Pub Date : 2023-11-10DOI: 10.1017/s1479262123000801
Tabassum Manzoor, Mohd Ashraf Ahanger, Heena Altaf
Abstract Sheath rot is one of the most destructive emerging diseases of rice in Asia and a significant loss (20–85%) to rice production is caused by this disease under temperate agro-climatic conditions of Kashmir. Disease is more prevalent in higher belts of valley where Japonica rice cultivation is more common. Also, late-maturing varieties are more likely to be attacked by sheath rot disease of rice. Information regarding the occurrence and distribution of any pathogen and its variability in the field is very much essential to devise a suitable disease management programme against the particular pathogen. The isolates of Sarocladium oryzae tested in the present study exhibited considerable variation in cultural characteristics, morphology and pathogenicity. The resistant sources for sheath rot disease of rice were identified among the temperate germplasm of rice under a relatively high inoculum concentration and disease pressure of all the variable isolates of S. oryzae . Among 219 rice genotypes screened for resistance against S. oryzae under field conditions, 42 genotypes were further evaluated under controlled epiphytotic conditions against all the 18 isolates of S. oryzae. Four genotypes (SKUA-354, ORN-V4, GS-183, GS357) were finally selected with high resistance against sheath rot disease of rice which can be utilized as potential donors for the development of disease-resistant varieties of rice against sheath rot.
{"title":"Variability of <i>Sarocladium oryzae</i> [(Sawada) Games & Hawksworth] and identification of novel donors for sheath rot resistance among temperate germplasm lines of rice","authors":"Tabassum Manzoor, Mohd Ashraf Ahanger, Heena Altaf","doi":"10.1017/s1479262123000801","DOIUrl":"https://doi.org/10.1017/s1479262123000801","url":null,"abstract":"Abstract Sheath rot is one of the most destructive emerging diseases of rice in Asia and a significant loss (20–85%) to rice production is caused by this disease under temperate agro-climatic conditions of Kashmir. Disease is more prevalent in higher belts of valley where Japonica rice cultivation is more common. Also, late-maturing varieties are more likely to be attacked by sheath rot disease of rice. Information regarding the occurrence and distribution of any pathogen and its variability in the field is very much essential to devise a suitable disease management programme against the particular pathogen. The isolates of Sarocladium oryzae tested in the present study exhibited considerable variation in cultural characteristics, morphology and pathogenicity. The resistant sources for sheath rot disease of rice were identified among the temperate germplasm of rice under a relatively high inoculum concentration and disease pressure of all the variable isolates of S. oryzae . Among 219 rice genotypes screened for resistance against S. oryzae under field conditions, 42 genotypes were further evaluated under controlled epiphytotic conditions against all the 18 isolates of S. oryzae. Four genotypes (SKUA-354, ORN-V4, GS-183, GS357) were finally selected with high resistance against sheath rot disease of rice which can be utilized as potential donors for the development of disease-resistant varieties of rice against sheath rot.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"111 44","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1017/s1479262123000783
Rocío Toledo-Aguilar, Higinio López-Sánchez, Pedro Antonio López, Víctor Heber Aguilar-Rincón, Humberto Vaquera-Huerta, Amalio Santacruz-Varela, Víctor Arturo González-Hernández, Adolfo López-Pérez, César del A. Hernández-Galeno, Moisés Ramírez-Meraz
Abstract Ancho (width) chile peppers have economic, social, culinary and cultural importance in Mexico and worldwide. This chile type considers divergent subtypes that altogether have not been analysed and therefore their morphological diversity has not been systematically described. The objectives were to describe the morphological diversity of ancho pepper landraces from Mexico, to identify groups of similarity and to define the traits with the higher contribution to the total variation. Eighty-six landraces of ancho chile peppers (red, ‘mulatos’, ‘miahuatecos’, ‘cristalinos’ and ‘huacle’), collected in six states of Mexico, and two commercial controls were evaluated in two localities, in a simple randomized complete block experimental design. We recorded 76 morphological traits. Statistical analysis included a combined ANOVA, Pearson's correlation coefficient, discriminant analysis, principal components and clusters. The morphological diversity in ancho chile peppers was mainly made up of fruit width, fruit wall thickness, stem diameter, corolla length, seed weight per fruit, plant height, stem length and pubescence. We defined four groups, which made it possible to differentiate ancho chile peppers of Puebla and the huacle chile pepper of Oaxaca from populations collected in the north and ‘Bajío’ (midland) parts of Mexico. Ancho chile peppers of Mexico showed wide morphological differences according to the type of chile pepper and seed collection regions. The traits that contributed the greatest morphological diversity were fruit width, fruit wall thickness, stem diameter, corolla length, seed weight per fruit, plant height, stem length and pubescence.
