Madalina Georgiana Albu Kaya, Alice Geanina Simonca, Ileana Rau, Alina Elena Coman, Minodora Maria Marin, Lacramioara Popa, Roxana Trusca, Cristina-Elena Dinu-Pirvu, Mihaela Violeta Ghica
Background: It is well known that periodontitis affects the gums and surrounding connective tissue. The chronic inflammatory response induced by bacteria in the gingival tissue leads to the loss of the collagen connection between the tooth and the bone and ultimately to bone loss.
Methods: In this context, the aim of this research was the obtaining and characterization of a drug release supports in the form of sponges based on collagen, hyaluronic acid as a support and metronidazole as an antibiotic for the treatment of periodontitis. The sponges were characterized by FT-IR spectroscopy, water uptake, contact angle, SEM microscopy, in vitro metronidazole release analysis from sponges and data modeling.
Results: The results showed that all the sponges had a porous structure with interconnected pores, the pore sizes being influenced by hyaluronic acid and metronidazole; the spongious structure became much more dense for samples with metronidazole content. All metronidazole-loaded sponges showed good surface wettability and an adequate swelling capacity for a suitable antimicrobial release at the periodontal pocket. The porous structures allow a controlled release, fast in the first hour, essential to control the initial microbial load at the periodontal level, which continues slowly in the following hours to ensure an effective treatment of periodontitis.
Conclusions: Correlating all physical-chemical and bio-pharmaceutical results obtained, a promising solution for periodontitis treatment could be a met-ronidazole-collagen-hyaluronic system consisting of 1% collagen, 1.5% metronidazole and 0.8% hyaluronic acid, and in vitro and in vivo tests are recommended to continue studies.
{"title":"Topical Biocomposites Based on Collagen, Hyaluronic Acid and Metronidazole as Periodontitis Treatment.","authors":"Madalina Georgiana Albu Kaya, Alice Geanina Simonca, Ileana Rau, Alina Elena Coman, Minodora Maria Marin, Lacramioara Popa, Roxana Trusca, Cristina-Elena Dinu-Pirvu, Mihaela Violeta Ghica","doi":"10.3390/ph17101336","DOIUrl":"https://doi.org/10.3390/ph17101336","url":null,"abstract":"<p><strong>Background: </strong>It is well known that periodontitis affects the gums and surrounding connective tissue. The chronic inflammatory response induced by bacteria in the gingival tissue leads to the loss of the collagen connection between the tooth and the bone and ultimately to bone loss.</p><p><strong>Methods: </strong>In this context, the aim of this research was the obtaining and characterization of a drug release supports in the form of sponges based on collagen, hyaluronic acid as a support and metronidazole as an antibiotic for the treatment of periodontitis. The sponges were characterized by FT-IR spectroscopy, water uptake, contact angle, SEM microscopy, in vitro metronidazole release analysis from sponges and data modeling.</p><p><strong>Results: </strong>The results showed that all the sponges had a porous structure with interconnected pores, the pore sizes being influenced by hyaluronic acid and metronidazole; the spongious structure became much more dense for samples with metronidazole content. All metronidazole-loaded sponges showed good surface wettability and an adequate swelling capacity for a suitable antimicrobial release at the periodontal pocket. The porous structures allow a controlled release, fast in the first hour, essential to control the initial microbial load at the periodontal level, which continues slowly in the following hours to ensure an effective treatment of periodontitis.</p><p><strong>Conclusions: </strong>Correlating all physical-chemical and bio-pharmaceutical results obtained, a promising solution for periodontitis treatment could be a met-ronidazole-collagen-hyaluronic system consisting of 1% collagen, 1.5% metronidazole and 0.8% hyaluronic acid, and in vitro and in vivo tests are recommended to continue studies.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This study aims to explore the protective role of JB-V-60-a novel synthetic derivative of decur-sin-against lipopolysaccharide (LPS)-induced inflammation.
Methods: We examined the effects of JB-V-60 on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human pulmonary artery endothelial cells (HPAECs). Additionally, we assessed its effects on iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in LPS-exposed mice.
