Pub Date : 2025-01-03DOI: 10.1016/j.plaphy.2025.109477
Chae Woo Lim, Woonhee Baek, Sung Chul Lee
Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt. This study elucidated the roles of two pepper (Capsicum annuum) subclass II SnRK2s-CaDSK2-1 and CaDSK2-2-in ABA signaling and stress responses. ABA specifically induced CaDSK2-1 activity, whereas CaDSK2-2 did not respond to ABA. Both kinases displayed stress-induced kinase activity, with CaDSK2-2 showing faster and stronger activation in response to drought and mannitol than that of CaDSK2-1. Unlike CaDSK2-2, CaDSK2-1 overexpression in pepper plants led to increased leaf temperatures and enhanced ABA-responsive gene expression in response to ABA treatment compared with those of the control. However, both kinases contributed to enhanced drought resistance. During seed germination in Arabidopsis, the overexpression of CaDSK2-2, but not CaDSK2-1, led to ABA hypersensitivity. Among the key regulators of the ABA signaling pathway, CaDSK2-1 specifically interacts with clade A protein phosphatase 2C (PP2C) CaADIP1, whereas CaDSK2-2 interacts with various PP2Cs, including CaADIP1. CaADIP1 negatively regulated the kinase activity of both CaDSK2-1 and CaDSK2-2 and mitigated ABA hypersensitivity mediated by CaDSK2-2 during Arabidopsis seed germination. These findings suggest distinct roles for pepper subclass II SnRK2s in drought stress responses and ABA signaling.
{"title":"Two pepper subclass II SnRK2 genes positively regulate drought stress response, with differential responsiveness to abscisic acid.","authors":"Chae Woo Lim, Woonhee Baek, Sung Chul Lee","doi":"10.1016/j.plaphy.2025.109477","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109477","url":null,"abstract":"<p><p>Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt. This study elucidated the roles of two pepper (Capsicum annuum) subclass II SnRK2s-CaDSK2-1 and CaDSK2-2-in ABA signaling and stress responses. ABA specifically induced CaDSK2-1 activity, whereas CaDSK2-2 did not respond to ABA. Both kinases displayed stress-induced kinase activity, with CaDSK2-2 showing faster and stronger activation in response to drought and mannitol than that of CaDSK2-1. Unlike CaDSK2-2, CaDSK2-1 overexpression in pepper plants led to increased leaf temperatures and enhanced ABA-responsive gene expression in response to ABA treatment compared with those of the control. However, both kinases contributed to enhanced drought resistance. During seed germination in Arabidopsis, the overexpression of CaDSK2-2, but not CaDSK2-1, led to ABA hypersensitivity. Among the key regulators of the ABA signaling pathway, CaDSK2-1 specifically interacts with clade A protein phosphatase 2C (PP2C) CaADIP1, whereas CaDSK2-2 interacts with various PP2Cs, including CaADIP1. CaADIP1 negatively regulated the kinase activity of both CaDSK2-1 and CaDSK2-2 and mitigated ABA hypersensitivity mediated by CaDSK2-2 during Arabidopsis seed germination. These findings suggest distinct roles for pepper subclass II SnRK2s in drought stress responses and ABA signaling.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109477"},"PeriodicalIF":6.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1016/j.plaphy.2024.109466
Moira Giovannoni, Anna Scortica, Valentina Scafati, Emilia Piccirilli, Daniela Sorio, Manuel Benedetti, Benedetta Mattei
The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology.
{"title":"The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics.","authors":"Moira Giovannoni, Anna Scortica, Valentina Scafati, Emilia Piccirilli, Daniela Sorio, Manuel Benedetti, Benedetta Mattei","doi":"10.1016/j.plaphy.2024.109466","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109466","url":null,"abstract":"<p><p>The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O<sub>2</sub>, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109466"},"PeriodicalIF":6.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established. In this study, we generated RsUGT71B5-overexpressing transgenic Arabidopsis lines to determine the mechanisms by which RsUGT71B5 regulated root growth and development. Ectopic overexpression of RsUGT71B5 significantly enhanced root growth and seedling development. In culture medium supplemented with 1-3% exogenous sucrose, RsUGT71B5 overexpression increased the root length and surface area in the transgenic Arabidopsis lines compared with the wild type. Furthermore, transgenic RsUGT71B5 overexpression partially suppressed the inhibitory effects of 12% sucrose on root growth and development. RNA sequencing data analysis identified 102 differential expressed genes (DEGs), including 56 upregulated and 46 downregulated genes, in the transgenic RsUGT71B5 overexpression lines (OE). QRT-PCR analyses confirmed significant upregulation of glutathione S-transferases such as AT1G02930 (GSTF6) and AT1G02920 (GSTF7) in the transgenic RsUGT71B5 overexpression lines. KEGG pathway analyses of the DEGs showed that RsUGT71B5 overexpression regulated glutathione and sugar metabolism. In summary, this study demonstrated that RsUGT71B5 regulated root growth and development by modulating glutathione and sugar metabolism.
