The manipulator arm design is generally related to a search for a compromise between conflicting requirements. Finding this compromise requires the resolution of a bi-level optimization problem (the respect of some specific constraints involves solving other optimization sub-problems). In this paper, we propose a novel approach for the optimal dimensioning of a two-degrees-of-freedom manipulator arm, where the objective function is defined by the minimization of the structure’s overall mass. The constraints that are taken into consideration can be divided into three categories: geometrical (bounds on design variables, admissible limit of the static deflection at the endpoint of the effector), kinematic (bounds on joint velocities and the accelerations of the actuators), and dynamic (admissible limit of the dynamic deflection at the endpoint of the effector). To achieve the penalizing dynamic configurations in terms of actuator torques and dynamic deflection, a quasi-static deformation model and a recurrent dynamic model were used. The static and dynamic deflection constraints are treated as optimization sub-problems, where their outcomes are integrated, at each iteration, into the global optimization process. The validation of the developed quasi-static deformation model as well as the proposed optimal dimensioning approach is conducted by comparing results with Ansys software simulations. Notably, The proposed approach demonstrates a significantly faster computation time compared to the Ansys software (06 s for the proposed approach vs 21 h for Ansys). Even though Ansys software performs optimal dimensioning for an imposed trajectory.
{"title":"A novel proposed approach for optimal design of a 2-Dof manipulator arm","authors":"Amani Hamel, Moussa Haddad, Lamine Rebhi, Samir Khatir","doi":"10.1177/09544062241261595","DOIUrl":"https://doi.org/10.1177/09544062241261595","url":null,"abstract":"The manipulator arm design is generally related to a search for a compromise between conflicting requirements. Finding this compromise requires the resolution of a bi-level optimization problem (the respect of some specific constraints involves solving other optimization sub-problems). In this paper, we propose a novel approach for the optimal dimensioning of a two-degrees-of-freedom manipulator arm, where the objective function is defined by the minimization of the structure’s overall mass. The constraints that are taken into consideration can be divided into three categories: geometrical (bounds on design variables, admissible limit of the static deflection at the endpoint of the effector), kinematic (bounds on joint velocities and the accelerations of the actuators), and dynamic (admissible limit of the dynamic deflection at the endpoint of the effector). To achieve the penalizing dynamic configurations in terms of actuator torques and dynamic deflection, a quasi-static deformation model and a recurrent dynamic model were used. The static and dynamic deflection constraints are treated as optimization sub-problems, where their outcomes are integrated, at each iteration, into the global optimization process. The validation of the developed quasi-static deformation model as well as the proposed optimal dimensioning approach is conducted by comparing results with Ansys software simulations. Notably, The proposed approach demonstrates a significantly faster computation time compared to the Ansys software (06 s for the proposed approach vs 21 h for Ansys). Even though Ansys software performs optimal dimensioning for an imposed trajectory.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"16 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241263446
Jinqing Zhan, Jiakun Yan, Benliang Zhu, Min Liu
To ensure the manufacturability of compliant mechanisms, this paper presents a new approach for optimal design of electro-thermo-mechanical microactuators by employing minimum length scale constraints. A sequential coupling method is adopted to carry out finite element analysis for electric-thermal-mechanical coupling multiphysics. The inflection point fields of the solid and void phases are identified by structural indicator functions. The minimum length scales of the solid and void phases are adopted as constraints. The optimization objective is designed to maximize the output displacements of electro-thermo-mechanical microactuators. The validity of the proposed optimal design method is demonstrated through several numerical examples. In the optimal designs obtained by the proposed method, the minimum length scales of the two phases can be properly controlled. The electro-thermo-mechanical microactuator’s output displacements decrease when the allowable value of the minimum length scale is increased. The effects of different mesh discretizations and output spring stiffnesses on the optimized designs are discussed.
