Pub Date : 2024-12-19DOI: 10.1007/s11104-024-07139-y
Aude Tixier, Romain L. Barnard, Christian Jeudy, Marion Prudent
Background and aims
While agroecological transition towards sustainable cropping systems has proposed the integration of nitrogen (N)-fixing-legumes to reduce N inputs, current agriculture faces primary limitations of water and N. It is therefore crucial to identify and hierarchize key drivers of legumes water and mineral (hydromineral) acquisition under limiting conditions, especially the underexplored functions provided by root architecture and rhizodeposition.
Methods
We studied the response of spatial exudation patterns in Pisum sativum to contrasted water and N treatments. These patterns were related with structural and functional plant traits involved in carbon (C), N and water uptake, root architecture and root local C and N content. The goal was to i) identify effects of root depth and maturity on local exudation and ii) characterize drivers of C and N allocation during vegetative growth.
Results
We show that younger and shallow roots tend to exude more sugar and amino acids and that root architecture can influence exudation in response to water and N limitations. Water stress (WS) decreased productivity, induced higher C and N allocation towards roots and a root architecture with steeper growth. WS increased the C cost of soil exploration and amino acid exudation. Nitrate shortage had milder effects than WS.
Conclusion
Our results suggest that plant adapt their root system to absorb water in deeper wet soil while optimizing its transport in older C-rich roots in response to water stress. These findings create the opportunity to explore trade-offs between water absorption, transport and exudation within the root system, using distinction between young and mature roots.
背景和目的虽然向可持续种植系统的农业生态转型提出了整合固氮豆科植物以减少氮投入的建议,但目前的农业面临着水和氮的主要限制。因此,识别和分级豆科植物在限制条件下获取水分和矿物质(水矿物质)的关键驱动因素,尤其是根系结构和根瘤沉积所提供的未充分探索的功能至关重要。这些模式与涉及碳(C)、氮和水吸收的植物结构和功能特征、根系结构以及根系局部的碳和氮含量有关。我们的研究结果表明,较年轻和较浅的根系往往会渗出更多的糖和氨基酸,根系结构会影响渗出量,以应对水分和氮的限制。水分胁迫(WS)会降低生产力,诱导根系分配更多的碳和氮,并使根系结构更加陡峭。水胁迫增加了土壤勘探和氨基酸渗出的碳成本。我们的研究结果表明,植物在应对水分胁迫时会调整根系,以便在较深的潮湿土壤中吸收水分,同时优化富含 C 的老根中的水分运输。这些发现为利用幼根和成熟根的区别来探索根系内水分吸收、运输和渗出之间的权衡提供了机会。
{"title":"Sugar and amino acid exhibit different spatial patterns of root exudation in response to water stress and n limitation in pea","authors":"Aude Tixier, Romain L. Barnard, Christian Jeudy, Marion Prudent","doi":"10.1007/s11104-024-07139-y","DOIUrl":"https://doi.org/10.1007/s11104-024-07139-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>While agroecological transition towards sustainable cropping systems has proposed the integration of nitrogen (N)-fixing-legumes to reduce N inputs, current agriculture faces primary limitations of water and N. It is therefore crucial to identify and hierarchize key drivers of legumes water and mineral (hydromineral) acquisition under limiting conditions, especially the underexplored functions provided by root architecture and rhizodeposition.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We studied the response of spatial exudation patterns in <i>Pisum sativum</i> to contrasted water and N treatments. These patterns were related with structural and functional plant traits involved in carbon (C), N and water uptake, root architecture and root local C and N content. The goal was to i) identify effects of root depth and maturity on local exudation and ii) characterize drivers of C and N allocation during vegetative growth.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We show that younger and shallow roots tend to exude more sugar and amino acids and that root architecture can influence exudation in response to water and N limitations. Water stress (WS) decreased productivity, induced higher C and N allocation towards roots and a root architecture with steeper growth. WS increased the C cost of soil exploration and amino acid exudation. Nitrate shortage had milder effects than WS.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our results suggest that plant adapt their root system to absorb water in deeper wet soil while optimizing its transport in older C-rich roots in response to water stress. These findings create the opportunity to explore trade-offs between water absorption, transport and exudation within the root system, using distinction between young and mature roots.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"48 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1007/s11104-024-07116-5
Joannie D’Amours, David E. Pelster, Martin H. Chantigny, Andrew C. VanderZaag, Erin L. Smith, Gilles Bélanger, Émilie Maillard, Marie-Élise Samson, Edward G. Gregorich, Denis A. Angers, Isabelle Royer, Marie-Noëlle Thivierge
Aims
Perennial forages in rotation with annual crops can improve agricultural resilience by increasing soil organic carbon. However, how nitrogen (N) sources interact with rotation diversity to influence soil nitrous oxide (N2O) emissions is not well understood.
