Pub Date : 2025-01-16DOI: 10.1103/physrevd.111.015013
Gonzalo Herrera, Andreas Rappelt
Astrophysical uncertainties in dark matter direct detection experiments are typically addressed by parametrizing the velocity distribution in terms of a few uncertain parameters that vary around some central values. Here we propose a method to optimize over all velocity distributions lying within a given distance measure from a central distribution. We discretize the dark matter velocity distribution as a superposition of streams and use a variety of information divergences to parametrize its uncertainties. With this, we bracket the limits on the dark matter–nucleon and dark matter–electron scattering cross sections, when the true dark matter velocity distribution deviates from the commonly assumed Maxwell-Boltzmann form. The methodology pursued is general and could be applied to other physics scenarios where a given physical observable depends on a function that is uncertain. Published by the American Physical Society2025
{"title":"Information divergences to parametrize astrophysical uncertainties in dark matter direct detection","authors":"Gonzalo Herrera, Andreas Rappelt","doi":"10.1103/physrevd.111.015013","DOIUrl":"https://doi.org/10.1103/physrevd.111.015013","url":null,"abstract":"Astrophysical uncertainties in dark matter direct detection experiments are typically addressed by parametrizing the velocity distribution in terms of a few uncertain parameters that vary around some central values. Here we propose a method to optimize over all velocity distributions lying within a given distance measure from a central distribution. We discretize the dark matter velocity distribution as a superposition of streams and use a variety of information divergences to parametrize its uncertainties. With this, we bracket the limits on the dark matter–nucleon and dark matter–electron scattering cross sections, when the true dark matter velocity distribution deviates from the commonly assumed Maxwell-Boltzmann form. The methodology pursued is general and could be applied to other physics scenarios where a given physical observable depends on a function that is uncertain. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"43 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1103/physrevd.111.014505
Toru T. Takahashi, Yoshiko Kanada-En’yo
We study the color correlation between static quark and antiquark (q</a:mi>q</a:mi>¯</a:mo></a:mover></a:math>) that is accompanied by gluonic excitations in the confined phase at <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mi>T</e:mi><e:mo>=</e:mo><e:mn>0</e:mn></e:math> by constructing reduced density matrices <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" display="inline"><g:mi>ρ</g:mi></g:math> in color space. We perform quenched lattice quantum chromodynamics (QCD) calculations with the Coulomb gauge adopting the standard Wilson gauge action, and the spatial volume is <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:msup><i:mi>L</i:mi><i:mn>3</i:mn></i:msup><i:mo>=</i:mo><i:mn>3</i:mn><i:msup><i:mn>2</i:mn><i:mn>3</i:mn></i:msup></i:math> at <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" display="inline"><k:mi>β</k:mi><k:mo>=</k:mo><k:mn>5.8</k:mn></k:math>, which corresponds to the lattice spacing <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:mi>a</m:mi><m:mo>=</m:mo><m:mn>0.14</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>fm</m:mi></m:math> and the system volume <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:msup><o:mi>L</o:mi><o:mn>3</o:mn></o:msup><o:mo>=</o:mo><o:msup><o:mn>4.5</o:mn><o:mn>3</o:mn></o:msup><o:mtext> </o:mtext><o:mtext> </o:mtext><o:msup><o:mrow><o:mi>fm</o:mi></o:mrow><o:mrow><o:mn>3</o:mn></o:mrow></o:msup></o:math>. We evaluate the color density matrix <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:mi>ρ</q:mi></q:math> of