{"title":"Optimal design of electro-thermo-mechanical microactuators considering minimum length scale constraints","authors":"Jinqing Zhan, Jiakun Yan, Benliang Zhu, Min Liu","doi":"10.1177/09544062241263446","DOIUrl":"https://doi.org/10.1177/09544062241263446","url":null,"abstract":"To ensure the manufacturability of compliant mechanisms, this paper presents a new approach for optimal design of electro-thermo-mechanical microactuators by employing minimum length scale constraints. A sequential coupling method is adopted to carry out finite element analysis for electric-thermal-mechanical coupling multiphysics. The inflection point fields of the solid and void phases are identified by structural indicator functions. The minimum length scales of the solid and void phases are adopted as constraints. The optimization objective is designed to maximize the output displacements of electro-thermo-mechanical microactuators. The validity of the proposed optimal design method is demonstrated through several numerical examples. In the optimal designs obtained by the proposed method, the minimum length scales of the two phases can be properly controlled. The electro-thermo-mechanical microactuator’s output displacements decrease when the allowable value of the minimum length scale is increased. The effects of different mesh discretizations and output spring stiffnesses on the optimized designs are discussed.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"31 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241258077
V Vinoth, S Sathiyamurthy, N Ananthi, S Jayabal
Eco-conscious products are currently garnering significant attention due to their abundant availability and versatile applications in various engineering contexts. The distinctive properties of natural fibers make them readily substitutable for synthetic fibers. A substantial one million tonnes of fiber waste, primarily composed of paddy straw fiber, is generated globally. The research emphasis revolves around the adoption of the Waste to Wealth technique, a highly efficient process aimed at repurposing waste materials. This approach plays a pivotal role in curbing air pollution, specifically by preventing the incineration of the residual portion of paddy straw fiber on agricultural lands. The study involves the collection of paddy straw fiber from agricultural fields, with subsequent extraction facilitated by an extracting machine. Employing a chemical treatment process enhances the adhesion properties between the fiber and matrix. Consequently, comprehensive fiber tests, including the single fiber test, fiber tenacity, and fiber fineness, were meticulously examined for both treated and untreated fibers. The reinforcements and matrix were taken by the weight percentage of 50:50 with different fiber length (25, 50, 75, 100 mm) using the compression moulding machine with 300 mm × 300 mm × 3 mm dimensions. After making the laminates, the samples were cut as per the ASTM standard. The mechanical and morphological behavior of the hybrid fiber-reinforced polyester composites were evaluated, and the water absorption property in the concerned laminates was studied.
具有生态意识的产品因其丰富的可获得性和在各种工程领域的广泛应用而备受关注。天然纤维的独特性能使其很容易替代合成纤维。全球产生的纤维废料高达一百万吨,主要由稻草纤维组成。研究重点围绕着 "变废为宝 "技术的采用,这是一种旨在重新利用废料的高效工艺。这种方法在遏制空气污染方面发挥着关键作用,特别是通过防止在农田中焚烧稻草纤维的剩余部分。这项研究涉及从农田中收集稻草纤维,然后用提取机进行提取。采用化学处理工艺可增强纤维与基质之间的粘附性能。因此,对处理过和未处理过的纤维都进行了全面的纤维测试,包括单纤维测试、纤维韧性和纤维细度。使用尺寸为 300 mm × 300 mm × 3 mm 的压缩成型机,按 50:50 的重量比例取不同纤维长度(25、50、75、100 mm)的增强纤维和基体。制成层压板后,按照 ASTM 标准切割样品。评估了混合纤维增强聚酯复合材料的机械和形态行为,并研究了相关层压板的吸水性能。
{"title":"Mechanical characterization and study on morphological properties: Natural and agro waste utilization of reinforced polyester hybrid composites","authors":"V Vinoth, S Sathiyamurthy, N Ananthi, S Jayabal","doi":"10.1177/09544062241258077","DOIUrl":"https://doi.org/10.1177/09544062241258077","url":null,"abstract":"Eco-conscious products are currently garnering significant attention due to their abundant availability and versatile applications in various engineering contexts. The distinctive properties of natural fibers make them readily substitutable for synthetic fibers. A substantial one million tonnes of fiber waste, primarily composed of paddy straw fiber, is generated globally. The research emphasis revolves around the adoption of the Waste to Wealth technique, a highly efficient process aimed at repurposing waste materials. This approach plays a pivotal role in curbing air pollution, specifically by preventing the incineration of the residual portion of paddy straw fiber on agricultural lands. The study involves the collection of paddy straw fiber from agricultural fields, with subsequent extraction facilitated by an extracting machine. Employing a chemical treatment process enhances the adhesion properties between the fiber and matrix. Consequently, comprehensive fiber tests, including the single fiber test, fiber tenacity, and fiber fineness, were meticulously examined for both treated and untreated fibers. The reinforcements and matrix were taken by the weight percentage of 50:50 with different fiber length (25, 50, 75, 100 mm) using the compression moulding machine with 300 mm × 300 mm × 3 mm dimensions. After making the laminates, the samples were cut as per the ASTM standard. The mechanical and morphological behavior of the hybrid fiber-reinforced polyester composites were evaluated, and the water absorption property in the concerned laminates was studied.