Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00175
M. Leonardi, M. Villacampa, J. Menéndez
Mechanochemistry involves the application of mechanical energy to achieve chemical transformations. Since it is usually performed in solid state at room temperature, mechanochemistry is regarded as one of the pathways toward more sustainable synthetic chemistry. Furthermore, by working under solvent-free conditions, reagents are highly concentrated and solvation phenomena are not relevant, and the combination of these two factors often leads to accelerated reactions. This chapter provides an overview of the application of mechanochemical conditions to the synthesis of heterocycles, the compounds with the highest relevance for the pharmaceutical and agrochemical industries.
{"title":"CHAPTER 8. Mechanochemical Synthesis of Biologically Relevant Heterocycles","authors":"M. Leonardi, M. Villacampa, J. Menéndez","doi":"10.1039/9781788016131-00175","DOIUrl":"https://doi.org/10.1039/9781788016131-00175","url":null,"abstract":"Mechanochemistry involves the application of mechanical energy to achieve chemical transformations. Since it is usually performed in solid state at room temperature, mechanochemistry is regarded as one of the pathways toward more sustainable synthetic chemistry. Furthermore, by working under solvent-free conditions, reagents are highly concentrated and solvation phenomena are not relevant, and the combination of these two factors often leads to accelerated reactions. This chapter provides an overview of the application of mechanochemical conditions to the synthesis of heterocycles, the compounds with the highest relevance for the pharmaceutical and agrochemical industries.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125693099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00001
I. Horváth, Edit Cséfalvay
Although the ecological footprint was perhaps the first green metric, the atom economy and E-factor have become the key metrics of green chemistry by providing the mass balance of chemical reactions and processes at the molecular level. Sustainability was poorly defined originally, since the key requisite to accurately forecast the needs of future generations remains difficult to pinpoint. Consequently, sustainability was replaced with suitability by many stake holders, as they had vested and/or conflicts of interests to label suitable developments sustainable. The sustainable development goals recently introduced by the United Nations seem to serve as a ‘roadmap to happiness’ instead of metrics. A simple and independent definition of sustainability was recently provided: Nature's resources, including energy, should be used at a rate at which they can be replaced naturally, and the generation of wastes cannot be faster than the rate of their remediation by Nature. The ethanol equivalent, the sustainability values of resource replacement and fate of waste, and the sustainability indicator have been recently defined to measure the sustainability of biomass-based carbon-chemicals and renewable energy. The production of ethylene, propylene, toluene, xylenes, styrene, and ethylene oxides cannot be sustainable due to the limited amount of bioethanol. The required volume of corn and the corresponding size of land are only enough to replace one sixth of fossil resources in the USA, EU, and China, and practically insufficient in Canada and the Russian Federation. Until the utilization of electricity becomes practical and economical in aviation, biomass-based liquid fuels are the sustainable alternative.
{"title":"CHAPTER 1. Sustainability of Green Synthetic Processes and Procedures","authors":"I. Horváth, Edit Cséfalvay","doi":"10.1039/9781788016131-00001","DOIUrl":"https://doi.org/10.1039/9781788016131-00001","url":null,"abstract":"Although the ecological footprint was perhaps the first green metric, the atom economy and E-factor have become the key metrics of green chemistry by providing the mass balance of chemical reactions and processes at the molecular level. Sustainability was poorly defined originally, since the key requisite to accurately forecast the needs of future generations remains difficult to pinpoint. Consequently, sustainability was replaced with suitability by many stake holders, as they had vested and/or conflicts of interests to label suitable developments sustainable. The sustainable development goals recently introduced by the United Nations seem to serve as a ‘roadmap to happiness’ instead of metrics. A simple and independent definition of sustainability was recently provided: Nature's resources, including energy, should be used at a rate at which they can be replaced naturally, and the generation of wastes cannot be faster than the rate of their remediation by Nature. The ethanol equivalent, the sustainability values of resource replacement and fate of waste, and the sustainability indicator have been recently defined to measure the sustainability of biomass-based carbon-chemicals and renewable energy. The production of ethylene, propylene, toluene, xylenes, styrene, and ethylene oxides cannot be sustainable due to the limited amount of bioethanol. The required volume of corn and the corresponding size of land are only enough to replace one sixth of fossil resources in the USA, EU, and China, and practically insufficient in Canada and the Russian Federation. Until the utilization of electricity becomes practical and economical in aviation, biomass-based liquid fuels are the sustainable alternative.