{"title":"Morphological diversity of ancho chile pepper landraces from Mexico","authors":"Rocío Toledo-Aguilar, Higinio López-Sánchez, Pedro Antonio López, Víctor Heber Aguilar-Rincón, Humberto Vaquera-Huerta, Amalio Santacruz-Varela, Víctor Arturo González-Hernández, Adolfo López-Pérez, César del A. Hernández-Galeno, Moisés Ramírez-Meraz","doi":"10.1017/s1479262123000783","DOIUrl":"https://doi.org/10.1017/s1479262123000783","url":null,"abstract":"Abstract Ancho (width) chile peppers have economic, social, culinary and cultural importance in Mexico and worldwide. This chile type considers divergent subtypes that altogether have not been analysed and therefore their morphological diversity has not been systematically described. The objectives were to describe the morphological diversity of ancho pepper landraces from Mexico, to identify groups of similarity and to define the traits with the higher contribution to the total variation. Eighty-six landraces of ancho chile peppers (red, ‘mulatos’, ‘miahuatecos’, ‘cristalinos’ and ‘huacle’), collected in six states of Mexico, and two commercial controls were evaluated in two localities, in a simple randomized complete block experimental design. We recorded 76 morphological traits. Statistical analysis included a combined ANOVA, Pearson's correlation coefficient, discriminant analysis, principal components and clusters. The morphological diversity in ancho chile peppers was mainly made up of fruit width, fruit wall thickness, stem diameter, corolla length, seed weight per fruit, plant height, stem length and pubescence. We defined four groups, which made it possible to differentiate ancho chile peppers of Puebla and the huacle chile pepper of Oaxaca from populations collected in the north and ‘Bajío’ (midland) parts of Mexico. Ancho chile peppers of Mexico showed wide morphological differences according to the type of chile pepper and seed collection regions. The traits that contributed the greatest morphological diversity were fruit width, fruit wall thickness, stem diameter, corolla length, seed weight per fruit, plant height, stem length and pubescence.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This study was designed to understand how drought stress impact on the physiological and molecular status of genetically diverse Lolium perenne L. (perennial ryegrass) populations. The sensitivities of the 36 perennial ryegrass populations were checked against PEG-6000-simulated drought stress by analysing physiological status. Afterward, drought-related gene expressions were evaluated under normal and stressed conditions. The drought stress significantly up-regulated the drought-related genes in P6, P10, P15 and P30, while no difference was observed in drought-sensitive ones. The results collectively showed that four populations (P6, P10, P15, P30) are tolerant to drought stress and activate drought-related genes. Genetic similarities of the populations were also monitored using microsatellite (SSR) markers. The ten SSR primers detected 38 alleles. Surprisingly, the drought-tolerant populations were classified into different groups by principal component (PCA) and cluster analysis, showing that they are genetically different. Moreover, four unique alleles were identified by two SSR primers (P-07, and P-08) in P6, P10 and P15. In addition, the drought-tolerant populations (P6, P10, P15, P30) can be used to develop new perennial ryegrass cultivars for areas having drought problems.