Methods
During three snow-free seasons, N2O emissions, crop yields, and ancillary variables were measured at three experimental sites with contrasting soil textures (silty clay and sandy loam) in eastern Canada. Using a split-plot design, we compared a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.)-corn rotation and a mixed perennial grass sward receiving N via: i) mineral fertilizer (MIN), ii) liquid dairy manure (LDM), and iii) inclusion of alfalfa (Medicago sativa L.) to the perennial forages with no additional N (LEG).
Results
When summed across sites over all three years, cumulative N2O emissions were greater for LDM than MIN in annual crops (8.75 ± 1.63 and 5.15 ± 0.96 kg N2O-N ha–1, respectively), but not in perennial grasses (2.95 ± 0.55 and 3.76 ± 0.70 kg N2O-N ha–1, respectively). When comparing N sources within each crop type over the three years, MIN generated greater yields than LDM in annual and perennial crops, but lower yield-scaled N2O emissions than LDM in annual crops only. During forages post-seeding years, area- and yield-scaled N2O emissions induced by LDM and LEG were lower than MIN.
Conclusion
Our results suggest that for a cool humid climate using LDM or LEG in perennial forages and MIN on annual crops can reduce overall N2O emissions, while generating similar or lower yield-scaled emissions.
一年生牧草与一年生作物轮作可以通过增加土壤有机碳来提高农业抗灾能力。然而,氮(N)源如何与轮作多样性相互作用以影响土壤一氧化二氮(N2O)排放尚不清楚。方法在三个无雪季节,在加拿大东部三个具有不同土壤质地(粉质粘土和砂质壤土)的试验点测量N2O排放、作物产量和辅助变量。采用裂区设计,我们比较了玉米(Zea mays L.)和大豆(Glycine max [L.])。玉米轮作和多年生禾草混交田通过以下方式吸收氮:1)矿物肥(MIN), 2)液态乳肥(LDM), 3)在多年生牧草中添加苜蓿(Medicago sativa L.),不添加额外氮(LEG)。结果3年的累积N2O排放量,一年生作物LDM大于MIN(分别为8.75±1.63和5.15±0.96 kg N2O- n ha-1),多年生禾草LDM大于MIN(分别为2.95±0.55和3.76±0.70 kg N2O- n ha-1)。对比三年间各作物类型的氮源,一年生和多年生作物中,MIN的产量高于LDM,但仅一年生作物的N2O排放量低于LDM。在牧草播种后的年份,LDM和LEG诱导的N2O排放量在面积和产量尺度上均低于MIN。结论在凉爽潮湿的气候条件下,在多年生牧草中使用LDM或LEG,在一年生作物上使用MIN,可以减少N2O的总排放量,但产生的排放量相似或更低。
{"title":"Interactive effects of crop types and nitrogen sources on N2O emissions in a cool humid climate","authors":"Joannie D’Amours, David E. Pelster, Martin H. Chantigny, Andrew C. VanderZaag, Erin L. Smith, Gilles Bélanger, Émilie Maillard, Marie-Élise Samson, Edward G. Gregorich, Denis A. Angers, Isabelle Royer, Marie-Noëlle Thivierge","doi":"10.1007/s11104-024-07116-5","DOIUrl":"https://doi.org/10.1007/s11104-024-07116-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Perennial forages in rotation with annual crops can improve agricultural resilience by increasing soil organic carbon. However, how nitrogen (N) sources interact with rotation diversity to influence soil nitrous oxide (N<sub>2</sub>O) emissions is not well understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>During three snow-free seasons, N<sub>2</sub>O emissions, crop yields, and ancillary variables were measured at three experimental sites with contrasting soil textures (silty clay and sandy loam) in eastern Canada. Using a split-plot design, we compared a corn (<i>Zea mays</i> L.)-soybean (<i>Glycine max</i> [L.] Merr.)-corn rotation and a mixed perennial grass sward receiving N via: i) mineral fertilizer (MIN), ii) liquid dairy manure (LDM), and iii) inclusion of alfalfa (<i>Medicago sativa</i> L.) to the perennial forages with no additional N (LEG).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>When summed across sites over all three years, cumulative N<sub>2</sub>O emissions were greater for LDM than MIN in annual crops (8.75 ± 1.63 and 5.15 ± 0.96 kg N<sub>2</sub>O-N ha<sup>–1</sup>, respectively), but not in perennial grasses (2.95 ± 0.55 and 3.76 ± 0.70 kg N<sub>2</sub>O-N ha<sup>–1</sup>, respectively). When comparing N sources within each crop type over the three years, MIN generated greater yields than LDM in annual and perennial crops, but lower yield-scaled N<sub>2</sub>O emissions than LDM in annual crops only. During forages post-seeding years, area- and yield-scaled N<sub>2</sub>O emissions induced by LDM and LEG were lower than MIN.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our results suggest that for a cool humid climate using LDM or LEG in perennial forages and MIN on annual crops can reduce overall N<sub>2</sub>O emissions, while generating similar or lower yield-scaled emissions.\u0000</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"51 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the widespread co-occurrence of subsoil acidity and compaction, the interaction between these factors and their combined effects on root system development under water-limited conditions is poorly understood. This study aimed to investigate how the removal of soil strength and acidity influenced root development and examine relationships between root system properties and shoot growth under field conditions.