static <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mi>q</s:mi><s:mover accent="true"><s:mi>q</s:mi><s:mo stretchy="false">¯</s:mo></s:mover></s:math> pairs in 6 channels (<w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:msubsup><w:mi mathvariant="normal">Σ</w:mi><w:mi>g</w:mi><w:mo>+</w:mo></w:msubsup></w:math>, <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" display="inline"><z:msup><z:msubsup><z:mi mathvariant="normal">Σ</z:mi><z:mi>g</z:mi><z:mo>+</z:mo></z:msubsup><z:mo>′</z:mo></z:msup></z:math>, <cb:math xmlns:cb="http://www.w3.org/1998/Math/MathML" display="inline"><cb:msub><cb:mi mathvariant="normal">Π</cb:mi><cb:mi>u</cb:mi></cb:msub></cb:math>, <fb:math xmlns:fb="http://www.w3.org/1998/Math/MathML" display="inline"><fb:msubsup><fb:mi mathvariant="normal">Π</fb:mi><fb:mi>u</fb:mi><fb:mo>′</fb:mo></fb:msubsup></fb:math>, <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:msub><ib:mi mathvariant="normal">Δ</ib:mi><ib:mi>g</ib:mi></ib:msub></ib:math>, <lb:math xmlns:lb="http://www.w3.org/1998/Math/MathML" display="inline"><lb:msubsup><lb:mi mathvariant="normal">Δ</lb:mi><lb:mi>g</lb:mi><lb:mo>′</lb:mo></lb:msubsup></lb:math>), and investigate the interquark-distance dependence of color correlations. We find that as the interquark distance increases, the color correl
{"title":"Lattice QCD study of color correlations between static quarks with gluonic excitations","authors":"Toru T. Takahashi, Yoshiko Kanada-En’yo","doi":"10.1103/physrevd.111.014505","DOIUrl":"https://doi.org/10.1103/physrevd.111.014505","url":null,"abstract":"We study the color correlation between static quark and antiquark (q</a:mi>q</a:mi>¯</a:mo></a:mover></a:math>) that is accompanied by gluonic excitations in the confined phase at <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>T</e:mi><e:mo>=</e:mo><e:mn>0</e:mn></e:math> by constructing reduced density matrices <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>ρ</g:mi></g:math> in color space. We perform quenched lattice quantum chromodynamics (QCD) calculations with the Coulomb gauge adopting the standard Wilson gauge action, and the spatial volume is <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi>L</i:mi><i:mn>3</i:mn></i:msup><i:mo>=</i:mo><i:mn>3</i:mn><i:msup><i:mn>2</i:mn><i:mn>3</i:mn></i:msup></i:math> at <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>β</k:mi><k:mo>=</k:mo><k:mn>5.8</k:mn></k:math>, which corresponds to the lattice spacing <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>a</m:mi><m:mo>=</m:mo><m:mn>0.14</m:mn><m:mtext> </m:mtext><m:mtext> </m:mtext><m:mi>fm</m:mi></m:math> and the system volume <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msup><o:mi>L</o:mi><o:mn>3</o:mn></o:msup><o:mo>=</o:mo><o:msup><o:mn>4.5</o:mn><o:mn>3</o:mn></o:msup><o:mtext> </o:mtext><o:mtext> </o:mtext><o:msup><o:mrow><o:mi>fm</o:mi></o:mrow><o:mrow><o:mn>3</o:mn></o:mrow></o:msup></o:math>. We evaluate the color density matrix <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>ρ</q:mi></q:math> of static <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>q</s:mi><s:mover accent=\"true\"><s:mi>q</s:mi><s:mo stretchy=\"false\">¯</s:mo></s:mover></s:math> pairs in 6 channels (<w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msubsup><w:mi mathvariant=\"normal\">Σ</w:mi><w:mi>g</w:mi><w:mo>+</w:mo></w:msubsup></w:math>, <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:msup><z:msubsup><z:mi mathvariant=\"normal\">Σ</z:mi><z:mi>g</z:mi><z:mo>+</z:mo></z:msubsup><z:mo>′</z:mo></z:msup></z:math>, <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msub><cb:mi mathvariant=\"normal\">Π</cb:mi><cb:mi>u</cb:mi></cb:msub></cb:math>, <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msubsup><fb:mi