Pub Date : 2025-01-14DOI: 10.1007/s11104-025-07202-2
Muhammad Faheem Jan, Muhammad Tanveer Altaf, Waqas Liaqat, Changzhuang Liu, Heba I. Mohamed, Ming Li
Background
Water insufficiency is a major abiotic stressor that significantly reduces crop yields, posing a serious threat to global food security. Soybean, a key legume and one the the top five global crops, serves as a primary source of protein, minerals, and oil. Water deficit has profound impacts on soybean's growth, physiology, and ultimately its yield.
Scope
Improving soybean productivity under drought stress is crucial to addressing food security challenges. Advanced breeding tools that leverage soybean physiological responses to water scarcity are essential for identifying and transferring drought-tolerance genes. Further research into the physiological, biochemical, and molecular responses of soybean to drought stress will enable breeders to enhance drought resilience effectively.
Conclusion
This review comprehensively details the morphological and physiological responses of soybean to drought stress and outlines various agronomical, molecular, and cutting-edge technological approaches to enhance drought tolerance. By synthesizing current research, this work identifies key strategies and tools that breeders can use to develop drought-resilient soybean cultivars, contributing to improved productivity under water-limited conditions.
{"title":"Approaches for the amelioration of adverse effects of drought stress on soybean plants: from physiological responses to agronomical, molecular, and cutting-edge technologies","authors":"Muhammad Faheem Jan, Muhammad Tanveer Altaf, Waqas Liaqat, Changzhuang Liu, Heba I. Mohamed, Ming Li","doi":"10.1007/s11104-025-07202-2","DOIUrl":"https://doi.org/10.1007/s11104-025-07202-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Water insufficiency is a major abiotic stressor that significantly reduces crop yields, posing a serious threat to global food security. Soybean, a key legume and one the the top five global crops, serves as a primary source of protein, minerals, and oil. Water deficit has profound impacts on soybean's growth, physiology, and ultimately its yield.</p><h3 data-test=\"abstract-sub-heading\">Scope</h3><p>Improving soybean productivity under drought stress is crucial to addressing food security challenges. Advanced breeding tools that leverage soybean physiological responses to water scarcity are essential for identifying and transferring drought-tolerance genes. Further research into the physiological, biochemical, and molecular responses of soybean to drought stress will enable breeders to enhance drought resilience effectively.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This review comprehensively details the morphological and physiological responses of soybean to drought stress and outlines various agronomical, molecular, and cutting-edge technological approaches to enhance drought tolerance. By synthesizing current research, this work identifies key strategies and tools that breeders can use to develop drought-resilient soybean cultivars, contributing to improved productivity under water-limited conditions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"68 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1007/s11104-025-07204-0
Brooke M. Conroy, Jeffrey J. Kelleway, Kerrylee Rogers
Background and aims
Organic matter additions in coastal wetlands contribute to blue carbon sequestration and adjustment to sea-level rise through vertical substrate growth, with accurate modelling of these dynamics requiring information of root mass and volume additions across tidal gradients. This study aims to characterise the influence of vegetation zonation and tidal position on root mass and volume dynamics within substrates.
Methods
The root ingrowth technique was coupled with sediment cores to quantify below-ground root mass and volume production, standing stocks and turnover across two years to 90 cm depth at Kooweerup, Victoria, Australia.
Results
We indicate a complex non-linear relationship between fine root mass production and tidal position, influenced by variable vegetation structures across mangrove (442–3427 g m−2 yr−1), saltmarsh (540–860 g m−2 yr−1) and supratidal forest (599 g m−2 yr−1) zones. Fine root volume additions ranged from 274 to 4055 cm3 m−2 yr−1 across sampling locations. Root production was greatest for older mangroves and tidally defined optimal zones of production were evident for mangrove and saltmarsh. Live roots extended deeper than typically studied, reaching depths of 1.0 m in forested zones.
Conclusion
This information of root mass and volume additions across wetland live rooting zones can be used to improve highly parameterised models accounting for carbon sequestration and substrate vertical adjustment along intertidal gradients. We recommend that future studies measure root production across the entire active rooting zone or to 1 m depth to align with standard carbon accounting measurement depths.
