Background and aims
Wetlands play an important role in biogeochemical cycle processes and are pivotal in sustaining ecosystem functions and mitigating climate change. This study investigated the intertwined ecological stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) within the soil–plant system of the Hanzhong Crested Ibis National Nature Reserve, Shaanxi, under varying levels of ecological disturbance.
Methods
We conducted field investigations and nutrient analyses of both plants and soil during the peak growing season in July and August 2022.
Results
Comprehensive statistical analysis was performed to evaluate variations in soil and plant stoichiometric traits across different disturbance levels within the study area. One-way Analysis of Variance (ANOVA) revealed significant differences in soil and plant stoichiometric traits under varying disturbance intensities (p < 0.05). Regression analysis demonstrated that disturbance intensity is a significant predictor of nutrient variability, particularly affecting soil N and P content. Effect sizes indicated that disturbance has a considerable impact on plant P levels, while Principal Component Analysis (PCA) highlighted distinct clustering of sites based on nutrient stoichiometric ratios, explaining 68% of the variance. The findings underscore the critical role of disturbance intensity in shaping the ecological stoichiometry of wetland ecosystems.
Conclusion
The findings of this study indicate the significant impacts of disturbance intensity on the stoichiometric traits of soil and plants, particularly highlighted by the elevated C and N levels in PJW under high disturbance conditions. These variations suggest that disturbance regimes could play a critical role in shaping ecological stoichiometry, although further experimental studies are required to delineate the causative mechanisms behind these patterns.