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"285 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116561846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00245
T. Tabanelli, F. Cavani
In this chapter, we examine the synthesis of phenolic compounds via catalytic reactions and processes, with a special focus on sustainability issues. In recent years, considerable steps forward have been made with the aim of developing greener routes for the functionalisation of phenol and diphenols. Examples of these include: (a) the use of methanol instead of methylchloride or dimethylsulphate for the synthesis of ethers, such as anisole, guaiacol and veratrol, which are key intermediates for the synthesis of a plethora of fine chemicals and specialties; (b) the use of alkylcarbonates for the synthesis of alcohol-ethers (e.g. phenoxyethanol), cresols, and ethers; and (c) the use of aldehydes instead of halogenated alkanes for the hydroxyalkylation of phenolics to alcohols, such as piperonyl alcohol. Indeed, many of these reactions were inspired by the successful industrial application of methanol as an electrophile for the synthesis of o-cresol and 2,6-xylenol. The latter reaction may be considered the very first ‘green’ process for the functionalisation of phenol; surprisingly, despite its industrial use for several decades, only in recent years has the mechanism of this reaction been elucidated. Some emblematic examples of the more sustainable synthesis of phenolic compounds, briefly discussed here, are 2,6-xylenol, guaiacol, vanillin, methylendioxobenzene, phenoxyethanol, hydroxytyrosol and piperonal.
{"title":"CHAPTER 11. Advances in Catalysis for More Sustainable Synthesis of Phenolics","authors":"T. Tabanelli, F. Cavani","doi":"10.1039/9781788016131-00245","DOIUrl":"https://doi.org/10.1039/9781788016131-00245","url":null,"abstract":"In this chapter, we examine the synthesis of phenolic compounds via catalytic reactions and processes, with a special focus on sustainability issues. In recent years, considerable steps forward have been made with the aim of developing greener routes for the functionalisation of phenol and diphenols. Examples of these include: (a) the use of methanol instead of methylchloride or dimethylsulphate for the synthesis of ethers, such as anisole, guaiacol and veratrol, which are key intermediates for the synthesis of a plethora of fine chemicals and specialties; (b) the use of alkylcarbonates for the synthesis of alcohol-ethers (e.g. phenoxyethanol), cresols, and ethers; and (c) the use of aldehydes instead of halogenated alkanes for the hydroxyalkylation of phenolics to alcohols, such as piperonyl alcohol. Indeed, many of these reactions were inspired by the successful industrial application of methanol as an electrophile for the synthesis of o-cresol and 2,6-xylenol. The latter reaction may be considered the very first ‘green’ process for the functionalisation of phenol; surprisingly, despite its industrial use for several decades, only in recent years has the mechanism of this reaction been elucidated. Some emblematic examples of the more sustainable synthesis of phenolic compounds, briefly discussed here, are 2,6-xylenol, guaiacol, vanillin, methylendioxobenzene, phenoxyethanol, hydroxytyrosol and piperonal.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133688431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00289
S. Montolio, B. Altava, E. García‐Verdugo, S. Luis
Although Ionic Liquids still represent a hot topic in Green Chemistry, many practical applications for the development of Green Processes have been hampered by limitations associated with their cost and the (eco)toxicological properties identified for some of them. The incorporation of ILs or structural fragments related to ILs in solid materials allows the development of the so-called Supported Ionic Liquids (SILs, SILPs, or SILLPs), which exhibit many of the features and advantages of ILs while overcoming many of the above limitations. This chapter describes the general approaches reported toward the development and full characterization of advanced materials based on ILs and some of their more relevant applications in the development of Green Synthetic Processes.