背景和目的沿海湿地的有机质添加有助于蓝碳固存,并通过垂直基质生长调节海平面上升,而这些动态的准确建模需要跨越潮汐梯度的根系质量和体积添加信息。本研究旨在描述植被带和潮汐位置对基质内根系质量和体积动态的影响。方法采用根系长入技术与沉积物岩心相结合的方法,对澳大利亚维多利亚州Kooweerup地区90 cm深度2年内的地下根系质量、产量、存量和周转量进行量化。结果细根产量与潮汐位置之间存在复杂的非线性关系,受红树林(442-3427 g m−2 yr−1)、盐沼(540-860 g m−2 yr−1)和潮上林(599 g m−2 yr−1)不同植被结构的影响。细根体积增加量从274到4055 cm3 m−2 yr−1不等。较老的红树根系产量最大,潮汐确定的最佳生产区域在红树和盐沼中明显。活根延伸的深度比通常研究的要深,在森林地带可达1.0米深。结论根系质量和体积增加的信息可用于改进高参数化模型,以反映碳固存和基质垂直调整沿潮间带梯度的变化。我们建议未来的研究测量整个活跃生根区或1米深度的根系产量,以与标准碳计量测量深度保持一致。
{"title":"Root productivity contributes to carbon storage and surface elevation adjustments in coastal wetlands","authors":"Brooke M. Conroy, Jeffrey J. Kelleway, Kerrylee Rogers","doi":"10.1007/s11104-025-07204-0","DOIUrl":"https://doi.org/10.1007/s11104-025-07204-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Organic matter additions in coastal wetlands contribute to blue carbon sequestration and adjustment to sea-level rise through vertical substrate growth, with accurate modelling of these dynamics requiring information of root mass and volume additions across tidal gradients. This study aims to characterise the influence of vegetation zonation and tidal position on root mass and volume dynamics within substrates.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The root ingrowth technique was coupled with sediment cores to quantify below-ground root mass and volume production, standing stocks and turnover across two years to 90 cm depth at Kooweerup, Victoria, Australia.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We indicate a complex non-linear relationship between fine root mass production and tidal position, influenced by variable vegetation structures across mangrove (442–3427 g m<sup>−2</sup> yr<sup>−1</sup>), saltmarsh (540–860 g m<sup>−2</sup> yr<sup>−1</sup>) and supratidal forest (599 g m<sup>−2</sup> yr<sup>−1</sup>) zones. Fine root volume additions ranged from 274 to 4055 cm<sup>3</sup> m<sup>−2</sup> yr<sup>−1</sup> across sampling locations. Root production was greatest for older mangroves and tidally defined optimal zones of production were evident for mangrove and saltmarsh. Live roots extended deeper than typically studied, reaching depths of 1.0 m in forested zones.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This information of root mass and volume additions across wetland live rooting zones can be used to improve highly parameterised models accounting for carbon sequestration and substrate vertical adjustment along intertidal gradients. We recommend that future studies measure root production across the entire active rooting zone or to 1 m depth to align with standard carbon accounting measurement depths.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"3 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patchy degradation of alpine meadow is a common phenomenon in the natural ecosystem of the QTP, and the advent of bare patches (BPs) in degraded meadow impairs its ecosystem functions. Soil microbial diversity is an important biomarker essential to maintain the health of the meadow ecosystem. At present, there is a lack of understanding about how soil microbial communities change during the natural recovery of patchily degraded BPs in alpine meadows on the QTP.
Method
We analyzed soil archaea/bacteria and fungi at different recovery stages from BP, and their relationship with carbon fluxes during peak growth. The patches at different recovery stages were monitored to determine the changing patterns of soil microbial diversity and to establish the relationship between microbial communities and ecosystem carbon functions during the recovery process of BP.
Results
We found that the recovery of BP to healthy alpine meadow caused significant structural changes in the soil archaeal/bacterial and fungal communities, as evidenced by a significant decrease in their alpha-diversity. The recovery of bare patches leads to changes in soil nitrate nitrogen, pH, available phosphorus, microbial biomass carbon, and soil water content. All of them either directly or indirectly affected microbial community composition and alpha-diversity. Soil microbial alpha-diversity was negatively correlated with carbon sequestration and the respiratory rate of carbon flux components.
Conclusion
It is concluded that the diversity of soil microorganisms was significantly reduced as bare patches of the degraded meadow naturally recovered to become healthy meadow.
{"title":"Natural recovery of bare patches to healthy alpine meadow reduces soil microbial diversity in a degraded high-altitude grassland, West China","authors":"Chengyi Li, Xinhui Li, Xilai Li, Yu Chai, Pei Gao, Yuanwu Yang, Jing Zhang","doi":"10.1007/s11104-025-07209-9","DOIUrl":"https://doi.org/10.1007/s11104-025-07209-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aim</h3><p>Patchy degradation of alpine meadow is a common phenomenon in the natural ecosystem of the QTP, and the advent of bare patches (BPs) in degraded meadow impairs its ecosystem functions. Soil microbial diversity is an important biomarker essential to maintain the health of the meadow ecosystem. At present, there is a lack of understanding about how soil microbial communities change during the natural recovery of patchily degraded BPs in alpine meadows on the QTP.</p><h3 data-test=\"abstract-sub-heading\">Method</h3><p>We analyzed soil archaea/bacteria and fungi at different recovery stages from BP, and their relationship with carbon fluxes during peak growth. The patches at different recovery stages were monitored to determine the changing patterns of soil microbial diversity and to establish the relationship between microbial communities and ecosystem carbon functions during the recovery process of BP.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We found that the recovery of BP to healthy alpine meadow caused significant structural changes in the soil archaeal/bacterial and fungal communities, as evidenced by a significant decrease in their alpha-diversity. The recovery of bare patches leads to changes in soil nitrate nitrogen, pH, available phosphorus, microbial biomass carbon, and soil water content. All of them either directly or indirectly affected microbial community composition and alpha-diversity. Soil microbial alpha-diversity was negatively correlated with carbon sequestration and the respiratory rate of carbon flux components.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>It is concluded that the diversity of soil microorganisms was significantly reduced as bare patches of the degraded meadow naturally recovered to become healthy meadow.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"29 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1007/s11104-025-07216-w
Thaís Lima Figueiredo, Valéria Xavier de Oliveira Apolinário, Janerson José Coelho, Luciano Cavalcante Muniz, Joaquim Bezerra Costa, Jossanya Benilsy dos Santos Silva Castro, Maria Inez Fernandes Carneiro, Jose Carlos Batista Dubeux
Background and aims
Understanding how inorganic N fertilizers applied to agroforestry systems impact N2-fixation and development of legume trees is essential for optimizing management practices. This study hypothesized that inorganic N fertilization with urea (CH4N2O) could reduce the quantity of N derived from the atmosphere in the leaves, and decrease the overall development of the legume tree Mimosa caesalpiniifolia Benth. under an agroforestry system.