{"title":"A novel glycosyltransferase gene RsUGT71B5 from Raphanus sativus L. regulated root growth and seedling development.","authors":"Chuanxing Zhang, Maolin Ran, Dakun Liu, Feng Liu, Zhimin Wang, Dayong Wei, Qinglin Tang","doi":"10.1016/j.plaphy.2025.109473","DOIUrl":"https://doi.org/10.1016/j.plaphy.2025.109473","url":null,"abstract":"<p><p>The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established. In this study, we generated RsUGT71B5-overexpressing transgenic Arabidopsis lines to determine the mechanisms by which RsUGT71B5 regulated root growth and development. Ectopic overexpression of RsUGT71B5 significantly enhanced root growth and seedling development. In culture medium supplemented with 1-3% exogenous sucrose, RsUGT71B5 overexpression increased the root length and surface area in the transgenic Arabidopsis lines compared with the wild type. Furthermore, transgenic RsUGT71B5 overexpression partially suppressed the inhibitory effects of 12% sucrose on root growth and development. RNA sequencing data analysis identified 102 differential expressed genes (DEGs), including 56 upregulated and 46 downregulated genes, in the transgenic RsUGT71B5 overexpression lines (OE). QRT-PCR analyses confirmed significant upregulation of glutathione S-transferases such as AT1G02930 (GSTF6) and AT1G02920 (GSTF7) in the transgenic RsUGT71B5 overexpression lines. KEGG pathway analyses of the DEGs showed that RsUGT71B5 overexpression regulated glutathione and sugar metabolism. In summary, this study demonstrated that RsUGT71B5 regulated root growth and development by modulating glutathione and sugar metabolism.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109473"},"PeriodicalIF":6.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.plaphy.2024.109471
N Pruthviraj, K N Geetha, C P Chandrashekara, Anjanapura V Raghu, Ganesh Prasad, Ramarao, Vinay M Gangana Gowdra, Mahantesh B Nagangoudar, M C Harish, A N Karthik, G Dhanush, K Tilak, D J Kotresh
Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities. Conducted over two field experiments in 2019 and 2020, the research assesses the efficacy of these nanoparticles compared to traditional fertilizers. The first experiment revealed that a foliar application of green-synthesized nano boron nitride at 1500 ppm significantly enhanced seed yield (65.45 g in 2019 and 63.27 g in 2020), increased filled seed count, and reduced chaffiness. Additionally, this treatment improved pollen fertility, germination rates, and pollen tube growth compared to higher concentrations and borax treatments. These findings indicate that nano boron nitride enhances esterase activity, contributing to improved reproductive performance in sunflower. The second experiment focused on green-synthesized nano sulphur, comparing foliar application and seed treatment. Results showed that a foliar application at 600 ppm led to increased head diameter, head weight, and 100-seed weight outperforming both seed treatment and chemically synthesized alternatives. Overall, this research demonstrates the potential of green-synthesized nanoparticles to enhance sunflower crop characteristics and oil production, offering valuable insights for sustainable agricultural practices.