Methods
Images of root growth were obtained in situ by using rhizotron facilities to assess the temporal effects of soil improvement through loosening and lime incorporation on wheat root development in the 2018 season. Following this, we examined the relationship between enhanced root systems, water and nutrient uptakes, and overall crop performance.
Results
The results indicated that improved soil conditions significantly enhanced planar root length density (pRLD) through the elongation and proliferation of wheat roots in the subsoil. Regressing tree analysis suggested that subsoil strength had a more dominant influence on pRLD compared to soil pH or aluminium — leading to higher water uptake, wheat head density and yield. In addition to the benefit of loosening, the lime treatment improved soil acidity, promoting continuous root growth with root hairs, allowing plants to access previously unavailable nutrients and improve yield further. This highlights the critical role of managing multiple soil constraints for optimising crop productivity.
Conclusions
In this study, the integration of root images and soil properties data provided a deeper understanding of root-soil interactions which could be useful for developing sustainable soil management practices to optimise crop productivity under challenging conditions.
{"title":"Deep and continuous root development in ameliorated soil improves water and nutrient uptakes and wheat yield in water-limited conditions","authors":"Gaus Azam, Kanch Wickramarachchi, Craig Scanlan, Yinglong Chen","doi":"10.1007/s11104-024-07153-0","DOIUrl":"https://doi.org/10.1007/s11104-024-07153-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Despite the widespread co-occurrence of subsoil acidity and compaction, the interaction between these factors and their combined effects on root system development under water-limited conditions is poorly understood. This study aimed to investigate how the removal of soil strength and acidity influenced root development and examine relationships between root system properties and shoot growth under field conditions.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Images of root growth were obtained in situ by using rhizotron facilities to assess the temporal effects of soil improvement through loosening and lime incorporation on wheat root development in the 2018 season. Following this, we examined the relationship between enhanced root systems, water and nutrient uptakes, and overall crop performance.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results indicated that improved soil conditions significantly enhanced planar root length density (pRLD) through the elongation and proliferation of wheat roots in the subsoil. Regressing tree analysis suggested that subsoil strength had a more dominant influence on pRLD compared to soil pH or aluminium — leading to higher water uptake, wheat head density and yield. In addition to the benefit of loosening, the lime treatment improved soil acidity, promoting continuous root growth with root hairs, allowing plants to access previously unavailable nutrients and improve yield further. This highlights the critical role of managing multiple soil constraints for optimising crop productivity.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>In this study, the integration of root images and soil properties data provided a deeper understanding of root-soil interactions which could be useful for developing sustainable soil management practices to optimise crop productivity under challenging conditions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"8 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1007/s11104-024-07107-6
Xiong Li, Na Hu, Yanshuang Li, Ting Yang, Jianchu Xu
Background
Efficient microbe-assisted phytoremediation is urgently needed for coping with heavy metal-polluted environments.
Methods
In this study, a new strain of rhizobacteria from Cd-contaminated soil was screened, and its environmental adaptability, physiological characteristics, and effects on Cd phytoextraction were investigated. Furthermore, genomic sequencing and transcriptomic analysis were performed to explore the mechanisms underlying these functional characteristics.
Results
This strain, which was named Bacillus sp. LX1, was highly adaptable to Cd, pH, and temperature variations and exhibited typical plant growth-promoting characteristics. Inoculation with Bacillus sp. LX1 in rhizosphere improved Cd accumulation in mustard roots and shoots by 54.1% and 43.7%, respectively. These results can be attributed to increased plant growth, activated rhizospheric Cd bioavailability, and induced Cd transporter-encoding genes (e.g., HMA1, ZIP2, ZIP3, NRAMP3, and CAX2) in mustard roots. Integrated genomic and transcriptomic analyses provided molecular insights into its tolerance to Cd and enhancement of phytoextraction. The Bacillus sp. LX1 genome consists of a chromosome and a plasmid carrying a total of 5,934 genes with multiple functions. Under Cd (5 and 25 mg L−1) stress, Bacillus sp. LX1 activated several important KEGG pathways, including quorum sensing, nucleotide excision repair, sulphur metabolism, and riboflavin metabolism, to resist Cd. Moreover, Cd regulated the synthesis of IAA, organic acids, siderophores, phosphatases, and extracellular polysaccharides, providing the material basis for Bacillus sp. LX1 to promote plant growth and increase soil Cd bioavailability.
Conclusion
This study greatly improves our understanding of the interactions among plants, rhizobacteria, and Cd.