Results: JB-V-60 enhanced HO-1 levels, inhibited NF-κB activation, reduced COX-2/PGE2 and iNOS/NO concentra-tions, and lowered phosphorylation of signal transducer and activator of transcription 1. It also promoted the translocation of Nrf2 into the nucleus, allowing its binding to antioxidant response elements and resulting in reduced IL-1β in LPS-stimulated HPAECs. The reduction in iNOS/NO levels by JB-V-60 was reversed when HO-1 was inhibited via RNAi. In the animal model, JB-V-60 sig-nificantly decreased iNOS expression in lung tissues and TNF-α levels in bronchoalveolar lavage fluid.
Conclusions: These findings highlight the anti-inflammatory effects of JB-V-60 and its potential as a treat-ment for inflammatory disorders.
{"title":"Inhibitory Effects of Decursin Derivative against Lipopolysaccharide-Induced Inflammation.","authors":"Jinhee Lee, Jong-Beom Heo, Sanghee Cho, Chang-Woo Ryu, Hae-Joon Heo, Mi-Young Yun, Gaewon Nam, Gyu-Yong Song, Jong-Sup Bae","doi":"10.3390/ph17101337","DOIUrl":"https://doi.org/10.3390/ph17101337","url":null,"abstract":"<p><strong>Background: </strong>This study aims to explore the protective role of JB-V-60-a novel synthetic derivative of decur-sin-against lipopolysaccharide (LPS)-induced inflammation.</p><p><strong>Methods: </strong>We examined the effects of JB-V-60 on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human pulmonary artery endothelial cells (HPAECs). Additionally, we assessed its effects on iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β in LPS-exposed mice.</p><p><strong>Results: </strong>JB-V-60 enhanced HO-1 levels, inhibited NF-κB activation, reduced COX-2/PGE2 and iNOS/NO concentra-tions, and lowered phosphorylation of signal transducer and activator of transcription 1. It also promoted the translocation of Nrf2 into the nucleus, allowing its binding to antioxidant response elements and resulting in reduced IL-1β in LPS-stimulated HPAECs. The reduction in iNOS/NO levels by JB-V-60 was reversed when HO-1 was inhibited via RNAi. In the animal model, JB-V-60 sig-nificantly decreased iNOS expression in lung tissues and TNF-α levels in bronchoalveolar lavage fluid.</p><p><strong>Conclusions: </strong>These findings highlight the anti-inflammatory effects of JB-V-60 and its potential as a treat-ment for inflammatory disorders.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain.
Discussion: Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity.
Conslusions: This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.
背景:长期以来,人们一直认为植物具有影响神经系统健康的潜力,既具有神经保护特性,也具有神经毒性。本综述探讨了植物源化合物的双重性质及其对人脑的影响:大量研究强调了各种植物成分对神经的保护作用,如银杏叶、积雪草、人参、薇甘菊和莪术中的植物成分。这些神经保护化合物具有抗氧化、抗炎和增强认知能力的特性,因此有望用于防治神经退行性疾病和改善大脑功能。多酚类化合物、三萜酸和特定的植物化合物(如从 EGb 761 提取物中提取的化合物)已显示出与大脑中关键酶和受体的相互作用,从而产生保护神经的结果。不过,本综述也承认某些植物具有潜在的神经毒性,如马鞭草属植物含有甾体生物碱,可导致 DNA 损伤并破坏神经功能;颠茄属植物可干扰体内胆碱能系统的正常功能,导致一系列与抗胆碱能毒性相关的症状:本综述还强调了进一步研究的必要性,以阐明植物提取物的神经保护和神经毒性作用的复杂机制,并确定具有治疗潜力的新型植物成分。了解植物与人脑之间的复杂关系对于利用神经保护化合物的益处同时降低神经毒性物质的相关风险至关重要。本综述全面概述了有关植物神经特性的知识,并强调了在这一领域继续开展研究对于开发针对大脑健康和神经系统疾病的新型治疗策略的重要性。
{"title":"Plants' Impact on the Human Brain-Exploring the Neuroprotective and Neurotoxic Potential of Plants.","authors":"Georgiana Moise, Alex-Robert Jîjie, Elena-Alina Moacă, Iasmina-Alexandra Predescu, Cristina Adriana Dehelean, Alina Hegheș, Daliborca Cristina Vlad, Roxana Popescu, Cristian Sebastian Vlad","doi":"10.3390/ph17101339","DOIUrl":"https://doi.org/10.3390/ph17101339","url":null,"abstract":"<p><strong>Background: </strong>Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain.</p><p><strong>Discussion: </strong>Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in <i>Ginkgo biloba</i>, <i>Centella asiatica</i>, <i>Panax ginseng</i>, <i>Withania somnifera</i>, and <i>Curcuma longa</i>. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the <i>Veratrum</i> species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or <i>Atropa belladonna</i>, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity.</p><p><strong>Conslusions: </strong>This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barbara Valsasina, Paolo Orsini, Chiara Terenghi, Alberto Ocana