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"22 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241261268
Mingfeng Zhang, Chuntian Xu, Lin Li, Zihuimin Wang, Xu Zong
To improve the control accuracy of the stepper motor, a PID controller based on an improved sparrow search algorithm (ISSA-PID) is designed to improve the response speed as well as the robustness of the closed-loop speed control of the stepper motor by optimizing the position update formula and the step size control parameters based on the sparrow search algorithm. ISSA-PID is applied to the stepper motor speed control system in Matlab and tested by Ramp-up Load and applying perturbation simulation respectively. By comparing with traditional PID, Differential Evolution algorithm PID controller, Particle Swarm Optimization algorithm PID controller, and Ant Lion Optimization algorithm PID controller, the results show that ISSA-PID not only improves the convergence speed and accuracy but also performs better in terms of stability. Finally, the experimental platform of the stepper motor speed control system is built to experimentally verify the performance of the ISSA-PID controller, and the experimental results show that ISSA-PID has stronger robustness and faster response speed compared with the remaining four controllers.
{"title":"Optimization of PID controller for stepper motor speed control system based on improved sparrow search algorithm","authors":"Mingfeng Zhang, Chuntian Xu, Lin Li, Zihuimin Wang, Xu Zong","doi":"10.1177/09544062241261268","DOIUrl":"https://doi.org/10.1177/09544062241261268","url":null,"abstract":"To improve the control accuracy of the stepper motor, a PID controller based on an improved sparrow search algorithm (ISSA-PID) is designed to improve the response speed as well as the robustness of the closed-loop speed control of the stepper motor by optimizing the position update formula and the step size control parameters based on the sparrow search algorithm. ISSA-PID is applied to the stepper motor speed control system in Matlab and tested by Ramp-up Load and applying perturbation simulation respectively. By comparing with traditional PID, Differential Evolution algorithm PID controller, Particle Swarm Optimization algorithm PID controller, and Ant Lion Optimization algorithm PID controller, the results show that ISSA-PID not only improves the convergence speed and accuracy but also performs better in terms of stability. Finally, the experimental platform of the stepper motor speed control system is built to experimentally verify the performance of the ISSA-PID controller, and the experimental results show that ISSA-PID has stronger robustness and faster response speed compared with the remaining four controllers.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"95 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241266349
Hangbo Duan, Zongyan Cai, Yuanbo Xu
Data-driven intelligent fault diagnosis methods have been extensively researched and applied in rotating machinery. In practical application scenarios, factors such as variable operating conditions and scarcity of labeled samples in rotating machinery hinder the engineering application and promotion of diagnostic models. To address these challenges, this paper proposes an unsupervised domain adaptation network called the Multi-scale Hybrid Domain Adaptation with Attention (MHDAA). Firstly, a multi-scale convolutional module was developed to extract fault features at different scales. Secondly, a multi-channel attention mechanism was proposed to enable the convolution layers of different convolution kernels fully extract feature information. Finally, a hybrid domain adaptation was constructed to dynamically extract invariant features from both the source and target domains. The method was evaluated in multiple transfer scenarios of planetary gearboxes and bearings. Experimental results demonstrate that the proposed method can effectively utilize fault features with high correlation from multiple source domains to complete fault diagnosis with unknown data labels in the target domain. Moreover, the proposed method exhibits superior diagnostic performance.