{"title":"Physiological and transcriptional status of genetically diverse perennial ryegrass (<i>Lolium perenne</i> L.) populations under drought stress","authors":"Gürkan Demirkol, Anıl Fırat Felek, Özlem Önal Aşcı, Nuri Yılmaz","doi":"10.1017/s1479262123000795","DOIUrl":"https://doi.org/10.1017/s1479262123000795","url":null,"abstract":"Abstract This study was designed to understand how drought stress impact on the physiological and molecular status of genetically diverse Lolium perenne L. (perennial ryegrass) populations. The sensitivities of the 36 perennial ryegrass populations were checked against PEG-6000-simulated drought stress by analysing physiological status. Afterward, drought-related gene expressions were evaluated under normal and stressed conditions. The drought stress significantly up-regulated the drought-related genes in P6, P10, P15 and P30, while no difference was observed in drought-sensitive ones. The results collectively showed that four populations (P6, P10, P15, P30) are tolerant to drought stress and activate drought-related genes. Genetic similarities of the populations were also monitored using microsatellite (SSR) markers. The ten SSR primers detected 38 alleles. Surprisingly, the drought-tolerant populations were classified into different groups by principal component (PCA) and cluster analysis, showing that they are genetically different. Moreover, four unique alleles were identified by two SSR primers (P-07, and P-08) in P6, P10 and P15. In addition, the drought-tolerant populations (P6, P10, P15, P30) can be used to develop new perennial ryegrass cultivars for areas having drought problems.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1017/s1479262123000758
Carolina Tassano, Rodrigo A. Olano, Paola Gaiero, Magdalena Vaio, Pablo R. Speranza
Abstract Ilex paraguariensis A. St.-Hil. ( yerba mate ) (Aquifoliaceae Bercht. & J. Presl) is a plant species with great economic and cultural importance because its leaves are processed and ground to make infusions like mate or tereré . The species is distributed in a continuous area that includes Southern Brazil and part of Paraguay and Argentina. Uruguay represents the Southern distribution limit of the species, where small populations can be found as part of ravine forests. Although there are previous reports of molecular markers for this and other species in the genus, the available markers were not informative enough to represent the intra- and interpopulation genetic diversity in marginal Uruguayan populations. In this study, we developed highly informative polymorphic microsatellite markers to be used in genetic studies in I. paraguariensis . Markers were identified in contigs from the genome sequence of two individuals and then tested for amplification and polymorphism content in a diverse panel. Markers which passed these filters were tested on populations from Uruguay. They detected higher diversity within populations (in terms of number of alleles and heterozygosity) than previously reported, and levels of heterozygosity similar to those reported for two Brazilian populations. This subset of seven markers were successfully multiplexed, substantially reducing the costs of the analysis. Combined with previously reported nuclear and plastid markers, they can be used to evaluate the genetic diversity of rear-edge populations, identify genotypes for paternity studies and provide relevant information for the conservation and management of germplasm.