ADCs have emerged as a promising class of therapeutics, combining the targeting specificity of monoclonal antibodies with the cytotoxic potency of small-molecule drugs. Although the majority of approved ADCs are still based on microtubule binder payloads, the recent success of topoisomerase I inhibitors has revitalized interest in the identification of novel agents overcoming present limitations in the field including narrow therapeutic window and chemoresistance. The success of DNA binders as payload for ADCs has been very limited, up to now, due, among other factors, to high hydrophobicity and planar chemical structures resulting in most cases in ADCs with a strong tendency to aggregate, poor plasma stability, and limited therapeutic index. Some of these molecules, however, continue to be of interest due to their favorable properties in terms of cytotoxic potency even in chemoresistant settings, bystander and immunogenic cell death effects, and known combinability with approved drugs. We critically evaluated several clinically tested ADCs containing DNA binders, focusing on payload physicochemical properties, cytotoxic potency, and obtained clinical results. Our analysis suggests that further exploration of certain chemical classes, specifically anthracyclines and duocarmycins, based on the optimization of physicochemical parameters, reduction of cytotoxic potency, and careful design of targeting molecules is warranted. This approach will possibly result in a novel generation of payloads overcoming the limitations of clinically validated ADCs.
ADC 结合了单克隆抗体的靶向特异性和小分子药物的细胞毒性,已成为一类前景广阔的治疗药物。虽然大多数获批的 ADC 仍基于微管粘合剂有效载荷,但拓扑异构酶 I 抑制剂最近取得的成功重新激发了人们对新型药物的兴趣,以克服该领域目前存在的局限性,包括治疗窗口狭窄和化疗耐药性。迄今为止,DNA 粘合剂作为 ADCs 有效载荷所取得的成功非常有限,原因之一是高疏水性和平面化学结构在大多数情况下导致 ADCs 具有强烈的聚集倾向、血浆稳定性差以及治疗指数有限。不过,这些分子中仍有一些因其良好的细胞毒性、旁观者和免疫原性细胞死亡效应以及与已获批准药物的可联合性而受到关注。我们对几种经过临床试验的含有 DNA 粘合剂的 ADC 进行了严格评估,重点关注有效载荷的理化性质、细胞毒性效力和临床结果。我们的分析表明,有必要在优化理化参数、降低细胞毒性效力和精心设计靶向分子的基础上,进一步探索某些化学类别,特别是蒽环类和二胭脂虫类。这种方法可能会产生新一代有效载荷,克服临床验证的 ADC 的局限性。
{"title":"Present Scenario and Future Landscape of Payloads for ADCs: Focus on DNA-Interacting Agents.","authors":"Barbara Valsasina, Paolo Orsini, Chiara Terenghi, Alberto Ocana","doi":"10.3390/ph17101338","DOIUrl":"https://doi.org/10.3390/ph17101338","url":null,"abstract":"<p><p>ADCs have emerged as a promising class of therapeutics, combining the targeting specificity of monoclonal antibodies with the cytotoxic potency of small-molecule drugs. Although the majority of approved ADCs are still based on microtubule binder payloads, the recent success of topoisomerase I inhibitors has revitalized interest in the identification of novel agents overcoming present limitations in the field including narrow therapeutic window and chemoresistance. The success of DNA binders as payload for ADCs has been very limited, up to now, due, among other factors, to high hydrophobicity and planar chemical structures resulting in most cases in ADCs with a strong tendency to aggregate, poor plasma stability, and limited therapeutic index. Some of these molecules, however, continue to be of interest due to their favorable properties in terms of cytotoxic potency even in chemoresistant settings, bystander and immunogenic cell death effects, and known combinability with approved drugs. We critically evaluated several clinically tested ADCs containing DNA binders, focusing on payload physicochemical properties, cytotoxic potency, and obtained clinical results. Our analysis suggests that further exploration of certain chemical classes, specifically anthracyclines and duocarmycins, based on the optimization of physicochemical parameters, reduction of cytotoxic potency, and careful design of targeting molecules is warranted. This approach will possibly result in a novel generation of payloads overcoming the limitations of clinically validated ADCs.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renée Martin-Willett, Carillon J Skrzynski, Ethan M Taylor, Cristina Sempio, Jost Klawitter, L Cinnamon Bidwell