{"title":"Evaluation of the altered enzymatic and pollen activity in sunflower on application of nanoparticles.","authors":"N Pruthviraj, K N Geetha, C P Chandrashekara, Anjanapura V Raghu, Ganesh Prasad, Ramarao, Vinay M Gangana Gowdra, Mahantesh B Nagangoudar, M C Harish, A N Karthik, G Dhanush, K Tilak, D J Kotresh","doi":"10.1016/j.plaphy.2024.109471","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109471","url":null,"abstract":"<p><p>Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities. Conducted over two field experiments in 2019 and 2020, the research assesses the efficacy of these nanoparticles compared to traditional fertilizers. The first experiment revealed that a foliar application of green-synthesized nano boron nitride at 1500 ppm significantly enhanced seed yield (65.45 g in 2019 and 63.27 g in 2020), increased filled seed count, and reduced chaffiness. Additionally, this treatment improved pollen fertility, germination rates, and pollen tube growth compared to higher concentrations and borax treatments. These findings indicate that nano boron nitride enhances esterase activity, contributing to improved reproductive performance in sunflower. The second experiment focused on green-synthesized nano sulphur, comparing foliar application and seed treatment. Results showed that a foliar application at 600 ppm led to increased head diameter, head weight, and 100-seed weight outperforming both seed treatment and chemically synthesized alternatives. Overall, this research demonstrates the potential of green-synthesized nanoparticles to enhance sunflower crop characteristics and oil production, offering valuable insights for sustainable agricultural practices.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109471"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.plaphy.2024.109472
Abisha Christy Christudoss, Rita Kundu, Christian O Dimkpa, Amitava Mukherjee
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.
{"title":"Aging of disposable face masks in landfill leachate poses cyto-genotoxic risks to Allium cepa: Perils of uncontrolled disposal of medical waste.","authors":"Abisha Christy Christudoss, Rita Kundu, Christian O Dimkpa, Amitava Mukherjee","doi":"10.1016/j.plaphy.2024.109472","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109472","url":null,"abstract":"<p><p>The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109472"},"PeriodicalIF":6.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied. The results demonstrated that the CsSnRK1 gene in cucumber leaves responded to dark-induced senescence. Furthermore, alterations in SnRK1 activity/expression affected the dark-induced leaf senescence process. Specifically, the activation of SnRK1 activity/expression can inhibit membrane lipid peroxidation by reducing the accumulation of ROS in leaves, slowing the decomposition of chloroplasts, repairing damage to photosystem II in leaves, delaying the senescence of leaves, and improving the photosynthetic capacity of leaves. Conversely, the inhibition of SnRK1 activity/expression had the opposite effect. These findings underscore the inhibitory role of SnRK1 in dark-induced cucumber leaf senescence. Our findings clarified the role of SnRK1 in regulating cucumber leaf senescence as well as its underlying physiological mechanisms, and will aid future studies of the molecular mechanism by which SnRK1 regulates cucumber leaf senescence.
{"title":"The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.","authors":"Zhangtong Ma, Linghao Liu, Mengqi Qv, Binbin Yin, Xiuqi Wang, Yahan Liang, Shuqi Qian, Xiangnan Meng, Haiyan Fan","doi":"10.1016/j.plaphy.2024.109468","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109468","url":null,"abstract":"<p><p>SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied. The results demonstrated that the CsSnRK1 gene in cucumber leaves responded to dark-induced senescence. Furthermore, alterations in SnRK1 activity/expression affected the dark-induced leaf senescence process. Specifically, the activation of SnRK1 activity/expression can inhibit membrane lipid peroxidation by reducing the accumulation of ROS in leaves, slowing the decomposition of chloroplasts, repairing damage to photosystem II in leaves, delaying the senescence of leaves, and improving the photosynthetic capacity of leaves. Conversely, the inhibition of SnRK1 activity/expression had the opposite effect. These findings underscore the inhibitory role of SnRK1 in dark-induced cucumber leaf senescence. Our findings clarified the role of SnRK1 in regulating cucumber leaf senescence as well as its underlying physiological mechanisms, and will aid future studies of the molecular mechanism by which SnRK1 regulates cucumber leaf senescence.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109468"},"PeriodicalIF":6.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.plaphy.2024.109467
Jing Li, Guoqing Zhu, Hongxia Liu, Yuanlan Sheng, Quanjun Hu, Tiantian Lin, Tao Li
Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex. We found that plant sex notably influenced VOC emission and altered blend compositions, with male seedlings emitting higher amounts of monoterpenes, sesquiterpenes, homoterpenes and green leaf volatiles (GLVs) than females. Soil Cd exposure significantly increased emissions of monoterpenes, GLVs, and nitrogenous VOCs in males but not in females. Comparatively, larval feeding exerted the strongest effects on VOC emissions and their composition, albeit to varying extent between males and females, and among different VOC classes. Importantly, Cd exposure amplified herbivore-induced VOC emissions in males. For instance, under both Cd and herbivory conditions, male seedlings showed a 68.1-fold increase in nitrogenous VOC emissions, almost twice the combined effects of Cd (8.7-fold) and herbivory (26.3-fold). Taken together, these results suggest that soil metal pollution can boost herbivore-induced VOC emissions in a sex-specific manner, with potential implications for ecological interactions and atmospheric processes.
