Pub Date : 2024-08-14DOI: 10.1007/s11240-024-02826-1
Saurabh Kumar, Shweta Singh, Madhuparna Banerjee
Use of meta-Topolin (mT) has significantly affected tissue culture results in several plant species. In this study, a fast and efficient micropropagation protocol for Withania somnifera was standardized. Also, a comparison was made between the effect of using M.S. media supplemented with mT and M.S. media supplemented with different concentrations of B.A.P. + AdSO4 on the in vitro regeneration of W. somnifera. M.S. media supplemented with I.B.A. was used to obtain a healthy and advantageous root system. The resulting plantlets were analyzed for their total chlorophyll and protein content. The comparison revealed that 2.5 mg/l mT supplemented M.S. media showed better results with 88.9 ± 0.42% bud breaking percentage, a shoot multiplication rate of 22.4 ± 4.16 shootlets per explants, total chlorophyll content of 0.887 ± 0.004 mg/g and protein content of 25.67 ± 0.25%. Healthy adventitious root systems were observed in regenerated shootlets inoculated in M.S. media supplemented with 2.0 mg/l I.B.A. During hardening, 80% of plants treated initially with mT survived. Whereas treatment with M.S. media supplemented with 1.0 mg/l B.A.P. + 50 mg/l AdSO4 resulted in bud breaking percentage of 61.1 ± 0.09%, a shoot multiplication rate of 15.8 ± 7.81 shootlets per explant, total chlorophyll content of 0.7194 ± 0.0055 mg/g and protein content of 23.33 ± 0.25%. During hardening, 78% of plantlets treated initially with B.A.P. + AdSO4 survived. Therefore, the study concludes that mT may be used as an alternative source of cytokinin for obtaining healthy plantlets with a higher rate of plant regeneration in W. somnifera.
{"title":"Comparative analysis of the effect of 6-benzylaminopurin versus meta-Topolin on in vitro regeneration, chlorophyll and protein contents in winter cherry Withania somnifera","authors":"Saurabh Kumar, Shweta Singh, Madhuparna Banerjee","doi":"10.1007/s11240-024-02826-1","DOIUrl":"https://doi.org/10.1007/s11240-024-02826-1","url":null,"abstract":"<p>Use of meta-Topolin (mT) has significantly affected tissue culture results in several plant species. In this study, a fast and efficient micropropagation protocol for <i>Withania somnifera</i> was standardized. Also, a comparison was made between the effect of using M.S. media supplemented with mT and M.S. media supplemented with different concentrations of B.A.P. + AdSO<sub>4</sub> on the in vitro regeneration of <i>W. somnifera</i>. M.S. media supplemented with I.B.A. was used to obtain a healthy and advantageous root system. The resulting plantlets were analyzed for their total chlorophyll and protein content. The comparison revealed that 2.5 mg/l mT supplemented M.S. media showed better results with 88.9 ± 0.42% bud breaking percentage, a shoot multiplication rate of 22.4 ± 4.16 shootlets per explants, total chlorophyll content of 0.887 ± 0.004 mg/g and protein content of 25.67 ± 0.25%. Healthy adventitious root systems were observed in regenerated shootlets inoculated in M.S. media supplemented with 2.0 mg/l I.B.A. During hardening, 80% of plants treated initially with mT survived. Whereas treatment with M.S. media supplemented with 1.0 mg/l B.A.P. + 50 mg/l AdSO<sub>4</sub> resulted in bud breaking percentage of 61.1 ± 0.09%, a shoot multiplication rate of 15.8 ± 7.81 shootlets per explant, total chlorophyll content of 0.7194 ± 0.0055 mg/g and protein content of 23.33 ± 0.25%. During hardening, 78% of plantlets treated initially with B.A.P. + AdSO<sub>4</sub> survived. Therefore, the study concludes that mT may be used as an alternative source of cytokinin for obtaining healthy plantlets with a higher rate of plant regeneration in <i>W. somnifera</i>.