{"title":"Genomic and transcriptomic analyses of the newly screened Bacillus sp. LX1 strain provide insights into its tolerance to Cd and enhancement of phytoextraction","authors":"Xiong Li, Na Hu, Yanshuang Li, Ting Yang, Jianchu Xu","doi":"10.1007/s11104-024-07107-6","DOIUrl":"https://doi.org/10.1007/s11104-024-07107-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Efficient microbe-assisted phytoremediation is urgently needed for coping with heavy metal-polluted environments.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, a new strain of rhizobacteria from Cd-contaminated soil was screened, and its environmental adaptability, physiological characteristics, and effects on Cd phytoextraction were investigated. Furthermore, genomic sequencing and transcriptomic analysis were performed to explore the mechanisms underlying these functional characteristics.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>This strain, which was named <i>Bacillus</i> sp. LX1, was highly adaptable to Cd, pH, and temperature variations and exhibited typical plant growth-promoting characteristics. Inoculation with <i>Bacillus</i> sp. LX1 in rhizosphere improved Cd accumulation in mustard roots and shoots by 54.1% and 43.7%, respectively. These results can be attributed to increased plant growth, activated rhizospheric Cd bioavailability, and induced Cd transporter-encoding genes (e.g., <i>HMA1</i>, <i>ZIP2</i>, <i>ZIP3</i>, <i>NRAMP3</i>, and <i>CAX2</i>) in mustard roots. Integrated genomic and transcriptomic analyses provided molecular insights into its tolerance to Cd and enhancement of phytoextraction. The <i>Bacillus</i> sp. LX1 genome consists of a chromosome and a plasmid carrying a total of 5,934 genes with multiple functions. Under Cd (5 and 25 mg L<sup>−1</sup>) stress, <i>Bacillus</i> sp. LX1 activated several important KEGG pathways, including quorum sensing, nucleotide excision repair, sulphur metabolism, and riboflavin metabolism, to resist Cd. Moreover, Cd regulated the synthesis of IAA, organic acids, siderophores, phosphatases, and extracellular polysaccharides, providing the material basis for <i>Bacillus</i> sp. LX1 to promote plant growth and increase soil Cd bioavailability.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study greatly improves our understanding of the interactions among plants, rhizobacteria, and Cd.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"4 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1007/s11104-024-07156-x
Jiuwei Song, Yunxiu Zhao, Yuhan Cai, Boping Tang, Fenghua Ding, Philip C. Brookes, Xingmei Liu
Aims
Soil contaminated with heavy metals not only affects human health and safety but also poses a potential threat to the ecological balance of soil microbes. Ryegrass effectively extracts heavy metals from soil. Straw can increase the biomass of ryegrass, but the effects of straw addition on heavy metal absorption and changes in soil microbial community structure remain unclear. Our objective was to determine whether straw addition was beneficial to heavy metal accumulation in ryegrass and how straw addition changed the soil microbial community structure.
Methods
In our study, straw was added to soil contaminated with cadmium, copper, and zinc. We planted ryegrass in the greenhouse and measured the heavy metal content in the roots and shoots of ryegrass at 50 days.
Results
Straw addition increased available heavy metal conversion, soil microbial biomass, and ryegrass yield, increasing heavy metal absorption by ryegrass. An opposite trend was observed between the available heavy metals and soil microbial biomass during the ryegrass growth period. The bacterial community structure was primarily affected by the available heavy metal concentrations and the soil physicochemical properties. Bacteria with heavy metal resistance and straw decomposition ability dominated the soil after straw addition.
Conclusions
This study showed that straw addition can not only increase the heavy metal absorption of ryegrass but also act as a substrate to change the bacterial community structure. The results of this study provided directions for increasing the ability of plants to extract heavy metals and changing the soil microbial community structure using straw.