{"title":"Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.","authors":"Jing Li, Guoqing Zhu, Hongxia Liu, Yuanlan Sheng, Quanjun Hu, Tiantian Lin, Tao Li","doi":"10.1016/j.plaphy.2024.109467","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109467","url":null,"abstract":"<p><p>Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex. We found that plant sex notably influenced VOC emission and altered blend compositions, with male seedlings emitting higher amounts of monoterpenes, sesquiterpenes, homoterpenes and green leaf volatiles (GLVs) than females. Soil Cd exposure significantly increased emissions of monoterpenes, GLVs, and nitrogenous VOCs in males but not in females. Comparatively, larval feeding exerted the strongest effects on VOC emissions and their composition, albeit to varying extent between males and females, and among different VOC classes. Importantly, Cd exposure amplified herbivore-induced VOC emissions in males. For instance, under both Cd and herbivory conditions, male seedlings showed a 68.1-fold increase in nitrogenous VOC emissions, almost twice the combined effects of Cd (8.7-fold) and herbivory (26.3-fold). Taken together, these results suggest that soil metal pollution can boost herbivore-induced VOC emissions in a sex-specific manner, with potential implications for ecological interactions and atmospheric processes.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109467"},"PeriodicalIF":6.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.plaphy.2024.109465
Hellen Oliveira de Oliveira, João Antonio Siqueira, David B Medeiros, Alisdair R Fernie, Adriano Nunes-Nesi, Wagner L Araújo
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
{"title":"Harnessing the dynamics of plant organic acids metabolism following abiotic stresses.","authors":"Hellen Oliveira de Oliveira, João Antonio Siqueira, David B Medeiros, Alisdair R Fernie, Adriano Nunes-Nesi, Wagner L Araújo","doi":"10.1016/j.plaphy.2024.109465","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109465","url":null,"abstract":"<p><p>Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109465"},"PeriodicalIF":6.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-29DOI: 10.1016/j.plaphy.2024.109464
César Omar Montoya-García, Diego Hidalgo-Martínez, Elvia Becerra-Martínez, César A Reyes-López, Guillermo Andrés Enciso-Maldonado, Víctor Hugo Volke-Haller
Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the 1H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C1 and C2 (27 and 42 days after emergence). During the first stage, 30 metabolites were identified including free amino acids and organic acids. In the second stage, 35 metabolites were identified, with higher concentrations of carbohydrates and nucleosides being observed. Multivariate analysis revealed differences in the metabolome between harvests C1 and C2. Notably, higher abundances of fructose, galactose, α-glucose, β-glucose, myo-inositol, sucrose, and nucleosides such as adenosine and uridine were observed in C2. Discriminant analysis further demonstrated variations in metabolites among plants treated with different doses of nitrogen, phosphorus, and potassium at the two harvest stages studied. Plants treated with the highest dose of nitrogen (300 kg N ha-1) exhibited maximum levels of metabolites, while low nitrogen-treated plants (0 kg N ha-1) displayed an inverse trend. Amino acids such as alanine, asparagine, GABA, glutamine, histidine, isoleucine, leucine, phenylalanine, proline, threonine, tyrosine, and valine were found to be the most abundant in plants treated with N300. In contrast, untreated plants showed higher levels of citric acid and malic acid. Our results highlight the effectiveness of 1H NMR as a methodology for understanding the role of fertilization and nutrient content in optimizing the crop production of purslane.