Methods
The trial was settled in a randomized complete block design with three repetitions, and evaluated four different rates of N fertilization (0, 100, 200, and 400 kg N ha−1 year−1), over a three-year trial. The agroforestry was composed of M. caesalpiniifolia double rows, grass pasture (Megathyrsus maximus Jacq. cv. Massai), and dispersed babassu palm trees (Attalea speciosa Mart. ex Spreng), located in the Amazon region of Brazil.
Results
This study proved that increasing rates of inorganic N fertilization using urea, up to 400 kg ha−1 year−1, did not affect the regular development of M. caesalpiniifolia trees under an agroforestry system; however, the level of N applied, especially the highest dosage (400 kg ha−1 year−1), was capable of reducing by approximately 45% the quantity of N derived from the atmosphere.
Conclusion
These findings indicate a negative impact of the inorganic N fertilization with urea on the symbiotic N2-fixation of M. caesalpiniifolia trees. This study also evidenced that as the trees of M. caesalpiniifolia aged they tended to display a significant reduction of the content of N derived from the atmosphere in their leaves.
背景与目的了解农林复合系统中施用无机氮肥如何影响氮素固定和豆科树木的发育,对于优化管理实践至关重要。本研究假设尿素(CH4N2O)的无机氮肥可减少叶片中从大气中获得的氮量,从而降低豆科树含水含水树(Mimosa caesalpiniifolia Benth)的整体发育。在农林业制度下。方法采用3次重复的随机完全区组设计,在为期3年的试验中评估4种不同的氮肥施用量(0、100、200和400 kg N ha−1年−1年)。农林业主要由双排阔叶林、草地草地(Megathyrsus maximus Jacq.)和草地草地(Megathyrsus maximus Jacq.)组成。简历。和分散的巴巴苏棕榈树(Attalea speciosa Mart)。(前春季),位于巴西亚马逊地区。结果表明,在农林业条件下,增加氮肥施用量(400 kg ha−1年−1)对杉木的正常发育没有影响;然而,施氮水平,特别是最高施氮量(400kg公顷−1年−1),能够使来自大气的氮量减少约45%。结论尿素配无机氮肥对杉木共生固氮有负向影响。本研究还证明,随着杉木树龄的增长,杉木叶片中大气氮含量有显著降低的趋势。
{"title":"Urea fertilization reduced biological N2 fixation but did not impact the development of legume trees in an agroforestry system","authors":"Thaís Lima Figueiredo, Valéria Xavier de Oliveira Apolinário, Janerson José Coelho, Luciano Cavalcante Muniz, Joaquim Bezerra Costa, Jossanya Benilsy dos Santos Silva Castro, Maria Inez Fernandes Carneiro, Jose Carlos Batista Dubeux","doi":"10.1007/s11104-025-07216-w","DOIUrl":"https://doi.org/10.1007/s11104-025-07216-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Understanding how inorganic N fertilizers applied to agroforestry systems impact N<sub>2</sub>-fixation and development of legume trees is essential for optimizing management practices. This study hypothesized that inorganic N fertilization with urea (CH<sub>4</sub>N<sub>2</sub>O) could reduce the quantity of N derived from the atmosphere in the leaves, and decrease the overall development of the legume tree <i>Mimosa caesalpiniifolia</i> Benth. under an agroforestry system.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The trial was settled in a randomized complete block design with three repetitions, and evaluated four different rates of N fertilization (0, 100, 200, and 400 kg N ha<sup>−1</sup> year<sup>−1</sup>), over a three-year trial. The agroforestry was composed of <i>M. caesalpiniifolia</i> double rows, grass pasture (<i>Megathyrsus maximus</i> Jacq. cv. Massai), and dispersed babassu palm trees (<i>Attalea speciosa</i> Mart. ex Spreng), located in the Amazon region of Brazil.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>This study proved that increasing rates of inorganic N fertilization using urea, up to 400 kg ha<sup>−1</sup> year<sup>−1</sup>, did not affect the regular development of <i>M. caesalpiniifolia</i> trees under an agroforestry system; however, the level of N applied, especially the highest dosage (400 kg ha<sup>−1</sup> year<sup>−1</sup>), was capable of reducing by approximately 45% the quantity of N derived from the atmosphere.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>These findings indicate a negative impact of the inorganic N fertilization with urea on the symbiotic N<sub>2</sub>-fixation of <i>M. caesalpiniifolia</i> trees. This study also evidenced that as the trees of <i>M. caesalpiniifolia</i> aged they tended to display a significant reduction of the content of N derived from the atmosphere in their leaves.\u0000</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"90 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental stresses can influence root mechanical strength, the impact of submersion of the water level fluctuation zone on the root mechanical strength of Cynodon dactylon was evaluated in this study.
Methods
Variations in the physicochemical properties (root weight density and root activity), mechanical strengths (tensile and pullout strength) and failure types of C. dactylon roots were investigated using a submersion experiment with 8 durations (0, 15, 30, 60, 90, 120, 150, 180 d), with a treatment without submersion serving as the control (CK). Additionally, corresponding variation in the microstructure of the roots was observed.