mathvariant=\"normal\">Π</fb:mi><fb:mi>u</fb:mi><fb:mo>′</fb:mo></fb:msubsup></fb:math>, <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:msub><ib:mi mathvariant=\"normal\">Δ</ib:mi><ib:mi>g</ib:mi></ib:msub></ib:math>, <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:msubsup><lb:mi mathvariant=\"normal\">Δ</lb:mi><lb:mi>g</lb:mi><lb:mo>′</lb:mo></lb:msubsup></lb:math>), and investigate the interquark-distance dependence of color correlations. We find that as the interquark distance increases, the color correl","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"97 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1103/physrevd.111.026013
Parinya Karndumri
We study supersymmetric Janus solutions from matter-coupled F</a:mi>(</a:mo>4</a:mn>)</a:mo></a:math> gauged supergravity coupled to three vector multiplets and <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy="false">(</e:mo><e:mn>4</e:mn><e:mo stretchy="false">)</e:mo><e:mo>∼</e:mo><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3</e:mn><e:mo stretchy="false">)</e:mo><e:mo>×</e:mo><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3</e:mn><e:mo stretchy="false">)</e:mo></e:math> gauge group. There are two supersymmetric <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="inline"><m:msub><m:mi>AdS</m:mi><m:mn>6</m:mn></m:msub></m:math> vacua preserving all supersymmetries with <o:math xmlns:o="http://www.w3.org/1998/Math/MathML" display="inline"><o:mi>S</o:mi><o:mi>O</o:mi><o:mo stretchy="false">(</o:mo><o:mn>3</o:mn><o:mo stretchy="false">)</o:mo><o:mo>×</o:mo><o:mi>S</o:mi><o:mi>O</o:mi><o:mo stretchy="false">(</o:mo><o:mn>3</o:mn><o:mo stretchy="false">)</o:mo></o:math> and <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:mi>S</u:mi><u:mi>O</u:mi><u:mo stretchy="false">(</u:mo><u:mn>3</u:mn><u:msub><u:mo stretchy="false">)</u:mo><u:mrow><u:mi>diag</u:mi></u:mrow></u:msub></u:math> symmetries dual to <y:math xmlns:y="http://www.w3.org/1998/Math/MathML" display="inline"><y:mi>N</y:mi><y:mo>=</y:mo><y:mn>2</y:mn></y:math> superconformal field theories (SCFTs) in five dimensions. We consider a truncation to S</ab:mi>O</ab:mi>(</ab:mo>2</ab:mn>)</ab:mo>diag</ab:mi></ab:mrow></ab:msub>⊂</ab:mo>S</ab:mi>O</ab:mi>(</ab:mo>3</ab:mn>)</ab:mo>diag</ab:mi></ab:mrow></ab:msub></ab:math> singlet scalars and find a number of new supersymmetric Janus solutions preserving eight supercharges. These solutions holographically describe conformal interfaces within <gb:math xmlns:gb="http://www.w3.org/1998/Math/MathML" display="inline"><gb:mi>N</gb:mi><gb:mo>=</gb:mo><gb:mn>2</gb:mn></gb:math> five-dimensional SCFTs involving deformations by source terms and vacuum expectation values of relevant and irrelevant operators. Apart from the Janus solutions interpolating between <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mi>S</ib:mi><ib:mi>O</ib:mi><ib:mo stretchy="false">(</ib:mo><ib:mn>3</ib:mn><ib:mo stretchy="false">)</ib:mo><ib:mo>×</ib:mo><ib:mi>S</ib:mi><ib:mi>O</ib:mi><ib:mo stretchy="false">(</ib:mo><ib:mn>3</ib:mn><ib:mo stretchy="false">)</ib:mo></ib:math> <ob:math xmlns:ob="http://www.w3.org/1998/Math/MathML" display="inline"><ob:msub><ob:mi>AdS</ob:mi><ob:mn>6</ob:mn></ob:msub></ob:math> vacua, some of the solutions have <qb:math xmlns:qb="http://www.w3.org/1998/Math/MathML" display="inline"><qb:mi>S</qb:mi><qb:mi>O</qb:mi><qb:mo stretchy="false">(</qb:mo><qb:mn>3</qb:mn><qb:msub><qb:mo stretchy="false">)</qb:mo><qb:mrow><qb:mi>diag</qb:mi></qb:mrow></qb:msub></qb:math> <ub:math xmlns:ub="http://www