The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. Background/Objectives: Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD). Methods: The current study examined how the ab libitum use of products differing in THC and CBD affected AEA and 2-AG among 292 individuals randomly assigned to THC-dominant use (N = 92), CBD-dominant use (N = 97), THC + CBD use (N = 74), or non-use (N = 29). Results: The findings suggest that AEA levels do not change differently based on 4 weeks of cannabis use or by cannabinoid content, as AEA similarly increased across all conditions from study weeks 2 to 4. In contrast, AEA decreased at an acute administration session with product conditions containing any THC having greater AEA levels on average than the non-use condition. With regard to 2-AG, its levels appeared to primarily be affected by THC-dominant use, both acutely and over 4 weeks, when controlling for baseline cannabis use and examining study product use frequency among use conditions. Conclusions: Overall, the results continue to shed light on the complicated relationship between cannabinoid content and endocannabinoid production, and highlight the need for continued research on their interplay in human subjects.
{"title":"The Interplay of Exogenous Cannabinoid Use on Anandamide and 2-Arachidonoylglycerol in Anxiety: Results from a Quasi-Experimental Ad Libitum Study.","authors":"Renée Martin-Willett, Carillon J Skrzynski, Ethan M Taylor, Cristina Sempio, Jost Klawitter, L Cinnamon Bidwell","doi":"10.3390/ph17101335","DOIUrl":"https://doi.org/10.3390/ph17101335","url":null,"abstract":"<p><p>The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. <b>Background/Objectives</b>: Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD). <b>Methods</b>: The current study examined how the ab libitum use of products differing in THC and CBD affected AEA and 2-AG among 292 individuals randomly assigned to THC-dominant use (N = 92), CBD-dominant use (N = 97), THC + CBD use (N = 74), or non-use (N = 29). <b>Results:</b> The findings suggest that AEA levels do not change differently based on 4 weeks of cannabis use or by cannabinoid content, as AEA similarly increased across all conditions from study weeks 2 to 4. In contrast, AEA decreased at an acute administration session with product conditions containing any THC having greater AEA levels on average than the non-use condition. With regard to 2-AG, its levels appeared to primarily be affected by THC-dominant use, both acutely and over 4 weeks, when controlling for baseline cannabis use and examining study product use frequency among use conditions. <b>Conclusions:</b> Overall, the results continue to shed light on the complicated relationship between cannabinoid content and endocannabinoid production, and highlight the need for continued research on their interplay in human subjects.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nermin Basak Sentürk, Burcu Kasapoglu, Eray Sahin, Orhan Ozcan, Mehmet Ozansoy, Muzaffer Beyza Ozansoy, Pinar Siyah, Ugur Sezerman, Fikrettin Sahin
Background/Objectives: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. Methods: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. Results: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as Barnesiella and Alistipes. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as Clostridium XIVb and Bilophila. Notable increases in genera like Treponema and Catellicoccus were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. Conclusions: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings.