{"title":"CHAPTER 13. Supported ILs and Materials Based on ILs for the Development of Green Synthetic Processes and Procedures","authors":"S. Montolio, B. Altava, E. García‐Verdugo, S. Luis","doi":"10.1039/9781788016131-00289","DOIUrl":"https://doi.org/10.1039/9781788016131-00289","url":null,"abstract":"Although Ionic Liquids still represent a hot topic in Green Chemistry, many practical applications for the development of Green Processes have been hampered by limitations associated with their cost and the (eco)toxicological properties identified for some of them. The incorporation of ILs or structural fragments related to ILs in solid materials allows the development of the so-called Supported Ionic Liquids (SILs, SILPs, or SILLPs), which exhibit many of the features and advantages of ILs while overcoming many of the above limitations. This chapter describes the general approaches reported toward the development and full characterization of advanced materials based on ILs and some of their more relevant applications in the development of Green Synthetic Processes.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116998036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00079
Valeria Trombettoni, Filippo Campana, A. Marrocchi, L. Vaccaro
The interest in biodiesel as an alternative fuel is ever increasing due to recent legislation requiring fuel manufacturers to add a set percentage of biofuel in their products. The present EU's biofuel policy introduces a blending target involving reaching a mandatory 6% reduction in the greenhouse gas intensity of fuels by 2020. Thus, biodiesel production that is sustainable in terms of feedstock, as well as of employment of clean, safe, and efficient manufacturing processes, is becoming urgent. In the past decade, many industrial processes have shifted toward the use of solid acid catalysts as a ‘green tool’ to replace traditional catalytic systems to efficiently produce biodiesel from low-cost biomass feedstock, i.e., resources with high free fatty acid content. Heterogeneous systems, indeed, enable their easy separation and recovery, recycling and reuse, possibly leading to waste-minimized protocols. Moreover, there is an ever-growing interest in exploiting the synergy between heterogeneous catalysis and continuous flow technology as a viable integrated sustainable solution to process intensification. In this chapter, we focus on the recent advances in the use of tuneable and versatile organic polymer-supported solid acid catalysts to produce biodiesel fuel in batch and in continuous mode. We restrict the discussion to the most widely employed members of this class, i.e., cation-exchange resins. Trends are identified between physico-chemical and morphological properties of the catalysts and their performance, while their recyclability aspects are also examined. Finally, a survey and brief discussion on these catalysts' performance in batch and continuous flow production of levulinates – biofuel additives structurally related to biodiesel – are also provided.
{"title":"CHAPTER 5. Sustainable Batch or Continuous-flow Preparation of Biomass-derived Fuels Using Sulfonated Organic Polymers","authors":"Valeria Trombettoni, Filippo Campana, A. Marrocchi, L. Vaccaro","doi":"10.1039/9781788016131-00079","DOIUrl":"https://doi.org/10.1039/9781788016131-00079","url":null,"abstract":"The interest in biodiesel as an alternative fuel is ever increasing due to recent legislation requiring fuel manufacturers to add a set percentage of biofuel in their products. The present EU's biofuel policy introduces a blending target involving reaching a mandatory 6% reduction in the greenhouse gas intensity of fuels by 2020. Thus, biodiesel production that is sustainable in terms of feedstock, as well as of employment of clean, safe, and efficient manufacturing processes, is becoming urgent. In the past decade, many industrial processes have shifted toward the use of solid acid catalysts as a ‘green tool’ to replace traditional catalytic systems to efficiently produce biodiesel from low-cost biomass feedstock, i.e., resources with high free fatty acid content. Heterogeneous systems, indeed, enable their easy separation and recovery, recycling and reuse, possibly leading to waste-minimized protocols. Moreover, there is an ever-growing interest in exploiting the synergy between heterogeneous catalysis and continuous flow technology as a viable integrated sustainable solution to process intensification. In this chapter, we focus on the recent advances in the use of tuneable and versatile organic polymer-supported solid acid catalysts to produce biodiesel fuel in batch and in continuous mode. We restrict the discussion to the most widely employed members of this class, i.e., cation-exchange resins. Trends are identified between physico-chemical and morphological properties of the catalysts and their performance, while their recyclability aspects are also examined. Finally, a survey and brief discussion on these catalysts' performance in batch and continuous flow production of levulinates – biofuel additives structurally related to biodiesel – are also provided.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129201354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00268
A. Scarso, G. Strukul
Over the past few years, micellar catalysis with transition metal complexes has become a major tool in the hands of synthetic organic chemists and an important ‘green’ technology as it allows the use of water as the reaction medium. The range of reactions in which micellar media can be successfully used is already very wide. The use of micelles can improve the yield, selectivity at all levels (chemo-, regio-, enantio-), reaction conditions, product separation, and catalyst recycling. The surfactant choice is a key issue that, for specific cases, can be optimized with especially designed surfactants and metallo-surfactants. Practical examples provide some metrics demonstrating that micellar catalysis can indeed reduce the E-factor and, in the industrial practice, also improve yields, decrease energy consumption, shorten cycle times, and ultimately production costs. In short, catalysis in micellar media is much ahead of a mere green chemistry promise and can already be considered a profitable industrial opportunity.