{"title":"Janus and RG-flow interfaces from matter-coupled F(4) gauged supergravity","authors":"Parinya Karndumri","doi":"10.1103/physrevd.111.026013","DOIUrl":"https://doi.org/10.1103/physrevd.111.026013","url":null,"abstract":"We study supersymmetric Janus solutions from matter-coupled F</a:mi>(</a:mo>4</a:mn>)</a:mo></a:math> gauged supergravity coupled to three vector multiplets and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mn>4</e:mn><e:mo stretchy=\"false\">)</e:mo><e:mo>∼</e:mo><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mn>3</e:mn><e:mo stretchy=\"false\">)</e:mo><e:mo>×</e:mo><e:mi>S</e:mi><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mn>3</e:mn><e:mo stretchy=\"false\">)</e:mo></e:math> gauge group. There are two supersymmetric <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>AdS</m:mi><m:mn>6</m:mn></m:msub></m:math> vacua preserving all supersymmetries with <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>S</o:mi><o:mi>O</o:mi><o:mo stretchy=\"false\">(</o:mo><o:mn>3</o:mn><o:mo stretchy=\"false\">)</o:mo><o:mo>×</o:mo><o:mi>S</o:mi><o:mi>O</o:mi><o:mo stretchy=\"false\">(</o:mo><o:mn>3</o:mn><o:mo stretchy=\"false\">)</o:mo></o:math> and <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>S</u:mi><u:mi>O</u:mi><u:mo stretchy=\"false\">(</u:mo><u:mn>3</u:mn><u:msub><u:mo stretchy=\"false\">)</u:mo><u:mrow><u:mi>diag</u:mi></u:mrow></u:msub></u:math> symmetries dual to <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>N</y:mi><y:mo>=</y:mo><y:mn>2</y:mn></y:math> superconformal field theories (SCFTs) in five dimensions. We consider a truncation to S</ab:mi>O</ab:mi>(</ab:mo>2</ab:mn>)</ab:mo>diag</ab:mi></ab:mrow></ab:msub>⊂</ab:mo>S</ab:mi>O</ab:mi>(</ab:mo>3</ab:mn>)</ab:mo>diag</ab:mi></ab:mrow></ab:msub></ab:math> singlet scalars and find a number of new supersymmetric Janus solutions preserving eight supercharges. These solutions holographically describe conformal interfaces within <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>N</gb:mi><gb:mo>=</gb:mo><gb:mn>2</gb:mn></gb:math> five-dimensional SCFTs involving deformations by source terms and vacuum expectation values of relevant and irrelevant operators. Apart from the Janus solutions interpolating between <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>S</ib:mi><ib:mi>O</ib:mi><ib:mo stretchy=\"false\">(</ib:mo><ib:mn>3</ib:mn><ib:mo stretchy=\"false\">)</ib:mo><ib:mo>×</ib:mo><ib:mi>S</ib:mi><ib:mi>O</ib:mi><ib:mo stretchy=\"false\">(</ib:mo><ib:mn>3</ib:mn><ib:mo stretchy=\"false\">)</ib:mo></ib:math> <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:msub><ob:mi>AdS</ob:mi><ob:mn>6</ob:mn></ob:msub></ob:math> vacua, some of the solutions have <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi>S</qb:mi><qb:mi>O</qb:mi><qb:mo stretchy=\"false\">(</qb:mo><qb:mn>3</qb:mn><qb:msub><qb:mo stretchy=\"false\">)</qb:mo><qb:mrow><qb:mi>diag</qb:mi></qb:mrow></qb:msub></qb:math> <ub:math xmlns:ub=\"http://www","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"30 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1103/physrevd.111.012006
M. F. Albakry, I. Alkhatib, D. Alonso-González, D. W. P. Amaral, J. Anczarski, T. Aralis, T. Aramaki, I. J. Arnquist, I. Ataee Langroudy, E. Azadbakht, C. Bathurst, R. Bhattacharyya, A. J. Biffl, P. L. Brink, M. Buchanan, R. Bunker, B. Cabrera, R. Calkins, R. A. Cameron, C. Cartaro, D. G. Cerdeño, Y.-Y. Chang, M. Chaudhuri, J.-H. Chen, R. Chen, N. Chott, J. Cooley, H. Coombes, P. Cushman, R. Cyna, S. Das, F. De Brienne, S. Dharani, M. L. di Vacri, M. D. Diamond, M. Elwan, E. Fascione, E. Figueroa-Feliciano, K. Fouts, M. Fritts, R. Germond, M. Ghaith, S. R. Golwala, J. Hall, S. A. S. Harms, K. Harris, N. Hassan, Z. Hong, E. W. Hoppe, L. Hsu, M. E. Huber, V. Iyer, D. Jardin, V. K. S. Kashyap, S. T. D. Keller, M. H. Kelsey, K. T. Kennard, A. Kubik, N. A. Kurinsky, M. Lee, J. Leyva, J. Liu, Y. Liu, B. Loer, E. Lopez Asamar, P. Lukens, D. B. MacFarlane, R. Mahapatra, J. S. Mammo, N. Mast, A. J. Mayer, H. Meyer zu