{"title":"The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study.","authors":"Nermin Basak Sentürk, Burcu Kasapoglu, Eray Sahin, Orhan Ozcan, Mehmet Ozansoy, Muzaffer Beyza Ozansoy, Pinar Siyah, Ugur Sezerman, Fikrettin Sahin","doi":"10.3390/ph17101334","DOIUrl":"https://doi.org/10.3390/ph17101334","url":null,"abstract":"<p><p><b>Background/Objectives</b>: The role of the gut microbiome in the development and progression of many diseases has received increased attention in recent years. Boron, a trace mineral found in dietary sources, has attracted interest due to its unique electron depletion and coordination characteristics in chemistry, as well as its potential role in modulating the gut microbiota. This study investigates the effects of inorganic boron derivatives on the gut microbiota of mice. <b>Methods</b>: For three weeks, boric acid (BA), sodium pentaborate pentahydrate (NaB), and sodium perborate tetrahydrate (SPT) were dissolved (200 mg/kg each) in drinking water and administered to wild-type BALB/c mice. The composition of the gut microbiota was analyzed to determine the impact of these treatments. <b>Results</b>: The administration of BA significantly altered the composition of the gut microbiota, resulting in a rise in advantageous species such as <i>Barnesiella</i> and <i>Alistipes</i>. Additionally, there was a decrease in some taxa associated with inflammation and illness, such as <i>Clostridium XIVb</i> and <i>Bilophila</i>. Notable increases in genera like <i>Treponema</i> and <i>Catellicoccus</i> were observed, suggesting the potential of boron compounds to enrich microbial communities with unique metabolic functions. <b>Conclusions</b>: These findings indicate that boron compounds may have the potential to influence gut microbiota composition positively, offering potential prebiotic effects. Further research with additional analyses is necessary to fully understand the interaction between boron and microbiota and to explore the possibility of their use as prebiotic agents in clinical settings.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jelena Bošković, Vladimir Dobričić, Jelena Savić, Jelena Rupar, Mara Aleksić, Bojan Marković, Olivera Čudina
Evaluation of pharmacokinetic properties is a significant step at the early stages of drug development. In this study, an in vitro evaluation of the pharmacokinetic properties of five newly synthesized compounds was performed. These compounds belong to N-hydroxyurea and hydroxamic acid derivatives and analogs of NSAIDs indomethacin, flurbiprofen, diclofenac, ibuprofen, and naproxen (compounds 1, 2, 3, 11, and 12, respectively) with dual COX-2 and 5-LOX inhibitory activity. Two in vitro methods (biopartitioning micellar chromatography (BMC) and PAMPA) were used to evaluate passive gastrointestinal absorption, while high-performance affinity chromatography (HPAC) and differential pulse voltammetry (DPV) were used to evaluate binding to human serum albumin (HSA). The introduction of N-hydroxyurea and hydroxamic acid groups into the structure of NSAIDs decreases both expected passive gastrointestinal absorption (BMC k values were from 3.02 to 9.50, while for NSAIDs were from 5.29 to 13.36; PAMPA -logPe values were between 3.81 and 4.76, while for NSAIDs were ≤3.46) and HSA binding (HPAC logk values were from 2.03 to 9.54, while for NSAIDs were ≥11.03; DPV peak potential shifts were between 7 and 34, while for NSAIDs were ≥54). Structural modifications of all tested compounds that increase lipophilicity could be considered to enhance their passive gastrointestinal absorption. Considering lower expected HSA binding and higher lipophilicity of tested compounds compared to corresponding NSAIDs, it can be expected that the volume of distribution of compounds 1, 2, 3, 11, and 12 will be higher. Reduced HSA binding may also decrease interactions with other drugs in comparison to corresponding NSAIDs. All tested compounds showed significant microsomal instability (25.07-58.44% decrease in concentration) in comparison to indomethacin (14.47%) and diclofenac (20.99%).