Results
The root weight density, root activity, root tensile strength and pullout strength of C. dactylon rapidly decreased, followed by a gradual decrease with increasing duration, and the reductions during the first 15 d of submersion accounted for 65.15%, 75.86%, 61.14% and 68.26% of the maximum reduction during the submersion process, respectively. Negative power function relationships were found between root mechanical strength and root diameter. Submersion increased the proportion of fracture failures during the pullout process. Moreover, the influence of submersion on root mechanical strength and failure type was regulated by a reduction in root activity.
Conclusions
Submersion deteriorates the mechanical properties of C. dactylon roots and alters their failure type.
{"title":"Submersion deteriorates the mechanical properties of Cynodon dactylon root and alters its failure type","authors":"Deyu Liu, Zhubao Chen, Lun Zhang, Zhenyao Xia, Rui Xiang, Feng Gao, Qianheng Zhang, Ruidong Yang, Yu Ding, Yueshu Yang, Hai Xiao","doi":"10.1007/s11104-025-07211-1","DOIUrl":"https://doi.org/10.1007/s11104-025-07211-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Environmental stresses can influence root mechanical strength, the impact of submersion of the water level fluctuation zone on the root mechanical strength of <i>Cynodon dactylon</i> was evaluated in this study.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Variations in the physicochemical properties (root weight density and root activity), mechanical strengths (tensile and pullout strength) and failure types of <i>C. dactylon</i> roots were investigated using a submersion experiment with 8 durations (0, 15, 30, 60, 90, 120, 150, 180 d), with a treatment without submersion serving as the control (CK). Additionally, corresponding variation in the microstructure of the roots was observed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The root weight density, root activity, root tensile strength and pullout strength of <i>C. dactylon</i> rapidly decreased, followed by a gradual decrease with increasing duration, and the reductions during the first 15 d of submersion accounted for 65.15%, 75.86%, 61.14% and 68.26% of the maximum reduction during the submersion process, respectively. Negative power function relationships were found between root mechanical strength and root diameter. Submersion increased the proportion of fracture failures during the pullout process. Moreover, the influence of submersion on root mechanical strength and failure type was regulated by a reduction in root activity.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Submersion deteriorates the mechanical properties of <i>C. dactylon</i> roots and alters their failure type.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"8 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1007/s11104-024-07190-9
Cédric Béraud, Florence Piola, Jonathan Gervaix, Christelle Boisselet, Charline Creuze des Chatelliers, Pauline Defour, Abigaïl Delort, Elisabeth Derollez, Léa Dumortier, Alessandro Florio, Léo Rasse, Félix Vallier, Amélie A. M. Cantarel
Background and aims
Knotweeds are known to influence microbial processes. This study aimed to unravel the clonal control of microbial nitrogen cycle activities by established knotweed patches, as function of plant growth phases and ramet positions within the patch, all according to six different soils.
Methods
At six sites, we measured N-microbial activities (free-living nitrogen fixation, nitrification, and denitrification, substrate-induced respiration), soil N mineral forms, moisture and pH across five plant growth phases and at two ramet positions within the patch (centre and front). The sites were categorized as having High, Medium or Low soil functioning based on (a)biotic parameters (nitrification, denitrification, soil moisture, and pH).
Results
The influence of the patch centre on N-microbial activities varied with soil functioning during the plant growth phases. Nitrification and N fixation increased in Low functioning soils but decreased or remained unchanged in High functioning soils. Denitrification remained constant in Low functioning soils but decreased in High functioning soils. In Medium functioning soil, denitrification and N fixation were reduced, whereas nitrification remained unchanged. Significant differences in N cycle control were found between the patch centre and front, depending on the growth phase and soil functioning.
Conclusion
During the growth period (N demand), the patch centre influences N-microbial activities differently, depending on soil functioning, leading to improved N acquisition in soils with strong competition for mineral N (High and Medium functioning soils). Ramets at the patch centre and front control the N cycle differently, with the centre likely facilitating N acquisition and the front promoting colonization.