Theenhausen, É. Michaud, E. Michielin, N. Mirabolfathi, M. Mirzakhani, B. Mohanty, D. Monteiro, J. Nelson, H. Neog, V. Novati, J. L. Orrell, M. D. Osborne, S. M. Oser, L. Pandey, S. Pandey, R. Partridge, D. S. Pedreros, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, S. S. Poudel, A. Pradeep, M. Pyle, W. Rau, E. Reid, R. Ren, T. Reynolds, M. Rios, A. Roberts, A. E. Robinson, J. L. Ryan, T. Saab, D. Sadek, B. Sadoulet, S. P. Sahoo, I. Saikia, J. Sander, A. Sattari, B. Schmidt, R. W. Schnee, S. Scorza, B. Serfass, A. Simchony, D. J. Sincavage, P. Sinervo, J. Street, H. Sun, E. Tanner, G. D. Terry, D. Toback, S. Verma, A. N. Villano, B. von Krosigk, S. L. Watkins, O. Wen, Z. Williams, M. J. Wilson, J. Winchell, K. Wykoff, S. Yellin, B. A. Young, T. C. Yu, B. Zatschler, S. Zatschler, A. Zaytsev, E. Zhang, L. Zheng, A. Zuniga, M. J. Zurowski
This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of 7.63g−days is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and 1000MeV/c2, as well as upper limits on dark photon kinetic mixing and axionlike particle axioelectric coupling for masses between 1.2 and 23.3eV/c2. Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross section sensitivity was achieved. Published by the American Physical Society2025
{"title":"Light dark matter constraints from SuperCDMS HVeV detectors operated underground with an anticoincidence event selection","authors":"M. F. Albakry, I. Alkhatib, D. Alonso-González, D. W. P. Amaral, J. Anczarski, T. Aralis, T. Aramaki, I. J. Arnquist, I. Ataee Langroudy, E. Azadbakht, C. Bathurst, R. Bhattacharyya, A. J. Biffl, P. L. Brink, M. Buchanan, R. Bunker, B. Cabrera, R. Calkins, R. A. Cameron, C. Cartaro, D. G. Cerdeño, Y.-Y. Chang, M. Chaudhuri, J.-H. Chen, R. Chen, N. Chott, J. Cooley, H. Coombes, P. Cushman, R. Cyna, S. Das, F. De Brienne, S. Dharani, M. L. di Vacri, M. D. Diamond, M. Elwan, E. Fascione, E. Figueroa-Feliciano, K. Fouts, M. Fritts, R. Germond, M. Ghaith, S. R. Golwala, J. Hall, S. A. S. Harms, K. Harris, N. Hassan, Z. Hong, E. W. Hoppe, L. Hsu, M. E. Huber, V. Iyer, D. Jardin, V. K. S. Kashyap, S. T. D. Keller, M. H. Kelsey, K. T. Kennard, A. Kubik, N. A. Kurinsky, M. Lee, J. Leyva, J. Liu, Y. Liu, B. Loer, E. Lopez Asamar, P. Lukens, D. B. MacFarlane, R. Mahapatra, J. S. Mammo, N. Mast, A. J. Mayer, H. Meyer zu Theenhausen, É. Michaud, E. Michielin, N. Mirabolfathi, M. Mirzakhani, B. Mohanty, D. Monteiro, J. Nelson, H. Neog, V. Novati, J. L. Orrell, M. D. Osborne, S. M. Oser, L. Pandey, S. Pandey, R. Partridge, D. S. Pedreros, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, S. S. Poudel, A. Pradeep, M. Pyle, W. Rau, E. Reid, R. Ren, T. Reynolds, M. Rios, A. Roberts, A. E. Robinson, J. L. Ryan, T. Saab, D. Sadek, B. Sadoulet, S. P. Sahoo, I. Saikia, J. Sander, A. Sattari, B. Schmidt, R. W. Schnee, S. Scorza, B. Serfass, A. Simchony, D. J. Sincavage, P. Sinervo, J. Street, H. Sun, E. Tanner, G. D. Terry, D. Toback, S. Verma, A. N. Villano, B. von Krosigk, S. L. Watkins, O. Wen, Z. Williams, M. J. Wilson, J. Winchell, K. Wykoff, S. Yellin, B. A. Young, T. C. Yu, B. Zatschler, S. Zatschler, A. Zaytsev, E. Zhang, L. Zheng, A. Zuniga, M. J. Zurowski","doi":"10.1103/physrevd.111.012006","DOIUrl":"https://doi.org/10.1103/physrevd.111.012006","url":null,"abstract":"This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of 7.63</a:mn></a:mtext></a:mtext>g</a:mi>−</a:mtext>days</a:mi></a:mrow></a:math> is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mn>1000</d:mn><d:mtext> </d:mtext><d:mtext> </d:mtext><d:mi>MeV</d:mi><d:mo>/</d:mo><d:msup><d:mi>c</d:mi><d:mn>2</d:mn></d:msup></d:math>, as well as upper limits on dark photon kinetic mixing and axionlike particle axioelectric coupling for masses between 1.2 and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mn>23.3</f:mn><f:mtext> </f:mtext><f:mtext> </f:mtext><f:mi>eV</f:mi><f:mo>/</f:mo><f:msup><f:mi>c</f:mi><f:mn>2</f:mn></f:msup></f:math>. Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross section sensitivity was achieved. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"12 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1103/physrevd.111.024044