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"129 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142192062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stylosanthes (stylo) species are commercially important forage and pasture legumes in tropical and subtropical regions, but their vulnerability to chilling and frost remains a challenge. The REVEILLE (RVE) proteins, known as circadian clock components, have been implicated in abiotic stress responses in several plant species. Using RNA-seq analysis, we identified SgRVE1 as a cold-responsive gene in stylos. Further quantitative Real-time PCR analysis confirmed that SgRVE1 was rapidly induced by low temperature in different tissues, including roots, leaves, stems, and flowers. Multiple sequence alignment revealed that SgRVE1 shares a SHAQKFF-class MYB domain with the CCA1 clade of the RVE family. Phylogenetic analysis demonstrated that SgRVE1 clusters within the CCA1 clade and is closely related to AtRVE1. SgRVE1 also shows high sequence identities with three Arachis RVE1 orthologs, ranging from 95 to 96%. Overexpressing SgRVE1 in Arabidopsis thaliana activated AtCBF1,2,3 gene transcription, promoted osmoprotectant accumulation and enhanced cold tolerance. A yeast one-hybrid assay suggests that SgRVE1 binds to two Evening Element (EE) motifs, EE-like (EEL: AATATCT) and Short EE (SEE: AAATATCT), which has been identified in AtCBF1,2,3 promoter sequences. This study provides the first evidence of a RVE gene in stylos and reveals its role in the transcriptional regulation of CBF genes and the cold-responsive mechanism.
{"title":"Over-expression of SgRVE1 from fine-stem stylo (Stylosanthes guianensis var. intermedia) up-regulates CBF gene expression and enhances cold tolerance in Arabidopsis","authors":"Cong-Cong Wang, Chen Liang, Han-Ying Li, Huai-An Huang, Liang-Liang He, Cui-Ling Liu, Zhi-Hao Wu, Chun-Sheng Gui, Ci Ren, Yi-Hua Wang, Hao-Yu Yang, Dan-Wen Zhong, Xiao-Qun Peng, Cheng-Cheng Fu, Xin-Ming Xie, Shu Chen","doi":"10.1007/s11240-024-02838-x","DOIUrl":"https://doi.org/10.1007/s11240-024-02838-x","url":null,"abstract":"<p><i>Stylosanthes</i> (stylo) species are commercially important forage and pasture legumes in tropical and subtropical regions, but their vulnerability to chilling and frost remains a challenge. The REVEILLE (RVE) proteins, known as circadian clock components, have been implicated in abiotic stress responses in several plant species. Using RNA-seq analysis, we identified <i>SgRVE1</i> as a cold-responsive gene in stylos. Further quantitative Real-time PCR analysis confirmed that <i>SgRVE1</i> was rapidly induced by low temperature in different tissues, including roots, leaves, stems, and flowers. Multiple sequence alignment revealed that SgRVE1 shares a SHAQKFF-class MYB domain with the CCA1 clade of the RVE family. Phylogenetic analysis demonstrated that SgRVE1 clusters within the CCA1 clade and is closely related to AtRVE1. SgRVE1 also shows high sequence identities with three <i>Arachis</i> RVE1 orthologs, ranging from 95 to 96%. Overexpressing <i>SgRVE1</i> in <i>Arabidopsis thaliana</i> activated <i>AtCBF1,2,3</i> gene transcription, promoted osmoprotectant accumulation and enhanced cold tolerance. A yeast one-hybrid assay suggests that SgRVE1 binds to two Evening Element (EE) motifs, EE-like (EEL: AATATCT) and Short EE (SEE: AAATATCT), which has been identified in <i>AtCBF1,2,3</i> promoter sequences. This study provides the first evidence of a RVE gene in stylos and reveals its role in the transcriptional regulation of <i>CBF</i> genes and the cold-responsive mechanism.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"25 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1007/s11240-024-02836-z
Vovener de Verlands Edmond, Pamela A. Moon, Matthew Bremgartner, Xingbo Wu, Elias Bassil
Vanilla is a high-value tropical orchid cultivated for its aromatic fruit capsules that are used in foods, perfumes, and industrial products. Vanilla planifolia (Jacks ex. Andrews) is the most important commercially grown species, but its production is constrained by poor yield, variable quality, low genetic diversity and limited horticultural advancements. A closely related species, Vanilla pompona Schiede, characteristics which could be useful in breeding improved varieties: large fruit, potent aroma, and resistance to Fusarium oxysporum f. sp. vanilla. Here we describe tissue culture-based regeneration and Agrobacterium-mediated stable transformation systems for V. pompona. Vegetatively propagated tissue was used to test the efficacy of hygromycin and phosphinothricin selection and to assess the efficiency of three Agrobacterium tumefaciens strains (EHA105, AGL1.1, GV3101) in transformation protocols. Results revealed that for V. pompona, kanamycin is