首页 > 最新文献

Plant Cell最新文献

英文 中文
Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition. 单株组学揭示了无性繁殖向生殖转变过程中的转录变化级联。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae226
Ethan J Redmond, James Ronald, Seth J Davis, Daphne Ezer

Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.

植物会经历快速的发育转变,这种转变与生理上的渐变同时发生。此外,群体中的单株植物也会经历不同步的发育转变。单株组学有可能区分与这些二元和连续过程相关的转录事件。此外,我们还可以利用单株组学根据单株植物的内在生物年龄对其进行排序,从而提供高分辨率的转录时间序列。我们对大量野生型拟南芥(Arabidopsis thaliana)的叶片进行了 RNA-seq 分析。虽然大多数转录本在有花和无花植株之间有差异表达,但一些调节因子与叶片大小和生物量的关系更为密切。利用伪时间推断算法,我们确定了一些与衰老相关的过程,如核糖体生物发生的减少,在栓子显现之前就已在转录组中显现。即使在这种近乎异源的群体中,一些变异也与发育性状有关。这些结果支持利用单株组学来发现快速转录动态。
{"title":"Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition.","authors":"Ethan J Redmond, James Ronald, Seth J Davis, Daphne Ezer","doi":"10.1093/plcell/koae226","DOIUrl":"10.1093/plcell/koae226","url":null,"abstract":"<p><p>Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4594-4606"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
You can have your cake and eat it too: Ectopic expression of COLD-REGULATED genes reshapes the salicylic acid-mediated growth-defense tradeoff. 你可以把蛋糕也吃掉:冷调节基因的异位表达重塑了水杨酸介导的生长-防御权衡。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae230
Leiyun Yang
{"title":"You can have your cake and eat it too: Ectopic expression of COLD-REGULATED genes reshapes the salicylic acid-mediated growth-defense tradeoff.","authors":"Leiyun Yang","doi":"10.1093/plcell/koae230","DOIUrl":"10.1093/plcell/koae230","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4270-4271"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced thermotolerance via 22-nt small RNA-mediated silencing of SMXL4 and SMXL5. 通过 22-nt 小 RNA 介导的 SMXL4 和 SMXL5 沉默增强耐热性。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae239
Peng Liu
{"title":"Enhanced thermotolerance via 22-nt small RNA-mediated silencing of SMXL4 and SMXL5.","authors":"Peng Liu","doi":"10.1093/plcell/koae239","DOIUrl":"10.1093/plcell/koae239","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4287-4288"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Air plant genomes shed light on photosynthesis innovation. 气生植物基因组揭示了光合作用的创新。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae213
Andrew C Willoughby
{"title":"Air plant genomes shed light on photosynthesis innovation.","authors":"Andrew C Willoughby","doi":"10.1093/plcell/koae213","DOIUrl":"10.1093/plcell/koae213","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3897-3898"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplast ATP synthase: From structure to engineering. 叶绿体 ATP 合酶:从结构到工程。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae081
Thilo Rühle, Dario Leister, Viviana Pasch

F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.

由于 F 型 ATP 合酶在能量代谢中发挥着广泛而核心的作用,因此对其蛋白质复合物进行了广泛的研究。结构生物学、蛋白质组学和分子生物学方面的进展也极大地促进了我们对叶绿体 ATP 合酶的催化机理、翻译后修饰和生物生成的了解。鉴于叶绿体 ATP 合成酶在光驱动 ATP 生成过程中的关键作用,调整叶绿体 ATP 合成酶的活性和建模方法可用于调节光合作用。未来,基因操作和蛋白质设计工具的进步将大大扩展光驱动纳米发动机工程新策略的测试范围。
{"title":"Chloroplast ATP synthase: From structure to engineering.","authors":"Thilo Rühle, Dario Leister, Viviana Pasch","doi":"10.1093/plcell/koae081","DOIUrl":"10.1093/plcell/koae081","url":null,"abstract":"<p><p>F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3974-3996"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. NIN-LIKE PROTEIN3.2 可抑制抑制因子 Aux/IAA14 的表达,并提高玉米幼苗在低氮条件下的根生物量。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae184
Ruifeng Wang, Yanting Zhong, Jienan Han, Liangliang Huang, Yongqi Wang, Xionggao Shi, Mengfei Li, Yao Zhuang, Wei Ren, Xiaoting Liu, Huairong Cao, Beibei Xin, Jinsheng Lai, Limei Chen, Fanjun Chen, Lixing Yuan, Yi Wang, Xuexian Li

Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.