Alexandre Serantes, David Travieso Mayo, Javier Mas
We investigate the nonlinear stability of global anti–de Sitter space in the presence of multitrace deformations utilizing an Einstein-Klein-Gordon system with a top-down scalar potential. Our numerical simulations show that marginal and irrelevant deformations retain the nonlinear instability originally found by Bizoń and Rostworowski, while relevant deformations disrupt it. We show that the nonlinear impact of multitrace deformations is in one-to-one correspondence with how they affect the resonant character of the global anti–de Sitter normal mode eigenfrequency spectrum. Published by the American Physical Society2025
{"title":"Multitrace deformations and the nonlinear stability of anti–de Sitter space","authors":"Alexandre Serantes, David Travieso Mayo, Javier Mas","doi":"10.1103/physrevd.111.024044","DOIUrl":"https://doi.org/10.1103/physrevd.111.024044","url":null,"abstract":"We investigate the nonlinear stability of global anti–de Sitter space in the presence of multitrace deformations utilizing an Einstein-Klein-Gordon system with a top-down scalar potential. Our numerical simulations show that marginal and irrelevant deformations retain the nonlinear instability originally found by Bizoń and Rostworowski, while relevant deformations disrupt it. We show that the nonlinear impact of multitrace deformations is in one-to-one correspondence with how they affect the resonant character of the global anti–de Sitter normal mode eigenfrequency spectrum. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1103/physrevd.111.014504
Irene Papaefstathiou, Johannes Knolle, Mari Carmen Bañuls
Tensor network methods have demonstrated their suitability for the study of equilibrium properties of lattice gauge theories, even close to the continuum limit. We use them in an out-of-equilibrium scenario, much less explored so far, by simulating the real-time collisions of composite mesons in the lattice Schwinger model. Constructing wave-packets of vector mesons at different incoming momenta, we observe the opening of the inelastic channel in which two heavier mesons are produced and identify the momentum threshold. To detect the products of the collision in the strong coupling regime we propose local quantitites that could be measured in current quantum simulation platforms. Published by the American Physical Society2025
{"title":"Real-time scattering in the lattice Schwinger model","authors":"Irene Papaefstathiou, Johannes Knolle, Mari Carmen Bañuls","doi":"10.1103/physrevd.111.014504","DOIUrl":"https://doi.org/10.1103/physrevd.111.014504","url":null,"abstract":"Tensor network methods have demonstrated their suitability for the study of equilibrium properties of lattice gauge theories, even close to the continuum limit. We use them in an out-of-equilibrium scenario, much less explored so far, by simulating the real-time collisions of composite mesons in the lattice Schwinger model. Constructing wave-packets of vector mesons at different incoming momenta, we observe the opening of the inelastic channel in which two heavier mesons are produced and identify the momentum threshold. To detect the products of the collision in the strong coupling regime we propose local quantitites that could be measured in current quantum simulation platforms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"94 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1103/physrevd.111.l011702
Riccardo Catena, Einar Urdshals