not an effective selection marker, whereas hygromycin and phosphinothricin can be used for screening transformants. AGL1.1 provided the highest transformation efficiency (37%) as compared to strains EHA105 (11%) and GV3101 (4%). Additionally, we incorporated the use of firefly luciferase as a visual reporter of transformation and were able to demonstrate that it provides more robust assessment than that of green fluorescent protein. Finally, we report a novel quantitative imaging method to assess the growth responses of V. pompona protocorm-like bodies in response to selection that could be useful to other plant transformation and selection efforts.
{"title":"Agrobacterium-mediated transformation, selection and regeneration of Vanilla pompona","authors":"Vovener de Verlands Edmond, Pamela A. Moon, Matthew Bremgartner, Xingbo Wu, Elias Bassil","doi":"10.1007/s11240-024-02836-z","DOIUrl":"https://doi.org/10.1007/s11240-024-02836-z","url":null,"abstract":"<p>Vanilla is a high-value tropical orchid cultivated for its aromatic fruit capsules that are used in foods, perfumes, and industrial products. <i>Vanilla planifolia</i> (Jacks ex. Andrews) is the most important commercially grown species, but its production is constrained by poor yield, variable quality, low genetic diversity and limited horticultural advancements. A closely related species, <i>Vanilla pompona</i> Schiede, characteristics which could be useful in breeding improved varieties: large fruit, potent aroma, and resistance to <i>Fusarium oxysporum</i> f. sp. <i>vanilla</i>. Here we describe tissue culture-based regeneration and <i>Agrobacterium</i>-mediated stable transformation systems for <i>V</i>. <i>pompona.</i> Vegetatively propagated tissue was used to test the efficacy of hygromycin and phosphinothricin selection and to assess the efficiency of three <i>Agrobacterium tumefaciens</i> strains (EHA105, AGL1.1, GV3101) in transformation protocols. Results revealed that for <i>V. pompona</i>, kanamycin is not an effective selection marker, whereas hygromycin and phosphinothricin can be used for screening transformants. AGL1.1 provided the highest transformation efficiency (37%) as compared to strains EHA105 (11%) and GV3101 (4%). Additionally, we incorporated the use of firefly luciferase as a visual reporter of transformation and were able to demonstrate that it provides more robust assessment than that of green fluorescent protein. Finally, we report a novel quantitative imaging method to assess the growth responses of <i>V</i>. <i>pompona</i> protocorm-like bodies in response to selection that could be useful to other plant transformation and selection efforts.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"198 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1007/s11240-024-02835-0
Le Nguyen Thoi Trung, Nguyen Hoang An, Phan Thi Thao Nguyen, Ho Nhat Quang, Hoang Tan Quang, Ton Nu Minh Thi, Hoang Xuan Thao, Tran Nam Thang, Truong Thi Bich Phuong
The large-leaved Homalomena (LLH, Homalomena pendula) represents an endangered medicinal plant species within Vietnam, primarily attributed to its recognized tonic properties. Despite its imminent threat of extinction within Vietnamese ecosystems, the development of a robust protocol for molecular species identification and large-scale propagation of LLH remains absent. Consequently, we present the first conservation endeavor for LLH based on plant micropropagation techniques, with plant materials validated through anatomical observations and DNA barcoding (rbcL). Our investigation yielded five rbcL sequences specific to LLH, serving as the current best barcode for LLH identification and thereby facilitating forthcoming taxonomic endeavors. Optimization of in vitro culture conditions revealed that the Murashige and Skoog (MS) medium supplemented with 2 mg/L 6-benzylaminopurine, 0.5 mg/L α-naphthaleneacetic acid, and 60 g/L mashed potato, alongside the incorporation of 0.5 mg/L indole-3-butyric acid to the basal MS medium, yielded optimal outcomes for shoot proliferation and root development, respectively. After successful micropropagation, acclimatization of rooted plantlets to a substrate comprising soil, coconut coir, and rice husk (in a 1:1:1 ratio) culminated in a 100% survival rate among the plants.