{"title":"Development of nuclear microsatellite markers in Yerba mate (<i>Ilex paraguariensis</i> A. St. Hil.) from whole-genome sequence data","authors":"Carolina Tassano, Rodrigo A. Olano, Paola Gaiero, Magdalena Vaio, Pablo R. Speranza","doi":"10.1017/s1479262123000758","DOIUrl":"https://doi.org/10.1017/s1479262123000758","url":null,"abstract":"Abstract Ilex paraguariensis A. St.-Hil. ( yerba mate ) (Aquifoliaceae Bercht. & J. Presl) is a plant species with great economic and cultural importance because its leaves are processed and ground to make infusions like mate or tereré . The species is distributed in a continuous area that includes Southern Brazil and part of Paraguay and Argentina. Uruguay represents the Southern distribution limit of the species, where small populations can be found as part of ravine forests. Although there are previous reports of molecular markers for this and other species in the genus, the available markers were not informative enough to represent the intra- and interpopulation genetic diversity in marginal Uruguayan populations. In this study, we developed highly informative polymorphic microsatellite markers to be used in genetic studies in I. paraguariensis . Markers were identified in contigs from the genome sequence of two individuals and then tested for amplification and polymorphism content in a diverse panel. Markers which passed these filters were tested on populations from Uruguay. They detected higher diversity within populations (in terms of number of alleles and heterozygosity) than previously reported, and levels of heterozygosity similar to those reported for two Brazilian populations. This subset of seven markers were successfully multiplexed, substantially reducing the costs of the analysis. Combined with previously reported nuclear and plastid markers, they can be used to evaluate the genetic diversity of rear-edge populations, identify genotypes for paternity studies and provide relevant information for the conservation and management of germplasm.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"58 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136261910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Neocinnamomum plants are evergreen shrubs or small trees belonging to the Neocinnamomeae tribe of the Lauraceae family. Their seeds are rich in fatty acids, and their leaves are often used in traditional Chinese medicine. Presently, only a few studies have been performed on Neocinnamomum plants; therefore, the genome-based phylogeny among Neocinnamomum species has not been determined, which limits the germplasm innovation of this genus. In this study, by the Illumina (next-generation sequencing) and third-generation sequencing technologies, the whole genomes of seven Neocinnamomum species samples were sequenced, their nuclear DNA (nrDNA) sequences were assembled and characterized, and their phylogeny was reconstructed. The results revealed four hypervariable regions (i.e. transcribed spacer regions) in the nrDNA sequences, among which the highest degree of variation was observed in the external transcribed spacer (ETS) region localized behind the 26S gene. A total of 27 insertions/deletions and 184 single-nucleotide polymorphisms, both localized mainly in the ETS and internal transcribed spacer regions, were identified. Phylogenetic trees were constructed based on the nrDNA sequences using the maximum likelihood (ML) and Bayesian inference (BI) methods with Caryodaphnopsis henryi as the outgroup. The ML tree divided the seven Neocinnamomum species into four clades. Clade I consisted of Neocinnamomum caudatum var. macrocarpum and Neocinnamomum caudatum , clade II included Neocinnamomum delavayi and Neocinnamomum mekongense , clade III included Neocinnamomum fargesii and a branch species of N. delavayi and clade IV included Neocinnamomum lecomtei , constituting a monophyletic and basal group. The BI tree shared the same topological structure as the ML tree, and all the support values of the BI tree were one except for that of one Neocinnamomum species (0.98). The results of this study provide new evidence regarding the phylogenetic evolution of the Neocinnamomum plants.