{"title":"Unravelling knotweed clonal control of soil microbial activities related to the nitrogen cycle through plant growth phases and ramet positions within the patch","authors":"Cédric Béraud, Florence Piola, Jonathan Gervaix, Christelle Boisselet, Charline Creuze des Chatelliers, Pauline Defour, Abigaïl Delort, Elisabeth Derollez, Léa Dumortier, Alessandro Florio, Léo Rasse, Félix Vallier, Amélie A. M. Cantarel","doi":"10.1007/s11104-024-07190-9","DOIUrl":"https://doi.org/10.1007/s11104-024-07190-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Knotweeds are known to influence microbial processes. This study aimed to unravel the clonal control of microbial nitrogen cycle activities by established knotweed patches, as function of plant growth phases and ramet positions within the patch, all according to six different soils.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>At six sites, we measured N-microbial activities (free-living nitrogen fixation, nitrification, and denitrification, substrate-induced respiration), soil N mineral forms, moisture and pH across five plant growth phases and at two ramet positions within the patch (centre and front). The sites were categorized as having High, Medium or Low soil functioning based on (a)biotic parameters (nitrification, denitrification, soil moisture, and pH).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The influence of the patch centre on N-microbial activities varied with soil functioning during the plant growth phases. Nitrification and N fixation increased in Low functioning soils but decreased or remained unchanged in High functioning soils. Denitrification remained constant in Low functioning soils but decreased in High functioning soils. In Medium functioning soil, denitrification and N fixation were reduced, whereas nitrification remained unchanged. Significant differences in N cycle control were found between the patch centre and front, depending on the growth phase and soil functioning.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>During the growth period (N demand), the patch centre influences N-microbial activities differently, depending on soil functioning, leading to improved N acquisition in soils with strong competition for mineral N (High and Medium functioning soils). Ramets at the patch centre and front control the N cycle differently, with the centre likely facilitating N acquisition and the front promoting colonization.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"36 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1007/s11104-024-07165-w
Bo Chen, Lan Jiang, Jinfu Liu, Xinguang Gu, Yu Hong, Dehuang Zhu, Wenzhou Li, Daowei Xu, Kaijin Kuang, Zhongsheng He
<h3 data-test="abstract-sub-heading">Aims</h3><p>The Home-Field Advantage (HFA) suggests that litter decomposes faster in its "home" habitat (home-field) due to local decomposer communities being more adapted to decomposing "home" litter. Elevation-induced micro-environmental variations, may break down the relationship between litter and its associated decomposer communities, reducing decomposition efficiency in home-field environments. In study, we aim to explore whether litter decomposition shows HFA across elevational gradients, the driving factors of litter mass loss in home and away, and what controls the litter HFA along the elevational gradient in subtropical forests.</p><h3 data-test="abstract-sub-heading">Methods</h3><p>In this study, we conducted a foliar litter decomposition translocation experiment along different elevational gradients (900 m-1600 m) in Daiyun Mountain in southeast China, using a 400 m elevational gradient (with a temperature variation of approximately 1.8 ℃) as the span for litter decomposition. We collected data on environmental factors (e.g., air and soil temperature, soil total C, N, P, and water content), foliar litter quality (e.g., total carbon, nitrogen and phosphorus contents), decomposer communities (soil fungal and bacterial biomass) and plant leaf traits (e.g., leaf total C, N, P, specific leaf area, and leaf dry matter content) at different elevations. Then mixed linear models and structural equation models were used to investigate differences in foliar litter decomposition between home and away fields, as well as the driving factors for HFA.</p><h3 data-test="abstract-sub-heading">Results</h3><p>We found that (1) Litter decomposition showed HFA across elevational gradients, with foliar litter in home-field losing more mass than in away-field along these gradients. (2) Environmental factors were the main driving factors influencing home-field litter decomposition, while litter quality was the main factor affecting away-field litter decomposition and HFA. Fungal communities enhanced home litter decomposition but not away-field litter, supporting decomposer control in home-field decomposition. (3) From the structural equation model, environmental factors and litter quality were significant positive drivers of HFA. In addition, litter quality was the main factor influencing home-field decomposition, as the faster decomposition of home-field foliar litter was a direct positive contributor to HFA, while slower decomposition of away-field litter had a direct negative effect.</p><h3 data-test="abstract-sub-heading">Conclusions</h3><p>Foliar litter decomposition along the elevational gradients exhibited HFA in Daiyun Mountain of subtropical regions, environmental factors are the main factors affecting home litter mass loss, while litter quality is the main factor affecting away litter mass loss and HFA. Additionally, environmental factors influenced microbial communities, with fungal communities having a signific
home-field Advantage (HFA)表明,由于当地的分解者群落更适应分解“家”垃圾,垃圾在其“家”栖息地(home-field)分解得更快。海拔引起的微环境变化可能会破坏凋落物及其相关分解者群落之间的关系,降低家庭-田野环境中的分解效率。本研究旨在探讨亚热带森林凋落物分解是否表现出跨海拔梯度的HFA,主场和外场凋落物质量损失的驱动因素,以及在海拔梯度上控制凋落物HFA的因素。方法以400 m海拔梯度(温度变化约1.8℃)为凋落物分解跨度,在海拔900 m ~ 1600 m的不同海拔梯度上进行了凋落物分解迁移试验。我们收集了不同海拔的环境因子(如空气和土壤温度、土壤全碳、全氮、全磷和含水量)、叶凋落物质量(如全碳、全氮和全磷含量)、分解者群落(如土壤真菌和细菌生物量)和植物叶片性状(如叶片全碳、全氮、全磷、比叶面积和叶片干物质含量)的数据。采用混合线性模型和结构方程模型分析了主客场凋落叶分解的差异,以及HFA的驱动因素。结果:(1)凋落物分解在不同海拔梯度上表现为HFA,在不同海拔梯度上,主场凋落物质量损失大于外场凋落物质量损失。(2)环境因子是影响主场凋落物分解的主要驱动因子,而凋落物质量是影响远场凋落物分解和HFA的主要驱动因子。真菌群落促进了室内凋落物分解,但对室外凋落物没有促进作用,支持分解者对室内凋落物分解的控制。(3)从结构方程模型看,环境因子和凋落物质量是HFA的显著正驱动因子。此外,凋落物质量是影响主场分解的主要因素,主场凋落叶分解快是HFA的直接正贡献因子,而外场凋落叶分解慢则是HFA的直接负影响因子。结论亚热带岱云山凋落叶分解沿海拔梯度表现为HFA,环境因子是影响本区凋落叶质量损失的主要因素,而凋落叶质量是影响外区凋落叶质量损失和HFA的主要因素。此外,环境因素影响微生物群落,真菌群落对家庭凋落物质量损失有显著的正向影响,但对away没有显著影响,支持分解者控制假说。因此,全球气候变化可能通过改变环境条件来影响凋落物分解,这对生态系统中的养分循环至关重要,特别是在海拔差异造成不同微环境的山区。了解不同海拔的主场优势有助于预测森林对全球变化的反应,特别是在对气候海拔变化敏感的地区。