{"title":"CHAPTER 12. Transition Metal Catalysis in Micellar Media: Much More Than a Simple Green Chemistry Promise","authors":"A. Scarso, G. Strukul","doi":"10.1039/9781788016131-00268","DOIUrl":"https://doi.org/10.1039/9781788016131-00268","url":null,"abstract":"Over the past few years, micellar catalysis with transition metal complexes has become a major tool in the hands of synthetic organic chemists and an important ‘green’ technology as it allows the use of water as the reaction medium. The range of reactions in which micellar media can be successfully used is already very wide. The use of micelles can improve the yield, selectivity at all levels (chemo-, regio-, enantio-), reaction conditions, product separation, and catalyst recycling. The surfactant choice is a key issue that, for specific cases, can be optimized with especially designed surfactants and metallo-surfactants. Practical examples provide some metrics demonstrating that micellar catalysis can indeed reduce the E-factor and, in the industrial practice, also improve yields, decrease energy consumption, shorten cycle times, and ultimately production costs. In short, catalysis in micellar media is much ahead of a mere green chemistry promise and can already be considered a profitable industrial opportunity.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"195 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122517688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00115
L. Banfi, Chiara Lambruschini, L. Moni, R. Riva
This chapter illustrates a series of recent examples on the cooperation of multicomponent reactions with biocatalysis and/or with the use of renewable starting materials derived from biomass. Teaming these three green methodologies affords important benefits from the point of view of sustainable synthesis. In particular, biocatalysts have been used to (i) generate enantiopure inputs for multicomponent reactions, (ii) resolve racemic multicomponent products, and (iii) catalyze the multicomponent process itself. As far as it concerns renewable inputs, this chapter will focus on the exploitation of diols, furan derivatives, levulinic acid, and lipids.
{"title":"CHAPTER 6. Renewable Starting Materials, Biocatalysis, and Multicomponent Reactions: A Powerful Trio for the Green Synthesis of Highly Valued Chemicals","authors":"L. Banfi, Chiara Lambruschini, L. Moni, R. Riva","doi":"10.1039/9781788016131-00115","DOIUrl":"https://doi.org/10.1039/9781788016131-00115","url":null,"abstract":"This chapter illustrates a series of recent examples on the cooperation of multicomponent reactions with biocatalysis and/or with the use of renewable starting materials derived from biomass. Teaming these three green methodologies affords important benefits from the point of view of sustainable synthesis. In particular, biocatalysts have been used to (i) generate enantiopure inputs for multicomponent reactions, (ii) resolve racemic multicomponent products, and (iii) catalyze the multicomponent process itself. As far as it concerns renewable inputs, this chapter will focus on the exploitation of diols, furan derivatives, levulinic acid, and lipids.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126080282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00053
J. Alcázar, A. Hoz, Á. Díaz‐Ortiz
This chapter provides an overview of the use of flow chemistry in drug discovery settings, first introducing the green characteristics of flow chemistry and then describing the drug discovery process and how both worlds can be matched. Examples are provided that cover all stages of drug discovery, from the identification of the initial hits to the preparation of Active Pharmaceutical Ingredients. The automation and integration of new green technologies are also reported.