{"title":"Nuclear DNA-based phylogenetic analysis of <i>Neocinnamomum</i> species","authors":"Qishao Li, Linyi Yang, Qunfei Yu, Wenbin Xu, Yaxuan Xin, Yu Song, Peiyao Xin","doi":"10.1017/s1479262123000771","DOIUrl":"https://doi.org/10.1017/s1479262123000771","url":null,"abstract":"Abstract Neocinnamomum plants are evergreen shrubs or small trees belonging to the Neocinnamomeae tribe of the Lauraceae family. Their seeds are rich in fatty acids, and their leaves are often used in traditional Chinese medicine. Presently, only a few studies have been performed on Neocinnamomum plants; therefore, the genome-based phylogeny among Neocinnamomum species has not been determined, which limits the germplasm innovation of this genus. In this study, by the Illumina (next-generation sequencing) and third-generation sequencing technologies, the whole genomes of seven Neocinnamomum species samples were sequenced, their nuclear DNA (nrDNA) sequences were assembled and characterized, and their phylogeny was reconstructed. The results revealed four hypervariable regions (i.e. transcribed spacer regions) in the nrDNA sequences, among which the highest degree of variation was observed in the external transcribed spacer (ETS) region localized behind the 26S gene. A total of 27 insertions/deletions and 184 single-nucleotide polymorphisms, both localized mainly in the ETS and internal transcribed spacer regions, were identified. Phylogenetic trees were constructed based on the nrDNA sequences using the maximum likelihood (ML) and Bayesian inference (BI) methods with Caryodaphnopsis henryi as the outgroup. The ML tree divided the seven Neocinnamomum species into four clades. Clade I consisted of Neocinnamomum caudatum var. macrocarpum and Neocinnamomum caudatum , clade II included Neocinnamomum delavayi and Neocinnamomum mekongense , clade III included Neocinnamomum fargesii and a branch species of N. delavayi and clade IV included Neocinnamomum lecomtei , constituting a monophyletic and basal group. The BI tree shared the same topological structure as the ML tree, and all the support values of the BI tree were one except for that of one Neocinnamomum species (0.98). The results of this study provide new evidence regarding the phylogenetic evolution of the Neocinnamomum plants.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135571052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1017/s147926212300076x
Vikas Kumar Sharma, Dheeraj Sharma, Rahul Sharma, Som Dev Sharma, Karuna Dhiman, Ashutosh A. Murkute
Abstract Efficiently distinguishing various Syzygium cumini L. Skeels (jamun) accessions holds practical significance for selection purposes. This study concentrated on 15 superior genotypes of jamun from the North Western Indian Himalayas, selected for their pivotal horticultural traits. Drawn from a pool of 82 collected genotypes and assessed across two consecutive years (2019 and 2020), these genotypes underwent morphological evaluations utilizing a randomized block design replicated thrice. Concurrently, random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers were employed for molecular analysis. Substantial variations surfaced among genotypes, both in morphological traits and fruit biochemistry. Notably, tree 43 exhibited promise across multiple horticultural facets, encompassing fruit weight, length, pulp weight, pulp-to-seed ratio and pulp percentage. Conversely, tree 49 excelled in elevated levels of total soluble solids, total sugar and reducing sugar. While principal component analysis and cluster analysis unveiled modest genetic variability, RAPD and ISSR markers unveiled pronounced molecular-level polymorphism. Agglomerative hierarchical clustering delineated the genotypes into five distinct clusters. Cluster I encompassed two genotypes, cluster II embraced five while the largest group, cluster III, included six genotypes. Clusters IV and V highlighted individual genotypes, trees 43 and 54 respectively. In the molecular analysis, UPGMA clustering yielded two primary clusters, spotlighting the noteworthy similarity between genotypes trees 49 and 52 whereas, trees 40, 43, 44 and 48 stood distinct. The observed genetic diversity stands as a valuable resource with substantial potential to enrich diverse breeding initiatives. These salient genetic variations underscore the richness within the studied population, offering a valuable asset for focused future pursuits.