{"title":"What control home‐field advantage of foliar litter decomposition along an elevational gradient in subtropical forests?","authors":"Bo Chen, Lan Jiang, Jinfu Liu, Xinguang Gu, Yu Hong, Dehuang Zhu, Wenzhou Li, Daowei Xu, Kaijin Kuang, Zhongsheng He","doi":"10.1007/s11104-024-07165-w","DOIUrl":"https://doi.org/10.1007/s11104-024-07165-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>The Home-Field Advantage (HFA) suggests that litter decomposes faster in its \"home\" habitat (home-field) due to local decomposer communities being more adapted to decomposing \"home\" litter. Elevation-induced micro-environmental variations, may break down the relationship between litter and its associated decomposer communities, reducing decomposition efficiency in home-field environments. In study, we aim to explore whether litter decomposition shows HFA across elevational gradients, the driving factors of litter mass loss in home and away, and what controls the litter HFA along the elevational gradient in subtropical forests.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, we conducted a foliar litter decomposition translocation experiment along different elevational gradients (900 m-1600 m) in Daiyun Mountain in southeast China, using a 400 m elevational gradient (with a temperature variation of approximately 1.8 ℃) as the span for litter decomposition. We collected data on environmental factors (e.g., air and soil temperature, soil total C, N, P, and water content), foliar litter quality (e.g., total carbon, nitrogen and phosphorus contents), decomposer communities (soil fungal and bacterial biomass) and plant leaf traits (e.g., leaf total C, N, P, specific leaf area, and leaf dry matter content) at different elevations. Then mixed linear models and structural equation models were used to investigate differences in foliar litter decomposition between home and away fields, as well as the driving factors for HFA.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We found that (1) Litter decomposition showed HFA across elevational gradients, with foliar litter in home-field losing more mass than in away-field along these gradients. (2) Environmental factors were the main driving factors influencing home-field litter decomposition, while litter quality was the main factor affecting away-field litter decomposition and HFA. Fungal communities enhanced home litter decomposition but not away-field litter, supporting decomposer control in home-field decomposition. (3) From the structural equation model, environmental factors and litter quality were significant positive drivers of HFA. In addition, litter quality was the main factor influencing home-field decomposition, as the faster decomposition of home-field foliar litter was a direct positive contributor to HFA, while slower decomposition of away-field litter had a direct negative effect.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Foliar litter decomposition along the elevational gradients exhibited HFA in Daiyun Mountain of subtropical regions, environmental factors are the main factors affecting home litter mass loss, while litter quality is the main factor affecting away litter mass loss and HFA. Additionally, environmental factors influenced microbial communities, with fungal communities having a signific","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"39 4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To examine the effect of active aluminum (Al) on copper(II) (Cu(II)) bioavailability in an acidic Cu-contaminated soil and uptake of Cu(II) by Chinese cabbage.
Methods
A pot trial was conducted with Ca(OH)2 and peanut straw biochar (PB) to investigate Cu(II) uptake by Chinese cabbage. DGT (CDGT-Cu) and CaCl2 extraction methods (CCaCl2-Cu) were used to determine soil available Cu(II) and BCR sequential-extraction was used to determine Cu(II) species in the soil.
Results
The amelioration of soil acidity with Ca(OH)2 and PB increased soil pH, promoted Chinese cabbage growth, and decreased Cu(II) uptake by plant shoots/roots. There were highly significant positive linear correlations between CDGT-Cu, CCaCl2-Cu and Cu(II) uptake by plant shoots. CDGT-Cu showed a better predictive effect for Cu(II) uptake by plant roots with a greater correlation coefficient (R2 = 0.9756). Thus, the DGT method was more effective in predicting Cu(II) uptake by plants. With increasing soil pH, Cu-HOAc and Cu-Reducible were converted to Cu-Residual, resulting in a decrease in soil Cu(II) bioavailability. The results of Structural Equation Modeling analyses showed that Al uptake by Chinese cabbage had a promoting effect on Cu(II) uptake by the plant, mainly through affecting plant growth indirectly. Soil exchangeable Al inhibited root growth (root length, root dry weight), reduced root resistance of Chinese cabbage and indirectly increased Cu(II) uptake.
Conclusions
Reducing Al toxicity decreased root damage and Cu(II) uptake by plant, improving the edible quality of Chinese cabbage. When remediating acidic Cu-contaminated soils, more attentions should be payed to mitigating and regulating Al toxicity.