{"title":"Impact of NPK fertilization on the metabolomic profile and nutritional quality of Portulaca oleracea L. using nuclear magnetic resonance analysis.","authors":"César Omar Montoya-García, Diego Hidalgo-Martínez, Elvia Becerra-Martínez, César A Reyes-López, Guillermo Andrés Enciso-Maldonado, Víctor Hugo Volke-Haller","doi":"10.1016/j.plaphy.2024.109464","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109464","url":null,"abstract":"<p><p>Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the <sup>1</sup>H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C<sub>1</sub> and C<sub>2</sub> (27 and 42 days after emergence). During the first stage, 30 metabolites were identified including free amino acids and organic acids. In the second stage, 35 metabolites were identified, with higher concentrations of carbohydrates and nucleosides being observed. Multivariate analysis revealed differences in the metabolome between harvests C<sub>1</sub> and C<sub>2</sub>. Notably, higher abundances of fructose, galactose, α-glucose, β-glucose, myo-inositol, sucrose, and nucleosides such as adenosine and uridine were observed in C<sub>2</sub>. Discriminant analysis further demonstrated variations in metabolites among plants treated with different doses of nitrogen, phosphorus, and potassium at the two harvest stages studied. Plants treated with the highest dose of nitrogen (300 kg N ha<sup>-1</sup>) exhibited maximum levels of metabolites, while low nitrogen-treated plants (0 kg N ha<sup>-1</sup>) displayed an inverse trend. Amino acids such as alanine, asparagine, GABA, glutamine, histidine, isoleucine, leucine, phenylalanine, proline, threonine, tyrosine, and valine were found to be the most abundant in plants treated with N<sub>300</sub>. In contrast, untreated plants showed higher levels of citric acid and malic acid. Our results highlight the effectiveness of <sup>1</sup>H NMR as a methodology for understanding the role of fertilization and nutrient content in optimizing the crop production of purslane.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109464"},"PeriodicalIF":6.1,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-29DOI: 10.1016/j.plaphy.2024.109448
Bangyou Yu, Yimin Deng, Manping Ding, Bo Deng
Phoebe zhennan is a high-quality timber tree species mainly distributed in the subtropical regions of China. It is very important to study and improve the cold resistance of P. zhennan from the mechanism and practice for expanding its introduction and cultivation range. However, there is a lack of research on the cold resistance mechanisms of Zhennan seedlings. The present study investigated the effects of exogenous Ca2+ on the cold resistance in Zhennan. The results showed that Ca2+ pretreatment increased the levels of abscisic acid, peroxidase, catalase, proline, and soluble sugar and decreased the levels of malondialdehyde and relative electrical conductivity. In addition, RNA sequencing was used to investigate the global transcriptome response to cold stress. Gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and gene ontology analysis were used to compare the differentially expressed genes before and after calcium treatment and before and after cold stress. These analyses together with the short time sequence clustering analysis of transcriptome data and predictive protein interaction analysis showed that the transcription factors PzWRKY71, PzTAF, and PzMYB7 play key roles in the regulation of and balance between cold resistance and growth in immune system. Moreover, it was found that the mechanisms of protein phosphorylation and ubiquitin-mediated protein degradation significantly affected the calcium ion-mediated cold resistance mechanism, and there was a complex regulatory relationship between them. The results provide valuable insights into the Ca2+-mediated cold resistance mechanism and have potential applications for improving cold stress tolerance in Zhennan seedlings.
{"title":"Effects of exogenous calcium pretreatment on the cold resistance of Phoebe zhennan seedlings.","authors":"Bangyou Yu, Yimin Deng, Manping Ding, Bo Deng","doi":"10.1016/j.plaphy.2024.109448","DOIUrl":"https://doi.org/10.1016/j.plaphy.2024.109448","url":null,"abstract":"<p><p>Phoebe zhennan is a high-quality timber tree species mainly distributed in the subtropical regions of China. It is very important to study and improve the cold resistance of P. zhennan from the mechanism and practice for expanding its introduction and cultivation range. However, there is a lack of research on the cold resistance mechanisms of Zhennan seedlings. The present study investigated the effects of exogenous Ca<sup>2+</sup> on the cold resistance in Zhennan. The results showed that Ca<sup>2+</sup> pretreatment increased the levels of abscisic acid, peroxidase, catalase, proline, and soluble sugar and decreased the levels of malondialdehyde and relative electrical conductivity. In addition, RNA sequencing was used to investigate the global transcriptome response to cold stress. Gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and gene ontology analysis were used to compare the differentially expressed genes before and after calcium treatment and before and after cold stress. These analyses together with the short time sequence clustering analysis of transcriptome data and predictive protein interaction analysis showed that the transcription factors PzWRKY71, PzTAF, and PzMYB7 play key roles in the regulation of and balance between cold resistance and growth in immune system. Moreover, it was found that the mechanisms of protein phosphorylation and ubiquitin-mediated protein degradation significantly affected the calcium ion-mediated cold resistance mechanism, and there was a complex regulatory relationship between them. The results provide valuable insights into the Ca<sup>2+</sup>-mediated cold resistance mechanism and have potential applications for improving cold stress tolerance in Zhennan seedlings.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109448"},"PeriodicalIF":6.1,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}