{"title":"In Vitro Evaluation of Pharmacokinetic Properties of Selected Dual COX-2 and 5-LOX Inhibitors.","authors":"Jelena Bošković, Vladimir Dobričić, Jelena Savić, Jelena Rupar, Mara Aleksić, Bojan Marković, Olivera Čudina","doi":"10.3390/ph17101329","DOIUrl":"https://doi.org/10.3390/ph17101329","url":null,"abstract":"<p><p>Evaluation of pharmacokinetic properties is a significant step at the early stages of drug development. In this study, an in vitro evaluation of the pharmacokinetic properties of five newly synthesized compounds was performed. These compounds belong to N-hydroxyurea and hydroxamic acid derivatives and analogs of NSAIDs indomethacin, flurbiprofen, diclofenac, ibuprofen, and naproxen (compounds <b>1</b>, <b>2</b>, <b>3</b>, <b>11,</b> and <b>12</b>, respectively) with dual COX-2 and 5-LOX inhibitory activity. Two in vitro methods (biopartitioning micellar chromatography (BMC) and PAMPA) were used to evaluate passive gastrointestinal absorption, while high-performance affinity chromatography (HPAC) and differential pulse voltammetry (DPV) were used to evaluate binding to human serum albumin (HSA). The introduction of N-hydroxyurea and hydroxamic acid groups into the structure of NSAIDs decreases both expected passive gastrointestinal absorption (BMC <b>k</b> values were from 3.02 to 9.50, while for NSAIDs were from 5.29 to 13.36; PAMPA <b>-logPe</b> values were between 3.81 and 4.76, while for NSAIDs were ≤3.46) and HSA binding (HPAC <b>logk</b> values were from 2.03 to 9.54, while for NSAIDs were ≥11.03; DPV peak potential shifts were between 7 and 34, while for NSAIDs were ≥54). Structural modifications of all tested compounds that increase lipophilicity could be considered to enhance their passive gastrointestinal absorption. Considering lower expected HSA binding and higher lipophilicity of tested compounds compared to corresponding NSAIDs, it can be expected that the volume of distribution of compounds <b>1</b>, <b>2</b>, <b>3</b>, <b>11,</b> and <b>12</b> will be higher. Reduced HSA binding may also decrease interactions with other drugs in comparison to corresponding NSAIDs. All tested compounds showed significant microsomal instability (25.07-58.44% decrease in concentration) in comparison to indomethacin (14.47%) and diclofenac (20.99%).</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caren Naomi Aguero Ito, Elisangela Dos Santos Procopio, Natália de Matos Balsalobre, Lucas Luiz Machado, Saulo Euclides Silva-Filho, Taíse Fonseca Pedroso, Caroline Caramano de Lourenço, Rodrigo Juliano Oliveira, Arielle Cristina Arena, Marcos José Salvador, Cândida Aparecida Leite Kassuya
Background/Objectives: Annona squamosa is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including A. squamosa leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of A. squamosa (EMAS) and palmatine. Methods: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. Results: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. Conclusions: The present study showed that A. squamosa and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.
背景/目的:番木瓜碱(Annona squamosa)在民间医学中被用来治疗疼痛和关节炎。巴马汀是从几种植物中分离出来的生物碱,其中包括乌贼叶。本研究的目的是探究松果菊甲醇提取物(EMAS)和巴马汀的镇痛、抗关节炎和抗炎潜力。研究方法采用超高效液相色谱-电喷雾电离耦合质谱法(UHPLC-ESI/MS)对 EMAS 的化学成分进行评估。对EMAS和巴马汀在卡拉胶诱导的胸膜炎、酶联免疫吸附素诱导的关节炎症、福尔马林诱导的痛觉和肿瘤坏死因子(TNF)诱导的机械痛觉等小鼠实验模型中的作用进行了评估。使用甲基噻唑烷基苯四唑溴化物(MTT)检测法对 EMAS 和巴马汀进行了细胞毒性测试。结果显示对提取物化学成分的分析表明,其中含有巴马汀、利碘宁和安那因。在卡拉胶诱导的胸膜炎模型中,口服 EMAS 和巴马汀可明显减少白细胞迁移和一氧化氮的产生。EMAS 和巴马汀可减少机械性痛觉减退、白细胞迁移以及齐莫散诱导的关节炎症中水肿的形成。在福尔马林试验中,巴马汀能有效抑制第二阶段痛觉反应、机械痛和冷异感。此外,巴马汀还能减轻 TNF 诱导的机械性痛觉减退。EMAS和巴马汀没有表现出细胞毒性。结论本研究表明,A. squamosa和巴马汀具有镇痛和抗炎作用,而且巴马汀的抗过痛特性可能涉及TNF途径。巴马汀可能是导致这种药用植物具有抗过痛和/或抗关节炎特性的化合物之一。
{"title":"Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from <i>Annona squamosa</i> Leaves.","authors":"Caren Naomi Aguero Ito, Elisangela Dos Santos Procopio, Natália de Matos Balsalobre, Lucas Luiz Machado, Saulo Euclides Silva-Filho, Taíse Fonseca Pedroso, Caroline Caramano de Lourenço, Rodrigo Juliano Oliveira, Arielle Cristina Arena, Marcos José Salvador, Cândida Aparecida Leite Kassuya","doi":"10.3390/ph17101331","DOIUrl":"https://doi.org/10.3390/ph17101331","url":null,"abstract":"<p><p><b>Background/Objectives</b>: <i>Annona squamosa</i> is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including <i>A. squamosa</i> leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of <i>A. squamosa</i> (EMAS) and palmatine. <b>Methods</b>: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. <b>Results</b>: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. <b>Conclusions</b>: The present study showed that <i>A. squamosa</i> and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Otero-Millán, Brais Bea-Mascato, Jose Luis Legido Soto, María Carmen Martín de la Cruz, Noemi Martínez-López-De-Castro, Natividad Lago-Rivero