{"title":"Active aluminum promoted copper uptake by Chinese cabbage grown in an acidic Cu-contaminated soil: A new insight with the diffusive gradients in thin-films technique (DGT)","authors":"Linyu Guo, Jing Yan, Yangxiaoxiao Shi, Ke-wei Li, Peng Guan, Ren-kou Xu","doi":"10.1007/s11104-024-07193-6","DOIUrl":"https://doi.org/10.1007/s11104-024-07193-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aim</h3><p>To examine the effect of active aluminum (Al) on copper(II) (Cu(II)) bioavailability in an acidic Cu-contaminated soil and uptake of Cu(II) by Chinese cabbage.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A pot trial was conducted with Ca(OH)<sub>2</sub> and peanut straw biochar (PB) to investigate Cu(II) uptake by Chinese cabbage. DGT (C<sub>DGT-Cu</sub>) and CaCl<sub>2</sub> extraction methods (C<sub>CaCl2-Cu</sub>) were used to determine soil available Cu(II) and BCR sequential-extraction was used to determine Cu(II) species in the soil.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The amelioration of soil acidity with Ca(OH)<sub>2</sub> and PB increased soil pH, promoted Chinese cabbage growth, and decreased Cu(II) uptake by plant shoots/roots. There were highly significant positive linear correlations between C<sub>DGT-Cu</sub>, C<sub>CaCl2-Cu</sub> and Cu(II) uptake by plant shoots. C<sub>DGT-Cu</sub> showed a better predictive effect for Cu(II) uptake by plant roots with a greater correlation coefficient (R<sup>2</sup> = 0.9756). Thus, the DGT method was more effective in predicting Cu(II) uptake by plants. With increasing soil pH, Cu-HOAc and Cu-Reducible were converted to Cu-Residual, resulting in a decrease in soil Cu(II) bioavailability. The results of Structural Equation Modeling analyses showed that Al uptake by Chinese cabbage had a promoting effect on Cu(II) uptake by the plant, mainly through affecting plant growth indirectly. Soil exchangeable Al inhibited root growth (root length, root dry weight), reduced root resistance of Chinese cabbage and indirectly increased Cu(II) uptake.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Reducing Al toxicity decreased root damage and Cu(II) uptake by plant, improving the edible quality of Chinese cabbage. When remediating acidic Cu-contaminated soils, more attentions should be payed to mitigating and regulating Al toxicity.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"42 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s11104-024-07172-x
Zhenqing Gao, Ruiying Chang, Asianya Nzube, Noman Ahmad, Yuanrui Peng, Jing Zhang, Zhanfeng Liu, Tao Wang
Background and aims
Soil aggregate stability is profoundly influenced by elevated atmospheric nitrogen (N) deposition, although the mechanisms remain elusive. Here we evaluate the role of microbial-derived soil organic carbon (SOC) of different origins in mediating soil aggregate stability under N addition.
Methods
We conducted an N addition experiment with three-level (0, 8, and 40 kg N ha−1 yr−1) in a subalpine forest to study the alteration of soil aggregate stability using mean weight diameter (MWD) and geometric mean diameter (GMD) as proxies. SOC content of aggregates, glomalin-related soil proteins (GRSP) and amino sugars were measured to indicate SOC associated with aggregates, derived from arbuscular mycorrhizal fungal hyphae and microbial necromass, respectively. The relative importance of these factors in regulating aggregate stability were explored using multivariate analysis.
Results
Nitrogen addition tended to enhance the stability of soil aggregates. In the top 5 cm soil, the N addition level of 40 kg N ha−1 yr−1 significantly (p < 0.05) increased MWD and GMD by 99% and 43%, respectively. Contents of aggregate-associated SOC, microbial necromass, and easily extractable GRSP also increased under N addition and positively correlated with the aggregate stability. Both the aggregate-associated SOC and the easily extractable GRSP (E-GRSP) exerted a direct impact on the stability of soil aggregates. Amino sugars, along with E-GRSP, indirectly influenced soil aggregate stability via their effects on aggregate-associated SOC.
Conclusion
Nitrogen addition improves soil aggregate stability by increasing the contents of soil microbial gluing agents. Compared to microbial necromass, fungal hyphae tend to play a more significant role in regulating soil aggregate stability.
背景与目的土壤团聚体稳定性受到大气氮沉降的深刻影响,但其机制尚不明确。本文评价了不同来源的微生物源土壤有机碳(SOC)在N添加下调节土壤团聚体稳定性中的作用。方法以平均重径(MWD)和几何平均径(GMD)为指标,在亚高山森林进行3个水平(0、8和40 kg N ha−1 yr−1)的施氮试验,研究土壤团聚体稳定性的变化。测定团聚体、glomalin相关土壤蛋白(GRSP)和氨基糖的有机碳含量,分别来源于丛枝菌根真菌菌丝和微生物坏死块。利用多变量分析探讨了这些因素在调节骨料稳定性中的相对重要性。结果施氮有增强土壤团聚体稳定性的趋势。在表层5 cm土壤中,施氮水平为40 kg N ha - 1 yr - 1显著(p < 0.05)提高了MWD和GMD,分别提高了99%和43%。氮的添加也增加了团聚体相关有机碳、微生物坏死块和易提取GRSP的含量,并与团聚体稳定性呈正相关。团聚体相关有机碳和易提取的GRSP (E-GRSP)都直接影响土壤团聚体的稳定性。氨基糖和E-GRSP通过对团聚体相关有机碳的影响间接影响土壤团聚体稳定性。结论添加氮肥通过增加土壤微生物黏结剂含量来改善土壤团聚体稳定性。与微生物坏死块相比,真菌菌丝对土壤团聚体稳定性的调节作用更为显著。
{"title":"Nitrogen addition enhances soil aggregate stability by increasing the contents of microbial gluing agents in a subalpine forest","authors":"Zhenqing Gao, Ruiying Chang, Asianya Nzube, Noman Ahmad, Yuanrui Peng, Jing Zhang, Zhanfeng Liu, Tao Wang","doi":"10.1007/s11104-024-07172-x","DOIUrl":"https://doi.org/10.1007/s11104-024-07172-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Soil aggregate stability is profoundly influenced by elevated atmospheric nitrogen (N) deposition, although the mechanisms remain elusive. Here we evaluate the role of microbial-derived soil organic carbon (SOC) of different origins in mediating soil aggregate stability under N addition.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted an N addition experiment with three-level (0, 8, and 40 kg N ha<sup>−1</sup> yr<sup>−1</sup>) in a subalpine forest to study the alteration of soil aggregate stability using mean weight diameter (MWD) and geometric mean diameter (GMD) as proxies. SOC content of aggregates, glomalin-related soil proteins (GRSP) and amino sugars were measured to indicate SOC associated with aggregates, derived from arbuscular mycorrhizal fungal hyphae and microbial necromass, respectively. The relative importance of these factors in regulating aggregate stability were explored using multivariate analysis.