in combination. Our study provided new insights into understanding the adaptation of lichen symbiosis to desert saline-alkali soil, and the potential of lichen symbiotic algae in the future desert ecological restoration.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative metabolome and transcriptome analysis characterized methyl jasmonate-elicited flavonoid metabolites of Blumea balsamifera. 代谢组和转录组的综合分析表征了茉莉酸甲酯诱导的香叶木黄酮代谢物。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14488
Lingliang Guan, Lixin Yang, Fulai Yu, Houyuan Zeng, Chao Yuan, Xiaoli Xie, Lin Bai, Zhenxia Chen, Xiaolu Chen, Kai Wang, Mei Huang, Xuan Hu, Lei Liu

As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.

作为一种常用的药用植物,苦木的黄酮类代谢物及其与基因的关系仍是一个未知数。本研究仔细研究了外源茉莉酸甲酯(MeJA)施用后香叶木的总黄酮含量(TFC)、黄酮代谢物和生物合成基因表达模式。不同浓度的外源甲基茉莉酸(MeJA)会增加香脂树叶片暴露 48 小时后的总黄酮含量,且总黄酮含量与诱导剂浓度呈正相关。共鉴定出 48 种黄酮类代谢物,分为 10 个结构类别,其中以黄酮和黄烷酮为主。通过转录组挖掘筛选候选基因,对基因表达水平和TFC进行综合分析,结果表明FLS和MYB可能是调控外源MeJA处理下香蒲叶片TFC的关键基因。该研究为阐明香脂树黄酮类化合物奠定了基础,并为培育富含黄酮类化合物的香脂树品种提供了指导。
{"title":"Integrative metabolome and transcriptome analysis characterized methyl jasmonate-elicited flavonoid metabolites of Blumea balsamifera.","authors":"Lingliang Guan, Lixin Yang, Fulai Yu, Houyuan Zeng, Chao Yuan, Xiaoli Xie, Lin Bai, Zhenxia Chen, Xiaolu Chen, Kai Wang, Mei Huang, Xuan Hu, Lei Liu","doi":"10.1111/ppl.14488","DOIUrl":"https://doi.org/10.1111/ppl.14488","url":null,"abstract":"<p><p>As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GhJUB1_3-At positively regulate drought and salt stress tolerance under control of GhHB7, GhRAP2-3 and GhRAV1 in Cotton. 在 GhHB7、GhRAP2-3 和 GhRAV1 的调控下,GhJUB1_3-At 可正向调节棉花的干旱和盐胁迫耐受性。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14497
Adeel Ahmad, Muhammad Sajjad, Salisu Bello Sadau, Mohammad Elasad, Lu Sun, Yuewei Quan, Aimin Wu, Lian Boying, Fei Wei, Hongmei Wu, Pengyun Chen, Xiaokang Fu, Liang Ma, Hantao Wang, Hengling Wei, Shuxun Yu

Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H2O2 and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.

气候变化严重影响作物生产。棉花是世界上最主要的纤维作物之一,其生产容易受到各种环境压力的影响,尤其是干旱和盐渍化。开发抗逆基因型是摆脱这些环境限制的唯一途径。我们在棉花中发现了 16 个拟南芥 JUB1 基因的同源物。在对耐旱(H177)和易感(S9612)棉花基因型根中 GhJUB1 基因的时序表达分析中,GhJUB1_3-At 的表达被显著诱导。GhJUB1_3-At 基因单独或与其旁系亲属 GhJUB1_3-Dt 基因一起沉默都会降低棉花植株的耐旱性。与野生型(WT)相比,转基因品系表现出对干旱和盐胁迫的耐受性。与转基因品系相比,野生型在干旱条件下叶绿素和相对含水量都有所下降。与 WT 相比,转基因品系在干旱和盐胁迫下的 H2O2 水平降低,脯氨酸水平升高,这表明转基因品系具有抗旱和抗盐胁迫的能力。对转基因株系和 WT 的表达分析表明,与 WT 相比,转基因株系在正常条件下 GAI 上调。在干旱和盐胁迫条件下,与 WT 相比,RAB18 和 RD29A 在转基因品系中强烈上调。结论是,GhJUB1_3-At 并不是一个自动激活因子,它是由 GhHB7、GhRAP2-3 和 GhRAV1 共同调控的。GhRAV1 是非生物胁迫耐受性的负调控因子和叶片衰老的正调控因子,在严重情况下会抑制 GhJUB1_3-At 的表达,导致植物死亡。
{"title":"GhJUB1_3-At positively regulate drought and salt stress tolerance under control of GhHB7, GhRAP2-3 and GhRAV1 in Cotton.","authors":"Adeel Ahmad, Muhammad Sajjad, Salisu Bello Sadau, Mohammad Elasad, Lu Sun, Yuewei Quan, Aimin Wu, Lian Boying, Fei Wei, Hongmei Wu, Pengyun Chen, Xiaokang Fu, Liang Ma, Hantao Wang, Hengling Wei, Shuxun Yu","doi":"10.1111/ppl.14497","DOIUrl":"10.1111/ppl.14497","url":null,"abstract":"<p><p>Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H<sub>2</sub>O<sub>2</sub> and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. 植物生长促进根瘤菌(PGPR)诱导保护:植物免疫的视角。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14495
Rinkee Kumari, Ekta Pandey, Sayyada Bushra, Shahla Faizan, Saurabh Pandey

Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.

植物与环境之间的相互作用,特别是生物胁迫,对全球粮食安全越来越重要,因为在动态环境中会造成作物损失。因此,了解植物对生物胁迫的反应对于减轻损害至关重要。有益微生物及其与植物的联系可以减轻植物病原体造成的损害。PGPR(植物生长促进根瘤菌)就是其中之一,它通过与生物胁迫因子和植物信号化合物相互作用,对植物免疫力产生重大影响。本综述探讨了 PGPR 的类型、新陈代谢和作用机制,包括它们的酶途径和 PGPR 分泌的信号化合物,这些化合物可在植物防御过程中调节基因和蛋白质的表达。此外,综述还将深入探讨 PGPR 与其他植物生长调节剂和信号化合物之间的相互影响,阐明 PGPR 在多种生物胁迫下对植物产生影响的生理、生化和分子机制,包括与真菌、细菌和病毒之间的相互作用。总之,这篇综述全面补充了我们关于 PGPR 在植物免疫中的作用及其在农业抗逆性和粮食安全方面的应用的知识。
{"title":"Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective.","authors":"Rinkee Kumari, Ekta Pandey, Sayyada Bushra, Shahla Faizan, Saurabh Pandey","doi":"10.1111/ppl.14495","DOIUrl":"https://doi.org/10.1111/ppl.14495","url":null,"abstract":"<p><p>Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. 紫外线诱导的地衣黑化:生理特征和转录组特征。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14512
Ilya Leksin, Mikhail Shelyakin, Ilya Zakhozhiy, Olga Kozlova, Richard Beckett, Farida Minibayeva

Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.

地衣是高纬度北方和北极栖息地的重要组成部分。虽然地衣耐受压力,但它们是对气候变化最敏感的生态系统组成部分之一,特别是极地臭氧消耗和森林砍伐导致的紫外线(UV)增加。本研究首次探讨了紫外线-B 对地衣基因表达的影响,以预测地衣耐受性所涉及的代谢途径。利用转录组分析和生物信息学分析,我们以 Lobaria pulmonaria (L.) Hoff.为模式物种,研究了紫外线-B 对地衣基因表达的影响。紫外线-B照射会导致苔藓上部皮层明显褐化,这与参与合成黑色素和异黑色素以及黑色素前体的生物合成基因簇的表达增加有关。根据转录组分析,我们认为黑色素和其他次生代谢物(如萘衍生物、萘酮类、蒽醌类和黄酮类)的生物合成是地衣为保护光合作用和呼吸作用等基本代谢过程而付出的代价。一般应激相关基因的表达谱,特别是与活性氧清除、蛋白质保护和 DNA 修复有关的基因的表达谱,清楚地表明在地衣共生中,菌丝体是对紫外线-B 反应更强、更易受影响的伙伴。我们的研究结果表明,紫外线-B 胁迫激活了地衣共生体耐受机制中错综复杂的基因网络。这些知识有助于预测气候变化和污染可能对地衣生物多样性造成的影响。
{"title":"Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile.","authors":"Ilya Leksin, Mikhail Shelyakin, Ilya Zakhozhiy, Olga Kozlova, Richard Beckett, Farida Minibayeva","doi":"10.1111/ppl.14512","DOIUrl":"https://doi.org/10.1111/ppl.14512","url":null,"abstract":"<p><p>Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HAIRY MERISTEM proteins regulate the WUSCHEL protein levels in mediating CLAVATA3 expression. HAIRY MERISTEM 蛋白在介导 CLAVATA3 表达的过程中调节 WUSCHEL 蛋白水平。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14505
Kevin Rodriguez, Lloyd Kao, Vincent E Cerbantez-Bueno, Christian Delgadillo, Dorothy Nguyen, Samin Ullah, Cameron Delgadillo, G Venugopala Reddy

The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)-WUSCHEL (WUS). WUS has been shown to move from the site of production-the rib-meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription of CLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restricts WUS transcription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate both CLV3 levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS-domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulate CLV3 expression. However, the mechanisms by which this interaction regulates CLV3 expression non-cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and the CLV3 expression responds to altered WUS protein levels in ham mutants. Thus, HAM proteins non-cell autonomously regulates CLV3 expression.