Background/Objectives: Parenteral nutrition (PN) is used when enteral feeding is not possible. It is a complex mixture of nutrients that must meet a patient's needs but can face stability issues, such as lipid emulsion destabilisation and precipitate formation. Stability studies are complex, and the methodologies used are very varied in the literature. In addition, many studies are outdated and use outdated components. This study conducts a stability analysis of PN solutions using optical microscopy. Methods: Samples were prepared according to clinical practice standards and previous studies. We used a counting chamber for optical microscopic observations and different storage conditions (RT, 4 °C 1-14 days). Results: Precipitates larger than 5 µm were found in 8 out of 14 samples after 14 days of storage at room temperature, and none were observed in refrigerated samples. More lipid globules larger than 5 µm were detected in samples stored at room temperature than in those stored in a refrigerator after 14 days. Additionally, the number of large globules generally increased from day 1 to day 14 in most samples. Conclusions: The observed precipitates were probably calcium oxalate crystals, the formation of which is possible in PN but is not expected under the usual storage conditions in a hospital environment. Prolonged storage time and storage at room temperature increases the formation of these precipitates. These findings highlight the importance of using filters during both the preparation and administration of PN to prevent large particles from reaching patients.
{"title":"Optical Microscopy as a Tool for Assessing Parenteral Nutrition Solution Stability: A Proof of Concept.","authors":"Luis Otero-Millán, Brais Bea-Mascato, Jose Luis Legido Soto, María Carmen Martín de la Cruz, Noemi Martínez-López-De-Castro, Natividad Lago-Rivero","doi":"10.3390/ph17101330","DOIUrl":"https://doi.org/10.3390/ph17101330","url":null,"abstract":"<p><p><b>Background/Objectives</b>: Parenteral nutrition (PN) is used when enteral feeding is not possible. It is a complex mixture of nutrients that must meet a patient's needs but can face stability issues, such as lipid emulsion destabilisation and precipitate formation. Stability studies are complex, and the methodologies used are very varied in the literature. In addition, many studies are outdated and use outdated components. This study conducts a stability analysis of PN solutions using optical microscopy. <b>Methods</b>: Samples were prepared according to clinical practice standards and previous studies. We used a counting chamber for optical microscopic observations and different storage conditions (RT, 4 °C 1-14 days). <b>Results</b>: Precipitates larger than 5 µm were found in 8 out of 14 samples after 14 days of storage at room temperature, and none were observed in refrigerated samples. More lipid globules larger than 5 µm were detected in samples stored at room temperature than in those stored in a refrigerator after 14 days. Additionally, the number of large globules generally increased from day 1 to day 14 in most samples. <b>Conclusions</b>: The observed precipitates were probably calcium oxalate crystals, the formation of which is possible in PN but is not expected under the usual storage conditions in a hospital environment. Prolonged storage time and storage at room temperature increases the formation of these precipitates. These findings highlight the importance of using filters during both the preparation and administration of PN to prevent large particles from reaching patients.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danyelle Garcia Guedes, Gabryella Garcia Guedes, Jessé de Oliveira da Silva, Adriano Lima da Silva, Carlos Bruno Barreto Luna, Bolívar Ponciano Goulart de Lima Damasceno, Ana Cristina Figueiredo de Melo Costa