{"title":"CHAPTER 4. Flow Chemistry in Drug Discovery","authors":"J. Alcázar, A. Hoz, Á. Díaz‐Ortiz","doi":"10.1039/9781788016131-00053","DOIUrl":"https://doi.org/10.1039/9781788016131-00053","url":null,"abstract":"This chapter provides an overview of the use of flow chemistry in drug discovery settings, first introducing the green characteristics of flow chemistry and then describing the drug discovery process and how both worlds can be matched. Examples are provided that cover all stages of drug discovery, from the identification of the initial hits to the preparation of Active Pharmaceutical Ingredients. The automation and integration of new green technologies are also reported.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"148-149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132956006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00319
M. Selva, A. Perosa, G. Fiorani, Lisa Cattelan
The present chapter collects and describes representative examples from the current literature on the use of CO2 and Organic Carbonates for the Sustainable Valorization of Renewable Compounds. For the reader's convenience, after an introductory section aimed at highlighting both the potential and challenges associated with the chemical upgrading of renewable compounds, topics are organized in three parts surveying the following subjects: (i) catalytic and photocatalytic routes for both the reduction of CO2 and use of CO2 for the carboxylation of C(sp3)–H bonds and bio-based epoxides, and the methylation of amines; (ii) model strategies for carboxylation and alkylation reactions mediated by non-toxic dialkyl carbonates for the valorization of bio-based platform chemicals including glycerol, succinate, and dimethyl-2,5-furandicarboxylate, and renewable lactones, as well as natural polysaccharides (cellulose, starch, and chitin) and lignin; (iii) the sustainable synthesis of bio-polycarbonates and bio-polyurethanes via sequential transesterification/polycondensation reactions with dialkyl carbonates and cycloadditions of CO2 into renewable epoxides.
{"title":"CHAPTER 14. CO2 and Organic Carbonates for the Sustainable Valorization of Renewable Compounds","authors":"M. Selva, A. Perosa, G. Fiorani, Lisa Cattelan","doi":"10.1039/9781788016131-00319","DOIUrl":"https://doi.org/10.1039/9781788016131-00319","url":null,"abstract":"The present chapter collects and describes representative examples from the current literature on the use of CO2 and Organic Carbonates for the Sustainable Valorization of Renewable Compounds. For the reader's convenience, after an introductory section aimed at highlighting both the potential and challenges associated with the chemical upgrading of renewable compounds, topics are organized in three parts surveying the following subjects: (i) catalytic and photocatalytic routes for both the reduction of CO2 and use of CO2 for the carboxylation of C(sp3)–H bonds and bio-based epoxides, and the methylation of amines; (ii) model strategies for carboxylation and alkylation reactions mediated by non-toxic dialkyl carbonates for the valorization of bio-based platform chemicals including glycerol, succinate, and dimethyl-2,5-furandicarboxylate, and renewable lactones, as well as natural polysaccharides (cellulose, starch, and chitin) and lignin; (iii) the sustainable synthesis of bio-polycarbonates and bio-polyurethanes via sequential transesterification/polycondensation reactions with dialkyl carbonates and cycloadditions of CO2 into renewable epoxides.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115843368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.1039/9781788016131-00020
Wei Zhang
Reaction efficiency is an important aspect of green synthesis. One-pot reactions, including cascade reactions, stepwise reactions, and multicomponent reactions, offer intrinsic advantages of simple operation procedures, short reaction times, and reduced amount of waste. This chapter introduces the concept of one-pot reactions and demonstrates their efficiency in the design and synthesis of functionalized molecules.
{"title":"CHAPTER 2. One-pot Organic Reactions","authors":"Wei Zhang","doi":"10.1039/9781788016131-00020","DOIUrl":"https://doi.org/10.1039/9781788016131-00020","url":null,"abstract":"Reaction efficiency is an important aspect of green synthesis. One-pot reactions, including cascade reactions, stepwise reactions, and multicomponent reactions, offer intrinsic advantages of simple operation procedures, short reaction times, and reduced amount of waste. This chapter introduces the concept of one-pot reactions and demonstrates their efficiency in the design and synthesis of functionalized molecules.","PeriodicalId":202204,"journal":{"name":"Green Chemistry Series","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114351447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}