摘要:有效地区分不同品种的夏合欢(Syzygium cumini L. Skeels, jamun)具有重要的选育意义。本研究集中于西北印度喜马拉雅地区的15个优越基因型的jamun,选择其关键的园艺性状。从收集的82个基因型中抽取,并在连续两年(2019年和2020年)对这些基因型进行评估,利用重复三次的随机区组设计对这些基因型进行形态学评估。同时,采用随机扩增多态性DNA (RAPD)和ISSR标记进行分子分析。不同基因型在形态性状和果实生化方面均存在显著差异。值得注意的是,43号树在果实重量、长度、果肉重量、果肉与种子比和果肉百分比等多个园艺方面都表现出良好的前景。相反,树49在总可溶性固形物、总糖和还原糖水平升高方面表现出色。主成分分析和聚类分析揭示了适度的遗传变异,而RAPD和ISSR标记揭示了明显的分子水平多态性。聚类分层聚类将基因型划分为5个不同的聚类。集群I包含两个基因型,集群II包含五个基因型,而最大的集群III包括六个基因型。聚类IV和聚类V分别为43树和54树,突出了个体基因型。在分子分析中,UPGMA聚类产生了两个主要聚类,突出了49和52基因型之间显著的相似性,而40、43、44和48基因型之间存在差异。观察到的遗传多样性是一种宝贵的资源,具有丰富多样化育种活动的巨大潜力。这些显著的遗传变异强调了研究人群的丰富性,为未来的重点研究提供了宝贵的财富。
{"title":"Morpho-molecular exploration and selection of elite genotypes from indigenous <i>Syzygium cumini</i> L. Skeels (jamun) diversity of North-Western Indian Himalayas","authors":"Vikas Kumar Sharma, Dheeraj Sharma, Rahul Sharma, Som Dev Sharma, Karuna Dhiman, Ashutosh A. Murkute","doi":"10.1017/s147926212300076x","DOIUrl":"https://doi.org/10.1017/s147926212300076x","url":null,"abstract":"Abstract Efficiently distinguishing various Syzygium cumini L. Skeels (jamun) accessions holds practical significance for selection purposes. This study concentrated on 15 superior genotypes of jamun from the North Western Indian Himalayas, selected for their pivotal horticultural traits. Drawn from a pool of 82 collected genotypes and assessed across two consecutive years (2019 and 2020), these genotypes underwent morphological evaluations utilizing a randomized block design replicated thrice. Concurrently, random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers were employed for molecular analysis. Substantial variations surfaced among genotypes, both in morphological traits and fruit biochemistry. Notably, tree 43 exhibited promise across multiple horticultural facets, encompassing fruit weight, length, pulp weight, pulp-to-seed ratio and pulp percentage. Conversely, tree 49 excelled in elevated levels of total soluble solids, total sugar and reducing sugar. While principal component analysis and cluster analysis unveiled modest genetic variability, RAPD and ISSR markers unveiled pronounced molecular-level polymorphism. Agglomerative hierarchical clustering delineated the genotypes into five distinct clusters. Cluster I encompassed two genotypes, cluster II embraced five while the largest group, cluster III, included six genotypes. Clusters IV and V highlighted individual genotypes, trees 43 and 54 respectively. In the molecular analysis, UPGMA clustering yielded two primary clusters, spotlighting the noteworthy similarity between genotypes trees 49 and 52 whereas, trees 40, 43, 44 and 48 stood distinct. The observed genetic diversity stands as a valuable resource with substantial potential to enrich diverse breeding initiatives. These salient genetic variations underscore the richness within the studied population, offering a valuable asset for focused future pursuits.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The genus Oxalis contains important species worldwide with great economic and edible values. However, the testing guidelines have not been furbished, especially in China. Oxalis germplasm, including 60 species and 125 varieties, was collected from home and abroad and extensive field trials and phenotypic observations were conducted along with quantitative taxonomy, observations, correlation analysis and cluster analysis. Under the test guidelines of the International Union for the Protection of New Plant Varieties (UPOV), general guidelines for testing for distinctness, uniformity, stability (DUS) of new plant varieties, and Japanese test guidelines for DUS of Oxalis , 96 test characteristics (38 qualitative characteristics, 28 quantitative characteristics and 30 pseudo-qualitative characteristics) were determined as DUS test characteristics of Oxalis . Each test characteristic was scientifically graded and accurately described, and standard varieties and characteristic diagrams were provided for some characteristics. The guidelines for testing DUS of new plant varieties of Oxalis provide a standard for examining and testing new varieties of plants.