We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude relative to existing methods (i.e., dark-), allowing for extensive parameter scans in the event of an observed DM signal. The network is also lighter and simpler to use than alternative computational frameworks based on a direct calculation of the DM-induced excitation rate. Published by the American Physical Society2025
{"title":"Dark matter-induced electron excitations in silicon and germanium with deep learning","authors":"Riccardo Catena, Einar Urdshals","doi":"10.1103/physrevd.111.l011702","DOIUrl":"https://doi.org/10.1103/physrevd.111.l011702","url":null,"abstract":"We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude relative to existing methods (i.e., dark-), allowing for extensive parameter scans in the event of an observed DM signal. The network is also lighter and simpler to use than alternative computational frameworks based on a direct calculation of the DM-induced excitation rate. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"118 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1103/physrevd.111.014013
Shohini Bhattacharya, Yoshitaka Hatta, Jakob Schoenleber
We discuss the nonlocal generalization of the QCD chiral anomaly along the light cone and derive relations between twist-two, twist-three, and twist-four generalized parton distributions (GPDs) mediated by the anomaly. We further establish the connection to the “anomaly pole” in the GPD E˜ recently identified in the perturbative calculation of the Compton scattering amplitudes, and demonstrate its cancellation at the GPD level. Our work helps elucidate the previously unexplored connection between GPDs, the chiral anomaly, and the mass generation of the η′ meson. Published by the American Physical Society2025
{"title":"Nonlocal chiral anomaly and generalized parton distributions","authors":"Shohini Bhattacharya, Yoshitaka Hatta, Jakob Schoenleber","doi":"10.1103/physrevd.111.014013","DOIUrl":"https://doi.org/10.1103/physrevd.111.014013","url":null,"abstract":"We discuss the nonlocal generalization of the QCD chiral anomaly along the light cone and derive relations between twist-two, twist-three, and twist-four generalized parton distributions (GPDs) mediated by the anomaly. We further establish the connection to the “anomaly pole” in the GPD E</a:mi>˜</a:mo></a:mover></a:math> recently identified in the perturbative calculation of the Compton scattering amplitudes, and demonstrate its cancellation at the GPD level. Our work helps elucidate the previously unexplored connection between GPDs, the chiral anomaly, and the mass generation of the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>η</e:mi><e:mo>′</e:mo></e:msup></e:math> meson. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1103/physrevd.111.026012
Abhik Bhattacharjee, Joydeep Naskar
In this paper we investigate the code properties of holographic fractal geometries initiated in Pastawski []. We study reconstruction wedges in AdS3/CFT2 for black hole backgrounds, which are in qualitative agreement with the vacuum-AdS approximation using generalized entanglement entropy in Bao []. In higher dimensions, we study reconstruction wedges for the infinite, straight strip in AdSd+1/CFTd and clarify the roles of “straight” and “infinite” in their code properties. Lastly, we comment on uberholography from the perspective of complexity transfer and one-shot holography. Published by the American Physical Society2025