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Nitrogen addition tended to enhance the stability of soil aggregates. In the top 5 cm soil, the N addition level of 40 kg N ha<sup>−1</sup> yr<sup>−1</sup> significantly (<i>p</i> < 0.05) increased MWD and GMD by 99% and 43%, respectively. Contents of aggregate-associated SOC, microbial necromass, and easily extractable GRSP also increased under N addition and positively correlated with the aggregate stability. Both the aggregate-associated SOC and the easily extractable GRSP (E-GRSP) exerted a direct impact on the stability of soil aggregates. Amino sugars, along with E-GRSP, indirectly influenced soil aggregate stability via their effects on aggregate-associated SOC.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Nitrogen addition improves soil aggregate stability by increasing the contents of soil microbial gluing agents. Compared to microbial necromass, fungal hyphae tend to play a more significant role in regulating soil aggregate stability.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"67 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s11104-024-07144-1
Peng Kang, Yaqing Pan, Jinpeng Hu, Xuan Qu, Qiubo Ji, Chanyu Zhuang, Yufeng Ren, Jun Zhou, Tianjun Wei
Aims
The utilization of straw mulch and orchard grass in Ziziphus Jujuba orchards significantly influenced soil resource effectiveness, altering soil microbial metabolic limitations and enhancing nutrient accumulation. However, the response of soil microbial community composition to soil nutrient stoichiometry imbalance in Z. jujuba ‘Lingwuchangzao’ orchards is not clear.
Methods
This study investigated stoichiometric characteristics of soil nutrient resources, microbial biomass, and extracellular enzyme activities. Meanwhile, it was combined with soil microbial community diversity and composition under different management practices in Z. jujuba orchards in the arid zone of northern China.
Results
Straw mulch and orchard grass management reduced C:N imbalance, decreased nitrogen limitation and nitrogen use efficiency, and increased soil carbon limitation. These management practices also increased soil microbial diversity (eg. Shannon and ACE indices), with significant between-group differences by non-metric multidimensional scaling analysis. These differences were more significantly affected by relative carbon and nitrogen limitations. Relative carbon and nitrogen limitations were significantly correlated with Proteobacteria, Acidobacteriota, Ascomycota, and Mortierellomycota. In addition, straw mulch and orchard grass management increased the connectivity and complexity of the soil bacterial-fungal co-occurrence network. Random forest analysis further indicated the importance of microbial community diversity and dominant phyla to environmental change. Partial least squares path modeling revealed that changes in soil stoichiometric imbalance had direct or indirect effects on microbial ecoenzymatic stoichiometry, metabolic limitation, nutrient utilization efficiency, and community composition.
Conclusions
The interrelationships between soil nutrient stoichiometric imbalances and microbial communities under straw mulch and orchard grass management in Z. jujuba orchard can improve soil ecological management practices in arid regions.
{"title":"Straw mulch and orchard grass mediate soil microbial nutrient acquisition and microbial community composition in Ziziphus Jujuba orchard","authors":"Peng Kang, Yaqing Pan, Jinpeng Hu, Xuan Qu, Qiubo Ji, Chanyu Zhuang, Yufeng Ren, Jun Zhou, Tianjun Wei","doi":"10.1007/s11104-024-07144-1","DOIUrl":"https://doi.org/10.1007/s11104-024-07144-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>The utilization of straw mulch and orchard grass in <i>Ziziphus Jujuba</i> orchards significantly influenced soil resource effectiveness, altering soil microbial metabolic limitations and enhancing nutrient accumulation. However, the response of soil microbial community composition to soil nutrient stoichiometry imbalance in <i>Z. jujuba</i> ‘Lingwuchangzao’ orchards is not clear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study investigated stoichiometric characteristics of soil nutrient resources, microbial biomass, and extracellular enzyme activities. Meanwhile, it was combined with soil microbial community diversity and composition under different management practices in <i>Z. jujuba</i> orchards in the arid zone of northern China.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Straw mulch and orchard grass management reduced C:N imbalance, decreased nitrogen limitation and nitrogen use efficiency, and increased soil carbon limitation. These management practices also increased soil microbial diversity (eg. Shannon and ACE indices), with significant between-group differences by non-metric multidimensional scaling analysis. These differences were more significantly affected by relative carbon and nitrogen limitations. Relative carbon and nitrogen limitations were significantly correlated with Proteobacteria, Acidobacteriota, Ascomycota, and Mortierellomycota. In addition, straw mulch and orchard grass management increased the connectivity and complexity of the soil bacterial-fungal co-occurrence network. Random forest analysis further indicated the importance of microbial community diversity and dominant phyla to environmental change. Partial least squares path modeling revealed that changes in soil stoichiometric imbalance had direct or indirect effects on microbial ecoenzymatic stoichiometry, metabolic limitation, nutrient utilization efficiency, and community composition.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The interrelationships between soil nutrient stoichiometric imbalances and microbial communities under straw mulch and orchard grass management in <i>Z. jujuba</i> orchard can improve soil ecological management practices in arid regions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"45 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}