{"title":"Testing guidelines for distinctness, uniformity and stability in <i>Oxalis</i>","authors":"Na Dong, Xuexuan Wang, Wanli Tuo, Jianchao Chang, Wubaiyu Lin, Kefei Wu, Junwen Zhai, Sagheer Ahmad, Donghui Peng, Qiaoxian Xu, Shasha Wu","doi":"10.1017/s1479262123000722","DOIUrl":"https://doi.org/10.1017/s1479262123000722","url":null,"abstract":"Abstract The genus Oxalis contains important species worldwide with great economic and edible values. However, the testing guidelines have not been furbished, especially in China. Oxalis germplasm, including 60 species and 125 varieties, was collected from home and abroad and extensive field trials and phenotypic observations were conducted along with quantitative taxonomy, observations, correlation analysis and cluster analysis. Under the test guidelines of the International Union for the Protection of New Plant Varieties (UPOV), general guidelines for testing for distinctness, uniformity, stability (DUS) of new plant varieties, and Japanese test guidelines for DUS of Oxalis , 96 test characteristics (38 qualitative characteristics, 28 quantitative characteristics and 30 pseudo-qualitative characteristics) were determined as DUS test characteristics of Oxalis . Each test characteristic was scientifically graded and accurately described, and standard varieties and characteristic diagrams were provided for some characteristics. The guidelines for testing DUS of new plant varieties of Oxalis provide a standard for examining and testing new varieties of plants.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.46265/genresj.emor6509
Dongyan Zhao, Katherine Maria Mejia-Guerra, Marcelo Mollinari, Deborah Samac, Brian Irish, Katarzyna Heller-Uszynska, Craig Thomas Beil, Moira Jane Sheehan
Small public breeding programmes have many barriers to adopting technology, particularly creating and using genetic marker panels for genomic-based decisions in selection. Here we report the creation of a DArTag panel of 3,000 loci distributed across the alfalfa (Medicago sativa L.) genome for use in molecular breeding and genomic insight. The creation of this marker panel brings cost-effective and rapid genotyping capabilities to alfalfa breeding programmes. The open access provided by this platform will allow genetic data sets generated on the marker panel to be compared and joined across projects, institutions and countries. This genotyping resource has the power to make routine genotyping a reality for any breeder of alfalfa.
{"title":"A public mid-density genotyping platform for alfalfa (Medicago sativa L.)","authors":"Dongyan Zhao, Katherine Maria Mejia-Guerra, Marcelo Mollinari, Deborah Samac, Brian Irish, Katarzyna Heller-Uszynska, Craig Thomas Beil, Moira Jane Sheehan","doi":"10.46265/genresj.emor6509","DOIUrl":"https://doi.org/10.46265/genresj.emor6509","url":null,"abstract":"Small public breeding programmes have many barriers to adopting technology, particularly creating and using genetic marker panels for genomic-based decisions in selection. Here we report the creation of a DArTag panel of 3,000 loci distributed across the alfalfa (Medicago sativa L.) genome for use in molecular breeding and genomic insight. The creation of this marker panel brings cost-effective and rapid genotyping capabilities to alfalfa breeding programmes. The open access provided by this platform will allow genetic data sets generated on the marker panel to be compared and joined across projects, institutions and countries. This genotyping resource has the power to make routine genotyping a reality for any breeder of alfalfa.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135853181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical and morphological characteristics of Greek wheat landrace and cultivar seeds were evaluated, aiming to assess their bread- and pasta-making quality. Furthermore, the plant agromorphological traits of wheat landraces and cultivars were measured and correlated with seed physical properties. Fifteen Triticum spp. accessions, out of which four cultivars (two Triticum aestivum and two T. durum), nine landraces (two T. durum, five T. aestivum, one T. dicoccum and one T. polonicum) and two T. durum of unknown status were studied. Seventeen morphological plant and seed traits were measured based on UPOV descriptors. Ear emergence was earlier in cultivars than in landraces. The plant weight of the landraces was, in some cases, almost twice the cultivars’. Seed firmness (62.96–194.85N) was positively correlated with thousand kernel weight and volume (0.840 and 0.791, P < 0.05, respectively). Based on the agromorphological traits, cluster analysis clearly separated the species and the cultivars from the landraces, and the unknown status accessions were grouped with the cultivars. Cluster analysis with all measured traits set the wheat accessions in the following distinct groups: (1) T. durum cultivars including the unknown status accessions, (2) T. aestivum cultivars, and (3) T. aestivum and T. durum landraces. T. polonicum and T. dicoccum each formed a separate group. Seed physical properties of the analyzed Greek landraces indicated their suitability for bread and/or pasta making.