{"title":"Impacts of straw addition on ryegrass (Lolium perenne L.) heavy metal absorption and microbial community structure","authors":"Jiuwei Song, Yunxiu Zhao, Yuhan Cai, Boping Tang, Fenghua Ding, Philip C. Brookes, Xingmei Liu","doi":"10.1007/s11104-024-07156-x","DOIUrl":"https://doi.org/10.1007/s11104-024-07156-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Soil contaminated with heavy metals not only affects human health and safety but also poses a potential threat to the ecological balance of soil microbes. Ryegrass effectively extracts heavy metals from soil. Straw can increase the biomass of ryegrass, but the effects of straw addition on heavy metal absorption and changes in soil microbial community structure remain unclear. Our objective was to determine whether straw addition was beneficial to heavy metal accumulation in ryegrass and how straw addition changed the soil microbial community structure.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In our study, straw was added to soil contaminated with cadmium, copper, and zinc. We planted ryegrass in the greenhouse and measured the heavy metal content in the roots and shoots of ryegrass at 50 days.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Straw addition increased available heavy metal conversion, soil microbial biomass, and ryegrass yield, increasing heavy metal absorption by ryegrass. An opposite trend was observed between the available heavy metals and soil microbial biomass during the ryegrass growth period. The bacterial community structure was primarily affected by the available heavy metal concentrations and the soil physicochemical properties. Bacteria with heavy metal resistance and straw decomposition ability dominated the soil after straw addition.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study showed that straw addition can not only increase the heavy metal absorption of ryegrass but also act as a substrate to change the bacterial community structure. The results of this study provided directions for increasing the ability of plants to extract heavy metals and changing the soil microbial community structure using straw.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"23 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1007/s11104-024-07148-x
Reza Oladi, Reyhaneh Aliverdikhani, Ehsan Abdi
Aims
High root tensile strength (RTS) is crucial for tree stability, windthrow resistance, soil reinforcement, and erosion control. However, RTS varies across species, and the underlying causes remain poorly understood. RTS is directly linked to anatomical structure and fiber morphology, which influence its resistance to stress. This study explores the relationship between xylem anatomy and RTS in four broadleaved species—Acer velutinum, Fagus orientalis, Quercus castaneifolia, and Carpinus betulus—from the Hyrcanian forests of Iran.
Methods
RTS was measured, and fiber biometry, including fiber length, width, lumen width, and wall thickness, was quantified on macerated fibers. Vessel lumen fraction was also assessed through microscopic examination of root cross-sections.
Results
A. velutinum (Persian maple) exhibited the highest RTS, while F. orientalis displayed the lowest. A negative power relationship was observed between root diameter and RTS. Among fiber traits, fiber length and width had the strongest positive influence on RTS. Persian maple, as the species with strongest root, possessed the longest and widest fibers. Conversely, F. orientalis, the weakest one, displayed the shortest and thinnest fibers with the most robust cell walls. The relationship between quantitative vascular features of xylem and RTS was inconclusive, across species.
Conclusion
This study revealed the complex interplay between xylem anatomical traits and RTS. Fiber characteristics, particularly a dense network of long, wide, and more flexible fibers, were found to strengthen root. Further research should explore the interplay of multiple anatomical features to provide a comprehensive understanding of RTS.
目的高根抗张强度(RTS)对树木的稳定性、抗风倾覆、土壤加固和侵蚀控制至关重要。然而,不同树种的根系抗拉强度各不相同,其根本原因也不甚明了。RTS 与解剖结构和纤维形态直接相关,而解剖结构和纤维形态会影响其抗压性。本研究探讨了伊朗希尔卡尼亚森林中的四个阔叶树种--Acer velutinum、Fagus orientalis、Quercus castaneifolia 和 Carpinus betulus--木质部解剖结构与 RTS 之间的关系。结果 A. velutinum(波斯枫木)的 RTS 最高,而 F. orientalis 的最低。根直径与 RTS 之间呈负相关。在纤维性状中,纤维长度和宽度对 RTS 的正向影响最大。波斯枫是根系最粗壮的树种,拥有最长和最宽的纤维。相反,根系最弱的东方枫纤维最短、最细,细胞壁最坚固。结论这项研究揭示了木质部解剖特征与 RTS 之间复杂的相互作用。纤维特征,尤其是由长、宽和更柔韧的纤维组成的致密网络,可增强根系的强度。进一步的研究应该探索多种解剖特征的相互作用,以提供对RTS的全面理解。
{"title":"Linking root xylem anatomy to tensile strength: insights from four broadleaved tree species in the Hyrcanian forests","authors":"Reza Oladi, Reyhaneh Aliverdikhani, Ehsan Abdi","doi":"10.1007/s11104-024-07148-x","DOIUrl":"https://doi.org/10.1007/s11104-024-07148-x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>High root tensile strength (RTS) is crucial for tree stability, windthrow resistance, soil reinforcement, and erosion control. However, RTS varies across species, and the underlying causes remain poorly understood. RTS is directly linked to anatomical structure and fiber morphology, which influence its resistance to stress. This study explores the relationship between xylem anatomy and RTS in four broadleaved species—<i>Acer velutinum</i>, <i>Fagus orientalis</i>, <i>Quercus castaneifolia</i>, and <i>Carpinus betulus</i>—from the Hyrcanian forests of Iran.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>RTS was measured, and fiber biometry, including fiber length, width, lumen width, and wall thickness, was quantified on macerated fibers. Vessel lumen fraction was also assessed through microscopic examination of root cross-sections.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p><i>A. velutinum</i> (Persian maple) exhibited the highest RTS, while <i>F. orientalis</i> displayed the lowest. A negative power relationship was observed between root diameter and RTS. Among fiber traits, fiber length and width had the strongest positive influence on RTS. Persian maple, as the species with strongest root, possessed the longest and widest fibers. Conversely, <i>F. orientalis</i>, the weakest one, displayed the shortest and thinnest fibers with the most robust cell walls. The relationship between quantitative vascular features of xylem and RTS was inconclusive, across species.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study revealed the complex interplay between xylem anatomical traits and RTS. Fiber characteristics, particularly a dense network of long, wide, and more flexible fibers, were found to strengthen root. Further research should explore the interplay of multiple anatomical features to provide a comprehensive understanding of RTS.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"48 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1007/s11104-024-07141-4
Yun Zhang, Chao Xue, Xin Wang, Jianhua Zhang, Aiyu Wang, Yuanxue Yang, Xi Jia, Wenjuan Zhang, Ming Zhao
Aims
Cotton Verticillium wilt is a very serious soil-borne disease caused mainly by Verticillium dahliae, which severely affects the yield and quality of cotton. There has been an increasing amount of research on the biocontrol of plant disease; however, there is still a lack of effective biocontrol strains.