对嫩枝顶端分生组织(SAM)中干细胞的精确调控涉及同源转录因子(TF)-WUSCHEL(WUS)的功能。研究表明,WUS会从产生部位--肋-分生组织(RM)移动到中央区(CZ)的重叠细胞中,在那里指定干细胞,并调节CLAVATA3(CLV3)的转录。分泌的信号肽CLV3会激活受体激酶信号,从而限制WUS的转录,并通过抵消核输出来调节WUS的核梯度。研究表明,WUS 可调节 CLV3 的水平和空间激活,将其表达限制在 CZ 中的少数细胞内。HAIRY MERISTEM(HAM)是在RM中表达的一类GRASS-domain TFs,已被证明能与WUS发生物理相互作用并调节CLV3的表达。然而,这种相互作用非细胞自主调节 CLV3 表达的机制仍不清楚。在这里,我们发现 HAM 的功能是调节 WUS 蛋白稳定性所必需的,而且在 ham 突变体中,CLV3 的表达会对 WUS 蛋白水平的改变做出反应。因此,HAM蛋白非细胞自主调节CLV3的表达。
{"title":"HAIRY MERISTEM proteins regulate the WUSCHEL protein levels in mediating CLAVATA3 expression.","authors":"Kevin Rodriguez, Lloyd Kao, Vincent E Cerbantez-Bueno, Christian Delgadillo, Dorothy Nguyen, Samin Ullah, Cameron Delgadillo, G Venugopala Reddy","doi":"10.1111/ppl.14505","DOIUrl":"10.1111/ppl.14505","url":null,"abstract":"<p><p>The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)-WUSCHEL (WUS). WUS has been shown to move from the site of production-the rib-meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription of CLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restricts WUS transcription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate both CLV3 levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS-domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulate CLV3 expression. However, the mechanisms by which this interaction regulates CLV3 expression non-cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and the CLV3 expression responds to altered WUS protein levels in ham mutants. Thus, HAM proteins non-cell autonomously regulates CLV3 expression.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing wheat growth and nutrient content through integrated microbial and non-microbial biostimulants. 通过综合微生物和非微生物生物刺激剂提高小麦生长和养分含量。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14485
Devashish Pathak, Archna Suman, Anchal Dass, Pushpendra Sharma, Aswini Krishnan, Shrikant Gond

This study focused on two aspects: to develop a selected functionally competent bacterial community, and its integrated with biostimulant humic acid and seaweed extract which was validated to enhance wheat growth and nutrient content. Wheat and maize-associated bacterial isolates (92) were screened for Plant Growth-Promoting traits (PGPts-72) and Community-Forming traits (CFts-66). 46 isolates possessed both kinds of traits, of which 20 isolates were chosen based on high Bonitur scale ratings. Based on metabolic diversity, growth rate, and compatibility, 11 isolates were grouped to make a synthetic microbial community (SM). Non-microbial biostimulants, humic acid (HA) and seaweed extract (SWE) were used, and 0.2% HA and 1% SWE were found to be optimal for bacterial and plant growth. SM integrated each with 0.2% HA and 1% SWE, leading to products SynBio1 (SM + HA) and SynBio2 (SM + SWE). Under microcosm study, SynBio1 and SynBio2 improved germination by 90.10% and 83.80%, respectively. SynBio1 increased chlorophyll content by 40.5 SPAD units, root length by 15.7%, and shoot length by 18.4%. Field level validations revealed that SynBio1 increased plant height by 15.76%, root length by 27.16%, and flag leaf length by 21.35% compared to the control. The grain yield with SynBio1 was 40.41% higher than that of the control. Macro and micronutrient analysis of seeds treated with SynBio1 showed significant improvements. These findings demonstrate the potential of integrating microbial communities with biostimulants, and they pave the way for developing novel bioinoculants for sustainable agriculture and promoting a healthier environment.