{"title":"A hybrid dynamic adversarial domain adaptation network with multi-channel attention mechanism for rotating machinery unsupervised fault diagnosis under varying operating conditions","authors":"Hangbo Duan, Zongyan Cai, Yuanbo Xu","doi":"10.1177/09544062241266349","DOIUrl":"https://doi.org/10.1177/09544062241266349","url":null,"abstract":"Data-driven intelligent fault diagnosis methods have been extensively researched and applied in rotating machinery. In practical application scenarios, factors such as variable operating conditions and scarcity of labeled samples in rotating machinery hinder the engineering application and promotion of diagnostic models. To address these challenges, this paper proposes an unsupervised domain adaptation network called the Multi-scale Hybrid Domain Adaptation with Attention (MHDAA). Firstly, a multi-scale convolutional module was developed to extract fault features at different scales. Secondly, a multi-channel attention mechanism was proposed to enable the convolution layers of different convolution kernels fully extract feature information. Finally, a hybrid domain adaptation was constructed to dynamically extract invariant features from both the source and target domains. The method was evaluated in multiple transfer scenarios of planetary gearboxes and bearings. Experimental results demonstrate that the proposed method can effectively utilize fault features with high correlation from multiple source domains to complete fault diagnosis with unknown data labels in the target domain. Moreover, the proposed method exhibits superior diagnostic performance.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"51 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241264267
Zhuoxiang Chen, Qing Zhang, Jianqun Zhang, Xianrong Qin, Yuantao Sun
Rolling bearings are indispensable components of many engineering machinery, especially rotating machinery. If rolling bearing faults are not diagnosed promptly, it may cause huge economic losses. Bearing fault diagnosis can avoid catastrophic accidents, ensure the reliability of equipment operation, and reduce maintenance costs. Existing intelligent bearing fault diagnosis methods have fast diagnosis speeds and excellent fault recognition capabilities, which is not feasible for most important mechanical devices because of the difficulty in obtaining fault samples for training. To tackle this problem, a two-stage bearing fault diagnosis method without fault sample training based on fault feature knowledge is proposed. In the first stage, a fault detection vector is constructed based on signal statistical indicators. The Mahalanobis distance of the feature vector between online signals and historical normal signals serves for anomaly detection. In the second stage, based on the bearing fault knowledge, envelope spectrum fault indicators are proposed to form diagnosis vectors. By calculating the similarity between the diagnosis vector and the present fault label, the probability of different fault types will be obtained. Three experimental analyses show that the method is effective in detecting early faults and achieves high fault identification accuracy. The above results advantageously prove that the method can be used for fault diagnosis without fault sample training, and has the possibility of practical application.
{"title":"A knowledge-based fault diagnosis method for rolling bearings without fault sample training","authors":"Zhuoxiang Chen, Qing Zhang, Jianqun Zhang, Xianrong Qin, Yuantao Sun","doi":"10.1177/09544062241264267","DOIUrl":"https://doi.org/10.1177/09544062241264267","url":null,"abstract":"Rolling bearings are indispensable components of many engineering machinery, especially rotating machinery. If rolling bearing faults are not diagnosed promptly, it may cause huge economic losses. Bearing fault diagnosis can avoid catastrophic accidents, ensure the reliability of equipment operation, and reduce maintenance costs. Existing intelligent bearing fault diagnosis methods have fast diagnosis speeds and excellent fault recognition capabilities, which is not feasible for most important mechanical devices because of the difficulty in obtaining fault samples for training. To tackle this problem, a two-stage bearing fault diagnosis method without fault sample training based on fault feature knowledge is proposed. In the first stage, a fault detection vector is constructed based on signal statistical indicators. The Mahalanobis distance of the feature vector between online signals and historical normal signals serves for anomaly detection. In the second stage, based on the bearing fault knowledge, envelope spectrum fault indicators are proposed to form diagnosis vectors. By calculating the similarity between the diagnosis vector and the present fault label, the probability of different fault types will be obtained. Three experimental analyses show that the method is effective in detecting early faults and achieves high fault identification accuracy. The above results advantageously prove that the method can be used for fault diagnosis without fault sample training, and has the possibility of practical application.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"70 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the design, manufacturing, and assembly processes, joint clearance inevitably occurs in mechanisms. To reduce the undesirable effects of this phenomenon, in this work a practical control method to decrease these effects is presented. This control method ensures permanent joint contact and follows the desired path based on the actuators in the system. As a result, because the controller seeks to achieve two control demands using one actuator, these mechanisms are known as an under-actuated system. For this purpose, an improved second-order sliding-mode controller (IS-SMC) is proposed. This choice is based on its robustness and its ability to meet control demands in a finite time, as well as its high accuracy for sub-excitation systems. In this research, the control method is applied to the crank-slider and the four-bar mechanisms. For this purpose, at first, the equations of these mechanisms have been expressed in an ideal form, and then the nonlinear equations have been extracted with the imperfect joint. The Lankarani-Nikravesh and the Ambrosio models have been used for modeling the clearance and friction force in the joint, respectively. In addition, verification of controller is implemented in Adams software.