Methods
In this study, antagonistic endophytic fungi were screened to inhibit V. dahliae, and soil microbiome technologies were used to characterize the biocontrol mechanism.
Results
The strain FUS-8 was isolated from cotton stems; the strain significantly inhibited the growth of V. dahliae and was identified as Fusarium equiseti. FUS-8 had a small amount of cellulase activity, and its fermentation broth significantly inhibited the sporulation and colony formation of V. dahliae. After inoculation with FUS-8 in the greenhouse and field, the disease index significantly decreased. Preinoculation with FUS-8 inhibited the expression of pod. FUS-8 colonized the roots, hypocotyls, and stems of cotton. After preinoculation with FUS-8 in the greenhouse, the Shannon and Sobs indices of fungi and bacteria significantly decreased. The abundance of Bacillus genus in the treatment group was significantly greater than that in the control group 4 days after preinoculation with FUS-8 and 14 days after inoculation with V991. The LDA value of Bacillus in the treatment group was the highest at the genus level after inoculation with FUS-8 only; after reinoculation with V991, Pseudoxanthomonas had the highest LDA value in the treatment group.
Conclusion
FUS-8 altered soil microbial communities, enriched beneficial bacteria, and reduced the incidence of cotton Verticillium wilt.
{"title":"The control effect of endophytic fungus Fusarium equiseti FUS-8 on cotton Verticillium wilt and its effects on soil microbial communities","authors":"Yun Zhang, Chao Xue, Xin Wang, Jianhua Zhang, Aiyu Wang, Yuanxue Yang, Xi Jia, Wenjuan Zhang, Ming Zhao","doi":"10.1007/s11104-024-07141-4","DOIUrl":"https://doi.org/10.1007/s11104-024-07141-4","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Cotton Verticillium wilt is a very serious soil-borne disease caused mainly by <i>Verticillium dahliae</i>, which severely affects the yield and quality of cotton. There has been an increasing amount of research on the biocontrol of plant disease; however, there is still a lack of effective biocontrol strains.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, antagonistic endophytic fungi were screened to inhibit <i>V. dahliae</i>, and soil microbiome technologies were used to characterize the biocontrol mechanism.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The strain FUS-8 was isolated from cotton stems; the strain significantly inhibited the growth of <i>V. dahliae</i> and was identified as <i>Fusarium equiseti</i>. FUS-8 had a small amount of cellulase activity, and its fermentation broth significantly inhibited the sporulation and colony formation of <i>V. dahliae</i>. After inoculation with FUS-8 in the greenhouse and field, the disease index significantly decreased. Preinoculation with FUS-8 inhibited the expression of <i>pod</i>. FUS-8 colonized the roots, hypocotyls, and stems of cotton. After preinoculation with FUS-8 in the greenhouse, the Shannon and Sobs indices of fungi and bacteria significantly decreased. The abundance of <i>Bacillus</i> genus in the treatment group was significantly greater than that in the control group 4 days after preinoculation with FUS-8 and 14 days after inoculation with V991. The LDA value of <i>Bacillus</i> in the treatment group was the highest at the genus level after inoculation with FUS-8 only; after reinoculation with V991, <i>Pseudoxanthomonas</i> had the highest LDA value in the treatment group.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>FUS-8 altered soil microbial communities, enriched beneficial bacteria, and reduced the incidence of cotton Verticillium wilt.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"38 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1007/s11104-024-07119-2
Li-Li Zhang, Yan-Zhong Li
Background and aims
Alfalfa (Medicago sativa L.) Verticillium wilt is a class A quarantined disease in China. In September 2022, symptoms of this disease were observed in five-year-old alfalfa plants in a biocontrol field. This study aimed to assess the effects of the Verticillium wilt pathogen on alfalfa rhizosphere soil and plants under different biocontrol bacteria treatments using Bacillus amyloliquefaciens LYZ0069 and Streptomyces kanamyceticus LYZ0133.