植物在应对短期低氮(LN)时,通常会以增加生物量和/或根系长度的形式促进根系生长,以提高养分吸收率。然而,短期低氮(LN)介导根系生长的潜在机制在很大程度上仍然难以捉摸。我们的全基因组关联研究、单体型分析和转基因植物的表型分析表明,硝酸根生物量的正调控因子--重要的硝酸根信号转导成分 NIN-LIKE PROTEIN3.2 (ZmNLP3.2)与玉米(Zea mays L.)幼苗在低氮条件下根生物量的自然变化有关。单子叶植物特异基因 AUXIN/INDOLE-3-ACETIC ACID14(ZmAux/IAA14)在 ZmNLP3.2 基因敲除和过表达株系中表现出与 ZmNLP3.2 相反的表达模式,表明 ZmNLP3.2 阻碍了 ZmAux/IAA14 的转录。重要的是,与野生型植株相比,ZmAux/IAA14敲除株系的幼苗在LN条件下的根干重(RDW)更大,而ZmAux/IAA14过表达株系的幼苗在LN条件下的根干重(RDW)更小,这表明ZmAux/IAA14对LN生长幼苗的根干重(RDW)有负调控作用。此外,体外和体内试验表明,AUXIN RESPONSE FACTOR19(ZmARF19)与 ZmAux/IAA14 结合并转录激活 ZmAux/IAA14,ZmNLP3.2-ZmARF19 的相互作用削弱了 ZmAux/IAA14 的活性。与 ZmAux/IAA14 过表达株系相比,zmnlp3.2 ZmAux/IAA14-OE 株系的幼苗在接受 LN 处理时表现出更低的 RDW,这证实了 ZmNLP3.2-ZmAux/IAA14 的相互作用。因此,我们的研究揭示了一个 ZmNLP3.2-ZmARF19-ZmAux/IAA14 模块调节玉米根系生物量以应对氮限制。
{"title":"NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen.","authors":"Ruifeng Wang, Yanting Zhong, Jienan Han, Liangliang Huang, Yongqi Wang, Xionggao Shi, Mengfei Li, Yao Zhuang, Wei Ren, Xiaoting Liu, Huairong Cao, Beibei Xin, Jinsheng Lai, Limei Chen, Fanjun Chen, Lixing Yuan, Yi Wang, Xuexian Li","doi":"10.1093/plcell/koae184","DOIUrl":"10.1093/plcell/koae184","url":null,"abstract":"<p><p>Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4388-4403"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis. 聚合物的结构和相互作用影响拟南芥次生细胞壁的条带模式。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae233
Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove

Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.

木质部气管元件合成图案化的次生细胞壁(SCW),以抵御水分运输的负压。VASCULAR-RELATED NAC-DOMAIN7 (VND7) 可诱导分化,并伴随纤维素、木聚糖和木质素沉积成带状结构域。为了研究聚合物生物合成突变对 SCW 形态的影响,我们开发了一种方法,通过 VND7 的瞬时转化,诱导离体原生质体的气管元件转分化。我们的数据表明,正确的木聚糖伸长是形成独特纤维素带的必要条件,纤维素-木聚糖相互作用是形成重合聚合物图案的必要条件,而纤维素沉积则是产生独特木聚糖图案的细胞内组织所必需的。这些数据表明,正确组装的细胞壁网络可作为支架,引导聚合物沉积成独特的带状结构域。我们描述了原生质体向气管元件的转分化,为在无组织环境和各种突变背景下研究模式化 SCW 生物合成提供了途径。
{"title":"The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis.","authors":"Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove","doi":"10.1093/plcell/koae233","DOIUrl":"10.1093/plcell/koae233","url":null,"abstract":"<p><p>Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4309-4322"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The secret of self-fertilizing plants: NIN-NAD1's role in symbiotic nitrogen fixation. 植物自肥的秘密:NIN-NAD1 在共生固氮中的作用
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae237
Min-Yao Jhu, Jian Feng
{"title":"The secret of self-fertilizing plants: NIN-NAD1's role in symbiotic nitrogen fixation.","authors":"Min-Yao Jhu, Jian Feng","doi":"10.1093/plcell/koae237","DOIUrl":"10.1093/plcell/koae237","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4291-4292"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Off the beaten pathway: Powering carbon capture with alternative photosynthetic electron transfer pathways. 不走寻常路:利用替代光合电子传递途径实现碳捕获。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae155
Guy Levin
{"title":"Off the beaten pathway: Powering carbon capture with alternative photosynthetic electron transfer pathways.","authors":"Guy Levin","doi":"10.1093/plcell/koae155","DOIUrl":"10.1093/plcell/koae155","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3899-3900"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building a better blueprint for bolting. 为螺栓连接绘制更好的蓝图。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae240
Nora Flynn
{"title":"Building a better blueprint for bolting.","authors":"Nora Flynn","doi":"10.1093/plcell/koae240","DOIUrl":"10.1093/plcell/koae240","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4289-4290"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1