这项研究的重点有两个方面:开发精选的功能强大的细菌群落,并将其与生物刺激剂腐植酸和海藻提取物相结合,以提高小麦的生长和养分含量。对小麦和玉米相关细菌分离株(92 株)进行了植物生长促进性状(PGPts-72)和群落形成性状(CFts-66)筛选。46 个分离菌株同时具有这两种性状,其中 20 个分离菌株因博尼图尔量表评分较高而被选中。根据代谢多样性、生长速度和兼容性,将 11 个分离物分组,组成合成微生物群落(SM)。使用了非微生物生物刺激剂、腐植酸(HA)和海藻提取物(SWE),发现 0.2% 的腐植酸和 1% 的海藻提取物对细菌和植物的生长最为有利。SM 与 0.2% 的 HA 和 1% 的 SWE 相结合,产生了 SynBio1(SM + HA)和 SynBio2(SM + SWE)产品。在微生态研究中,SynBio1 和 SynBio2 分别提高了发芽率 90.10% 和 83.80%。SynBio1 的叶绿素含量增加了 40.5 SPAD 单位,根长增加了 15.7%,芽长增加了 18.4%。田间试验表明,与对照相比,SynBio1 增加了 15.76%的株高、27.16%的根长和 21.35%的旗叶长。使用 SynBio1 的谷物产量比对照高出 40.41%。用 SynBio1 处理过的种子的宏量和微量营养元素分析表明有显著改善。这些研究结果证明了微生物群落与生物刺激剂结合的潜力,并为开发新型生物筑基剂以促进可持续农业和更健康的环境铺平了道路。
{"title":"Enhancing wheat growth and nutrient content through integrated microbial and non-microbial biostimulants.","authors":"Devashish Pathak, Archna Suman, Anchal Dass, Pushpendra Sharma, Aswini Krishnan, Shrikant Gond","doi":"10.1111/ppl.14485","DOIUrl":"https://doi.org/10.1111/ppl.14485","url":null,"abstract":"<p><p>This study focused on two aspects: to develop a selected functionally competent bacterial community, and its integrated with biostimulant humic acid and seaweed extract which was validated to enhance wheat growth and nutrient content. Wheat and maize-associated bacterial isolates (92) were screened for Plant Growth-Promoting traits (PGPts-72) and Community-Forming traits (CFts-66). 46 isolates possessed both kinds of traits, of which 20 isolates were chosen based on high Bonitur scale ratings. Based on metabolic diversity, growth rate, and compatibility, 11 isolates were grouped to make a synthetic microbial community (SM). Non-microbial biostimulants, humic acid (HA) and seaweed extract (SWE) were used, and 0.2% HA and 1% SWE were found to be optimal for bacterial and plant growth. SM integrated each with 0.2% HA and 1% SWE, leading to products SynBio1 (SM + HA) and SynBio2 (SM + SWE). Under microcosm study, SynBio1 and SynBio2 improved germination by 90.10% and 83.80%, respectively. SynBio1 increased chlorophyll content by 40.5 SPAD units, root length by 15.7%, and shoot length by 18.4%. Field level validations revealed that SynBio1 increased plant height by 15.76%, root length by 27.16%, and flag leaf length by 21.35% compared to the control. The grain yield with SynBio1 was 40.41% higher than that of the control. Macro and micronutrient analysis of seeds treated with SynBio1 showed significant improvements. These findings demonstrate the potential of integrating microbial communities with biostimulants, and they pave the way for developing novel bioinoculants for sustainable agriculture and promoting a healthier environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. 通过激素和转录组分析阐明控制当归色素生物合成的 AsANS。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14500
Khadija Tehseen Arshad, Chunfan Xiang, Chengxiao Yuan, Lesong Li, Juan Wang, Pinhan Zhou, Nazer Manzoor, Shengchao Yang, Mengfei Li, Yanli Liang, Junwen Chen, Yan Zhao

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.