{"title":"Evaluating agromorphological traits of Greek wheat landraces and exploring their potential for bread and pasta making based on seed physical properties","authors":"Styliani Protonotariou, Ricos Thanopoulos, Anastasios Katsileros, Penelope Bebeli, Ioanna Mandala","doi":"10.46265/genresj.hfwz5263","DOIUrl":"https://doi.org/10.46265/genresj.hfwz5263","url":null,"abstract":"Physical and morphological characteristics of Greek wheat landrace and cultivar seeds were evaluated, aiming to assess their bread- and pasta-making quality. Furthermore, the plant agromorphological traits of wheat landraces and cultivars were measured and correlated with seed physical properties. Fifteen Triticum spp. accessions, out of which four cultivars (two Triticum aestivum and two T. durum), nine landraces (two T. durum, five T. aestivum, one T. dicoccum and one T. polonicum) and two T. durum of unknown status were studied. Seventeen morphological plant and seed traits were measured based on UPOV descriptors. Ear emergence was earlier in cultivars than in landraces. The plant weight of the landraces was, in some cases, almost twice the cultivars’. Seed firmness (62.96–194.85N) was positively correlated with thousand kernel weight and volume (0.840 and 0.791, P < 0.05, respectively). Based on the agromorphological traits, cluster analysis clearly separated the species and the cultivars from the landraces, and the unknown status accessions were grouped with the cultivars. Cluster analysis with all measured traits set the wheat accessions in the following distinct groups: (1) T. durum cultivars including the unknown status accessions, (2) T. aestivum cultivars, and (3) T. aestivum and T. durum landraces. T. polonicum and T. dicoccum each formed a separate group. Seed physical properties of the analyzed Greek landraces indicated their suitability for bread and/or pasta making.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136097499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1017/s1479262123000746
Kaili Wang, Liwei Chu, Pu Zhao, Bo Zhao, Yisong Li, Yang Kai, Ping Wan
Abstract Seed coat colour in adzuki bean is an important quality trait and closely associated with anthocyanin metabolism pathways. To further understand the inheritance of seed coat colour pattern, the inheritance between multiple seed coat colours and ivory seed were analysed using F 1:2 , F 2:3 and F 3:4 populations derived from five bi-parental crosses. The differences between ivory and red mottle on ivory are controlled by a single recessive R locus and RI locus, respectively. Green, light brown and golden are all dominant to red and governed by two loci. The B (brown) locus shows dominant epistasis over T locus. The R (red) locus was recessive epistasis to B (black), T (light brown), G (golden), GR (green) and RI (red mottle on ivory) loci. The new insight into the strong recessive epistasis of the R locus will be important for gene mapping and cloning, candidate gene functional validation and quality improvement in adzuki bean.
{"title":"New insight into inheritance pattern of seed coat colour in adzuki bean","authors":"Kaili Wang, Liwei Chu, Pu Zhao, Bo Zhao, Yisong Li, Yang Kai, Ping Wan","doi":"10.1017/s1479262123000746","DOIUrl":"https://doi.org/10.1017/s1479262123000746","url":null,"abstract":"Abstract Seed coat colour in adzuki bean is an important quality trait and closely associated with anthocyanin metabolism pathways. To further understand the inheritance of seed coat colour pattern, the inheritance between multiple seed coat colours and ivory seed were analysed using F 1:2 , F 2:3 and F 3:4 populations derived from five bi-parental crosses. The differences between ivory and red mottle on ivory are controlled by a single recessive R locus and RI locus, respectively. Green, light brown and golden are all dominant to red and governed by two loci. The B (brown) locus shows dominant epistasis over T locus. The R (red) locus was recessive epistasis to B (black), T (light brown), G (golden), GR (green) and RI (red mottle on ivory) loci. The new insight into the strong recessive epistasis of the R locus will be important for gene mapping and cloning, candidate gene functional validation and quality improvement in adzuki bean.","PeriodicalId":20188,"journal":{"name":"Plant Genetic Resources","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135481202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}