{"title":"Identification and micropropagation of Homalomena pendula, an endangered medicinal plant","authors":"Le Nguyen Thoi Trung, Nguyen Hoang An, Phan Thi Thao Nguyen, Ho Nhat Quang, Hoang Tan Quang, Ton Nu Minh Thi, Hoang Xuan Thao, Tran Nam Thang, Truong Thi Bich Phuong","doi":"10.1007/s11240-024-02835-0","DOIUrl":"https://doi.org/10.1007/s11240-024-02835-0","url":null,"abstract":"<p>The large-leaved Homalomena (LLH, <i>Homalomena pendula</i>) represents an endangered medicinal plant species within Vietnam, primarily attributed to its recognized tonic properties. Despite its imminent threat of extinction within Vietnamese ecosystems, the development of a robust protocol for molecular species identification and large-scale propagation of LLH remains absent. Consequently, we present the first conservation endeavor for LLH based on plant micropropagation techniques, with plant materials validated through anatomical observations and DNA barcoding (<i>rbc</i>L). Our investigation yielded five <i>rbc</i>L sequences specific to LLH, serving as the current best barcode for LLH identification and thereby facilitating forthcoming taxonomic endeavors. Optimization of in vitro culture conditions revealed that the Murashige and Skoog (MS) medium supplemented with 2 mg/L 6-benzylaminopurine, 0.5 mg/L α-naphthaleneacetic acid, and 60 g/L mashed potato, alongside the incorporation of 0.5 mg/L indole-3-butyric acid to the basal MS medium, yielded optimal outcomes for shoot proliferation and root development, respectively. After successful micropropagation, acclimatization of rooted plantlets to a substrate comprising soil, coconut coir, and rice husk (in a 1:1:1 ratio) culminated in a 100% survival rate among the plants.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"199 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant cell cultures are precious tools for investigating the response of plants to altered gravity at the cellular level. In the present study, the effects of clinorotation on the growth and cell cycle progression of cultured Nicotiana tabacum cells were investigated. Exposure to 2D-clinostat for 12 h increased the percentage of the cells in the G1 phase from 80 to 83.2%, while significantly reduced the percentage of those cells at the G2/M transition, compared to their corresponding control cells. When the duration of exposure was extended, the rate of cells transition to the M phase increased, ultimately promoted the exponential growth phase after 168 h. During the first 24 h of clinorotation, a significant rise in the levels of simple sugars within the cells was observed. The ferric-reducing antioxidant power (FRAP) of tobacco cells exhibited a downward trajectory that continued until 48 h. This research showed the influence of clinorotation on plant cells dependent on the exposure duration. The cells exhibited signs of stress after a short exposure, possibly due to high levels of soluble sugars that could impede cell advancement in the G1 phase by negatively affecting radical scavenging capacity (RSC). Upon extending the exposure duration to 168 h, the cells were adapted to the altered gravity conditions and improved their growth, probably due to a rise in auxin and gibberellin production. The results suggest cultured cells are a viable candidate, for examining plants in long-term space missions.