当归是一种传统的中药植物,主要因其营养价值而被报道。这种植物的色素沉着是一种重要的外观性状,直接影响其商业价值。为了了解控制当归色素纯度的机制,研究人员利用两个颜色对比强烈的栽培品种,在三个不同组织(叶、根和茎)中进行了激素和转录组分析。二维数据集提供了支持中华皂荚变紫的动态激素和基因表达网络。我们发现脱落酸是调节中华秋海棠花青素生物合成的关键激素。我们进一步鉴定并验证了参与花青素生物合成途径的 7 个关键基因,并在 WGCNA 中发现了一个包含 ANS 的特定模块,该模块是一个枢纽基因。在转基因中华榕树胼胝体中过表达候选色素调控基因 AsANS (AS08G02092),可增加花青素的产生并使其变白。总之,这些分析为了解中华鳖花青素产生的分子网络及其与植物激素的相关性提供了重要信息,为育种提供了重要依据。
{"title":"Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis.","authors":"Khadija Tehseen Arshad, Chunfan Xiang, Chengxiao Yuan, Lesong Li, Juan Wang, Pinhan Zhou, Nazer Manzoor, Shengchao Yang, Mengfei Li, Yanli Liang, Junwen Chen, Yan Zhao","doi":"10.1111/ppl.14500","DOIUrl":"https://doi.org/10.1111/ppl.14500","url":null,"abstract":"<p><p>Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142110903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen. 三个杨树品种的 MiRNAs 图谱揭示了抵抗新出现的细菌病原体的不同分子反应。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14498
Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang

Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.

由杨龙须菜引起的枯萎病严重降低了杨树的经济和生态效益。微RNA在植物对生物胁迫的反应中发挥着重要作用。然而,关于不同树种感染病原体后 miRNAs 的调控机制的研究却很少。为了研究参与杨树抗病性的 miRNAs,研究人员选择了 2025(易感)、107(中度抗病)和 Populus.所有品种共鉴定出 227 个 miRNA。有趣的是,只有抗性品种 P. tomentosa 在病原体感染时才鉴定出 miR160、miR169、miR171 和 miR482b-5p,这些 miRNA 可能是未来研究提高杨树对 L. populi 的耐受性的重要候选。在所有鉴定出的 miRNA 中,有 174 个在所有品种中都有差异表达。功能注释分析表明,包括 miR482、miR472、miR169、miR481 和 miR172 在内的一系列 miRNA 应参与抗病性和植物激素信号转导。此外,通过对小RNA-seq和RNA-seq的相关性分析,发现了少量L. populi-responsive miRNAs和靶基因,其中miR159和miR172通过靶向MYB和ERF在抗性品种P. tomentosa中发挥关键作用,而miR6462c-5p和miR828则通过靶向MYB与2025的易感性相关。这项研究中的全面整合分析为了解杨树对白叶枯病的防御反应所涉及的调控途径提供了新的视角,并为杨树的抗性改良提供了重要的候选 miRNAs-靶基因模块。
{"title":"MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen.","authors":"Ruen Yu, Xiaoqian Yang, Dandan Xiao, Hai Bao, Yanwei Wang","doi":"10.1111/ppl.14498","DOIUrl":"https://doi.org/10.1111/ppl.14498","url":null,"abstract":"<p><p>Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUPERMAN genes: uncovering a new function in the development of complex inflorescences. 超人基因:揭示复杂花序发育过程中的新功能。
IF 5.4 2区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-09-01 DOI: 10.1111/ppl.14496
Edelín Roque, Ana Lucía Rodas, José Pío Beltrán, Concepción Gómez-Mena, Luis A Cañas

The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.

拟南芥超级人(SUP)基因及其在裸子植物中的直向同源物对调节生殖花器官的数量至关重要。在Medicago truncatula中,除了这一功能外,SUP直向同源基因(MtSUP)还在复花序发育过程中控制分生组织活动方面发挥了新的作用。这些发现促使我们研究 SUP 基因在花序发育过程中的作用是豆科植物特有的,还是可以扩展到其他裸子植物。为了评估这一问题,我们将番茄茄属植物(Solanum lycopersicum)作为具有聚伞状复合花序的模式系统,而拟南芥(Arabidopsis thaliana)则是最著名的简单花序实例。我们对 SlSUP 和 SUP 从植株期到花过渡期的表达进行了详细的比较分析。此外,我们还对植物生命周期中两种不同的 SlSUP 和 sup 突变体进行了详尽的表型鉴定。我们的研究结果表明,在番茄中,SlSUP 是控制芽和花序结构的分生组织的精确调控所必需的。与此相反,在拟南芥中,SUP 不执行分生组织功能,但我们发现 SUP 在花的过渡中发挥作用。我们的研究结果表明,类 SUP 基因的功能分化有助于被子植物进化过程中花序结构的改变。
{"title":"SUPERMAN genes: uncovering a new function in the development of complex inflorescences.","authors":"Edelín Roque, Ana Lucía Rodas, José Pío Beltrán, Concepción Gómez-Mena, Luis A Cañas","doi":"10.1111/ppl.14496","DOIUrl":"https://doi.org/10.1111/ppl.14496","url":null,"abstract":"<p><p>The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiologia plantarum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1