Methods
The pathogen responsible for Verticillium wilt in alfalfa was identified through molecular biology techniques and morphological examination. High-throughput sequencing was used to profile the bacterial and fungal communities in the rhizosphere soil of infected and healthy alfalfa plants under different biocontrol treatments. Culturable bacteria were isolated and evaluated for their inhibitory effects on the pathogen. Additionally, the physicochemical properties of rhizosphere soil and the nutrient content of plants were measured.
Results
The pathogen was identified as Verticillium alfalfae. In total, 28 bacterial species and 11 fungal species were isolated from the rhizosphere soil. Pseudomonas species exhibited significantly higher isolation and inhibitory rates compared to other bacterial strains. Infection by V. alfalfae significantly affected the Pieloue evenness index of bacteria and the ammonium nitrogen content in the rhizosphere soil. The interactions between biocontrol bacteria and V. alfalfae significantly impacted alfalfa plant quality.
Conclusion
Alfalfa Verticillium wilt was detected in central of Gansu Province, significantly influencing plant nutrient content and relative abundance of Pseudomonas in alfalfa rhizosphere soil.
{"title":"Effects of different biocontrol bacteria treatments on the plant quality and rhizosphere soil microorganisms of Verticillium wilt-infested alfalfa plants","authors":"Li-Li Zhang, Yan-Zhong Li","doi":"10.1007/s11104-024-07119-2","DOIUrl":"https://doi.org/10.1007/s11104-024-07119-2","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Alfalfa (<i>Medicago sativa</i> L.) Verticillium wilt is a class A quarantined disease in China. In September 2022, symptoms of this disease were observed in five-year-old alfalfa plants in a biocontrol field. This study aimed to assess the effects of the Verticillium wilt pathogen on alfalfa rhizosphere soil and plants under different biocontrol bacteria treatments using <i>Bacillus amyloliquefaciens</i> LYZ0069 and <i>Streptomyces kanamyceticus</i> LYZ0133.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The pathogen responsible for Verticillium wilt in alfalfa was identified through molecular biology techniques and morphological examination. High-throughput sequencing was used to profile the bacterial and fungal communities in the rhizosphere soil of infected and healthy alfalfa plants under different biocontrol treatments. Culturable bacteria were isolated and evaluated for their inhibitory effects on the pathogen. Additionally, the physicochemical properties of rhizosphere soil and the nutrient content of plants were measured.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The pathogen was identified as <i>Verticillium alfalfae.</i> In total, 28 bacterial species and 11 fungal species were isolated from the rhizosphere soil. <i>Pseudomonas</i> species exhibited significantly higher isolation and inhibitory rates compared to other bacterial strains. Infection by <i>V. alfalfae</i> significantly affected the Pieloue evenness index of bacteria and the ammonium nitrogen content in the rhizosphere soil. The interactions between biocontrol bacteria and <i>V. alfalfae</i> significantly impacted alfalfa plant quality.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Alfalfa Verticillium wilt was detected in central of Gansu Province, significantly influencing plant nutrient content and relative abundance of <i>Pseudomonas</i> in alfalfa rhizosphere soil.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"12 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given increasing climate variability, understanding how rhizosphere microbial communities respond to drying–rewetting cycles and how these cycles impact crop growth under different tillage practices is crucial for improving crop resilience and productivity.
Methods
We conducted an experiment with 16 pots at the Institute of Soil Science, Chinese Academy of Sciences, using soils from Lishu, China that had undergone long-term (15-year) traditional (CK) and conservation (CT) tillage practices. We investigated the effects of drying–rewetting cycles on the assembly, diversity, and network of rhizosphere soil microbial communities and their relationships with plant growth.
Results
Compared with consistently moist (W) conditions, the plant growth index (PGI, a comprehensive measure of plant health and growth) under drying–rewetting (D) conditions decreased significantly by 74.7–74.9%. Moreover, the PGI under CT was 46.6–48% greater than that under CK. The D conditions significantly increased the stochasticity of the protistan community assembly. Both D and CT conditions are conducive to the formation of complex associations in multitrophic networks. Soil moisture indirectly impacts potential cross-trophic associations and, ultimately, the PGI by influencing protistan community stochasticity and the β-diversity of bacterial communities.
Conclusion
The results highlight the crucial roles of soil microbial community assembly and coexistence patterns in plant growth during drying–rewetting cycles. Such novel insights provide a basis for developing tillage strategies to increase crop resilience under moisture fluctuations. These findings are crucial for future research on synergistic drought resistance in rhizosphere soil micro-food webs and plants under global change.