{"title":"Revisiting holographic codes with fractallike boundary erasures","authors":"Abhik Bhattacharjee, Joydeep Naskar","doi":"10.1103/physrevd.111.026012","DOIUrl":"https://doi.org/10.1103/physrevd.111.026012","url":null,"abstract":"In this paper we investigate the code properties of holographic fractal geometries initiated in Pastawski []. We study reconstruction wedges in AdS</a:mi>3</a:mn></a:msub>/</a:mo>CFT</a:mi>2</a:mn></a:msub></a:math> for black hole backgrounds, which are in qualitative agreement with the vacuum-AdS approximation using generalized entanglement entropy in Bao []. In higher dimensions, we study reconstruction wedges for the infinite, straight strip in <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>AdS</c:mi><c:mrow><c:mi>d</c:mi><c:mo>+</c:mo><c:mn>1</c:mn></c:mrow></c:msub><c:mo>/</c:mo><c:msub><c:mi>CFT</c:mi><c:mi>d</c:mi></c:msub></c:math> and clarify the roles of “straight” and “infinite” in their code properties. Lastly, we comment on uberholography from the perspective of complexity transfer and one-shot holography. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"68 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1103/physrevd.111.023525
V. V. Flambaum, I. B. Samsonov, G. K. Vong
Antiquark nuggets are hypothetical compact composite objects conjectured to account for a significant fraction of dark matter in the Universe. In contrast to quark nuggets, these objects consist of antimatter. They may remain undetected if they possess a sufficiently small cross section relative to their mass. In this paper, we investigate the allowed region in the parameter space of this model that is consistent with the observed neutrino flux from the Sun and the Earth, and the nonobservation of seismic events with specific signatures of dark matter particles. We found the allowed values of the antibaryon charge number in this model to be in the interval 2×1024<A<8×1025, while the probability of nucleon annihilation upon collisions with the antiquark core is constrained by 0.1≲κ<0.25. These values of A and κ are, however, constrained by the IceCube experiment and nonobservation of impacts of antiquark nuggets on humans. Although very large values of the antibaryon charge, A>1033, are not fully excluded by the present study, we show that they conflict with the nonobservation of rare catastrophic explosionlike events on the Earth. Published by the American Physical Society2025
{"title":"Manifestation of antiquark nuggets in collisions with the Earth","authors":"V. V. Flambaum, I. B. Samsonov, G. K. Vong","doi":"10.1103/physrevd.111.023525","DOIUrl":"https://doi.org/10.1103/physrevd.111.023525","url":null,"abstract":"Antiquark nuggets are hypothetical compact composite objects conjectured to account for a significant fraction of dark matter in the Universe. In contrast to quark nuggets, these objects consist of antimatter. They may remain undetected if they possess a sufficiently small cross section relative to their mass. In this paper, we investigate the allowed region in the parameter space of this model that is consistent with the observed neutrino flux from the Sun and the Earth, and the nonobservation of seismic events with specific signatures of dark matter particles. We found the allowed values of the antibaryon charge number in this model to be in the interval 2</a:mn>×</a:mo>10</a:mn>24</a:mn></a:msup><</a:mo>A</a:mi><</a:mo>8</a:mn>×</a:mo>10</a:mn>25</a:mn></a:msup></a:math>, while the probability of nucleon annihilation upon collisions with the antiquark core is constrained by <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mn>0.1</c:mn><c:mo>≲</c:mo><c:mi>κ</c:mi><c:mo><</c:mo><c:mn>0.25</c:mn></c:math>. These values of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>A</e:mi></e:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>κ</g:mi></g:math> are, however, constrained by the IceCube experiment and nonobservation of impacts of antiquark nuggets on humans. Although very large values of the antibaryon charge, <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>A</i:mi><i:mo>></i:mo><i:msup><i:mn>10</i:mn><i:mn>33</i:mn></i:msup></i:math>, are not fully excluded by the present study, we show that they conflict with the nonobservation of rare catastrophic explosionlike events on the Earth. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"41 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}