Background/Objectives: This study investigates the development of 3D chitosan-x-cobalt ferrite scaffolds (x = 5, 7.5, and 10 wt%) with interconnected porosity for potential biomedical applications. The objective was to evaluate the effects of magnetic particle incorporation on the scaffolds' structural, mechanical, magnetic, and biological properties, specifically focusing on their biocompatibility and antimicrobial performance. Methods: Scaffolds were synthesized using freeze-drying, while cobalt ferrite nanoparticles were produced via a pilot-scale combustion reaction. The scaffolds were characterized for their physical and chemical properties, including porosity, swelling, and mechanical strength. Hydrophilicity was assessed through contact angle measurements. Antimicrobial efficacy was evaluated using time kill kinetics and agar diffusion assays, and biocompatibility was confirmed through cytotoxicity tests. Results: The incorporation of cobalt ferrite increased magnetic responsiveness, altered porosity profiles, and influenced swelling, biodegradation, and compressive strength, with a maximum value of 87 kPa at 7.5 wt% ferrite content. The scaffolds maintained non-toxicity and demonstrated bactericidal activity. The optimal concentration for achieving a balance between structural integrity and biological performance was found at 7.5 wt% cobalt ferrite. Conclusions: These findings suggest that magnetic chitosan-cobalt ferrite scaffolds possess significant potential for use in biomedical applications, including tissue regeneration and advanced healing therapies. The incorporation of magnetic properties enhances both the structural and biological functionalities, presenting promising opportunities for innovative therapeutic approaches in reconstructive procedures.
{"title":"Development of Scaffolds with Chitosan Magnetically Activated with Cobalt Nanoferrite: A Study on Physical-Chemical, Mechanical, Cytotoxic and Antimicrobial Behavior.","authors":"Danyelle Garcia Guedes, Gabryella Garcia Guedes, Jessé de Oliveira da Silva, Adriano Lima da Silva, Carlos Bruno Barreto Luna, Bolívar Ponciano Goulart de Lima Damasceno, Ana Cristina Figueiredo de Melo Costa","doi":"10.3390/ph17101332","DOIUrl":"https://doi.org/10.3390/ph17101332","url":null,"abstract":"<p><p><b><b>Background/Objectives</b></b>: This study investigates the development of 3D chitosan-x-cobalt ferrite scaffolds (x = 5, 7.5, and 10 wt%) with interconnected porosity for potential biomedical applications. The objective was to evaluate the effects of magnetic particle incorporation on the scaffolds' structural, mechanical, magnetic, and biological properties, specifically focusing on their biocompatibility and antimicrobial performance. <b>Methods</b>: Scaffolds were synthesized using freeze-drying, while cobalt ferrite nanoparticles were produced via a pilot-scale combustion reaction. The scaffolds were characterized for their physical and chemical properties, including porosity, swelling, and mechanical strength. Hydrophilicity was assessed through contact angle measurements. Antimicrobial efficacy was evaluated using time kill kinetics and agar diffusion assays, and biocompatibility was confirmed through cytotoxicity tests. <b>Results</b>: The incorporation of cobalt ferrite increased magnetic responsiveness, altered porosity profiles, and influenced swelling, biodegradation, and compressive strength, with a maximum value of 87 kPa at 7.5 wt% ferrite content. The scaffolds maintained non-toxicity and demonstrated bactericidal activity. The optimal concentration for achieving a balance between structural integrity and biological performance was found at 7.5 wt% cobalt ferrite. <b>Conclusions</b>: These findings suggest that magnetic chitosan-cobalt ferrite scaffolds possess significant potential for use in biomedical applications, including tissue regeneration and advanced healing therapies. The incorporation of magnetic properties enhances both the structural and biological functionalities, presenting promising opportunities for innovative therapeutic approaches in reconstructive procedures.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}