{"title":"Drying–rewetting cycles determine maize growth by shifting microbial community assembly and coexistence patterns","authors":"Ling Ma, Guixiang Zhou, Lin Chen, Zhongjun Jia, Hongtao Zou, Congzhi Zhang, Donghao Ma, Changdong Han, Jiabao Zhang","doi":"10.1007/s11104-024-07134-3","DOIUrl":"https://doi.org/10.1007/s11104-024-07134-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Given increasing climate variability, understanding how rhizosphere microbial communities respond to drying–rewetting cycles and how these cycles impact crop growth under different tillage practices is crucial for improving crop resilience and productivity.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted an experiment with 16 pots at the Institute of Soil Science, Chinese Academy of Sciences, using soils from Lishu, China that had undergone long-term (15-year) traditional (CK) and conservation (CT) tillage practices. We investigated the effects of drying–rewetting cycles on the assembly, diversity, and network of rhizosphere soil microbial communities and their relationships with plant growth.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Compared with consistently moist (W) conditions, the plant growth index (PGI, a comprehensive measure of plant health and growth) under drying–rewetting (D) conditions decreased significantly by 74.7–74.9%. Moreover, the PGI under CT was 46.6–48% greater than that under CK. The D conditions significantly increased the stochasticity of the protistan community assembly. Both D and CT conditions are conducive to the formation of complex associations in multitrophic networks. Soil moisture indirectly impacts potential cross-trophic associations and, ultimately, the PGI by influencing protistan community stochasticity and the β-diversity of bacterial communities.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The results highlight the crucial roles of soil microbial community assembly and coexistence patterns in plant growth during drying–rewetting cycles. Such novel insights provide a basis for developing tillage strategies to increase crop resilience under moisture fluctuations. These findings are crucial for future research on synergistic drought resistance in rhizosphere soil micro-food webs and plants under global change.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"75 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1007/s11104-024-07149-w
Xingling Wang, Minghua Zhou, Bo Zhu, Jinbo Zhang, Christoph Müller, Ralf Kiese, Klaus Butterbach-Bahl
Background and aims
Organic amendments directly affect soil N transformations, while the direction and magnitude of these effects remain uncertain. Most previous studies through laboratory incubation experiments without plants likely neglected the feedback interactions of plant, thereby limiting the applicability in field conditions. This study aims to explore the effects of organic amendments on soil gross N transformations with consideration of plant feedback.
Methods
The 15N tracing pot experiments were performed using a soil-maize system with two types of organic amendments—crop straw (wheat straw, CS) and green manure (Chinese milk vetch, GM) to determine soil gross N transformation processes and rates by using the Ntraceplant model.
Results
Green manure amendments significantly increased soil gross N mineralization and nitrification rates compared to crop straw treatment and the control. In contrast, crop straw incorporation did not enhance gross N mineralization rates and even significantly decreased soil gross nitrification rates relative to the control. Both green manure and crop straw amendments significantly increased soil microbial ammonium (NH4+) immobilization rates compared to the control. However, green manure amendments significantly enhanced soil microbial nitrate (NO3−) immobilization rates only in the presence of maize, with no significant effect observed in the absence of maize. Meanwhile, crop straw incorporation significantly decreased soil microbial NO3− immobilization rates.
Conclusion
Our findings indicate that green manure and crop straw amendments have contrasting effects on soil gross N transformations, with green manure demonstrating a more pronounced positive impacts, particularly in the presence of plants.
{"title":"Contrasting effects of crop straw and green manure amendments on soil gross N transformations in a soil-maize system: a short-term 15N incubation case study","authors":"Xingling Wang, Minghua Zhou, Bo Zhu, Jinbo Zhang, Christoph Müller, Ralf Kiese, Klaus Butterbach-Bahl","doi":"10.1007/s11104-024-07149-w","DOIUrl":"https://doi.org/10.1007/s11104-024-07149-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Organic amendments directly affect soil N transformations, while the direction and magnitude of these effects remain uncertain. Most previous studies through laboratory incubation experiments without plants likely neglected the feedback interactions of plant, thereby limiting the applicability in field conditions. This study aims to explore the effects of organic amendments on soil gross N transformations with consideration of plant feedback.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The <sup>15</sup>N tracing pot experiments were performed using a soil-maize system with two types of organic amendments—crop straw (wheat straw, CS) and green manure (Chinese milk vetch, GM) to determine soil gross N transformation processes and rates by using the <i>Ntrace</i><sub><i>plant</i></sub> model.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Green manure amendments significantly increased soil gross N mineralization and nitrification rates compared to crop straw treatment and the control. In contrast, crop straw incorporation did not enhance gross N mineralization rates and even significantly decreased soil gross nitrification rates relative to the control. Both green manure and crop straw amendments significantly increased soil microbial ammonium (NH<sub>4</sub><sup>+</sup>) immobilization rates compared to the control. However, green manure amendments significantly enhanced soil microbial nitrate (NO<sub>3</sub><sup>−</sup>) immobilization rates only in the presence of maize, with no significant effect observed in the absence of maize. Meanwhile, crop straw incorporation significantly decreased soil microbial NO<sub>3</sub><sup>−</sup> immobilization rates.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our findings indicate that green manure and crop straw amendments have contrasting effects on soil gross N transformations, with green manure demonstrating a more pronounced positive impacts, particularly in the presence of plants.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"50 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}