{"title":"Clearance control of mechanism with sliding mode controller","authors":"Bagher Jamshidi, Morteza Dardel, Hamid Reza Mohammadi Daniali","doi":"10.1177/09544062241266336","DOIUrl":"https://doi.org/10.1177/09544062241266336","url":null,"abstract":"Due to the design, manufacturing, and assembly processes, joint clearance inevitably occurs in mechanisms. To reduce the undesirable effects of this phenomenon, in this work a practical control method to decrease these effects is presented. This control method ensures permanent joint contact and follows the desired path based on the actuators in the system. As a result, because the controller seeks to achieve two control demands using one actuator, these mechanisms are known as an under-actuated system. For this purpose, an improved second-order sliding-mode controller (IS-SMC) is proposed. This choice is based on its robustness and its ability to meet control demands in a finite time, as well as its high accuracy for sub-excitation systems. In this research, the control method is applied to the crank-slider and the four-bar mechanisms. For this purpose, at first, the equations of these mechanisms have been expressed in an ideal form, and then the nonlinear equations have been extracted with the imperfect joint. The Lankarani-Nikravesh and the Ambrosio models have been used for modeling the clearance and friction force in the joint, respectively. In addition, verification of controller is implemented in Adams software.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241261895
Wenzheng Liu, Rupeng Zhu, Wenguang Zhou, Jingjing Wang
Spur gears endure contact fatigue loads that can lead to surface damage on the gear teeth. Contact fatigue typically arises from dedendum during engineering and experiments, primarily caused by maximum sub-surface shear stress. This study presents a contact model incorporating profile-shift to examine sub-surface shear stress in relation to the occurrence of tooth root pits. Accurate calculations are performed to determine the distribution of sub-surface stress and meshing duration, considering various modification coefficients. The geometric cause affecting the shear stress near the tooth root is found. A deviation coefficient from base circle is proposed to analyze the influence of modification coefficient and pressure angle, which can be used in design reference. The investigation comprehensively explores the effects of profile-shift and pressure angle of spur gears on stress distribution.
{"title":"Analysis investigation of the influence of sub-surface shear stress distribution of spur gear","authors":"Wenzheng Liu, Rupeng Zhu, Wenguang Zhou, Jingjing Wang","doi":"10.1177/09544062241261895","DOIUrl":"https://doi.org/10.1177/09544062241261895","url":null,"abstract":"Spur gears endure contact fatigue loads that can lead to surface damage on the gear teeth. Contact fatigue typically arises from dedendum during engineering and experiments, primarily caused by maximum sub-surface shear stress. This study presents a contact model incorporating profile-shift to examine sub-surface shear stress in relation to the occurrence of tooth root pits. Accurate calculations are performed to determine the distribution of sub-surface stress and meshing duration, considering various modification coefficients. The geometric cause affecting the shear stress near the tooth root is found. A deviation coefficient from base circle is proposed to analyze the influence of modification coefficient and pressure angle, which can be used in design reference. The investigation comprehensively explores the effects of profile-shift and pressure angle of spur gears on stress distribution.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"71 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241266149
Ming Han, Bin Xiong, Jinyue Liu, Dong Yang, Tiejun Li
Articulated heavy-duty robots are more and more widely used in the construction environment. Aiming at the problems of low working efficiency and high energy consumption of this kind of robot, a multi-objective adaptive trajectory planning method combining path optimization and trajectory optimization is proposed to improve the working efficiency of the robot and reduce energy consumption. Firstly, based on kinematics and dynamic analysis considering friction, the energy consumption model of robot trajectory is constructed. Then, according to the posture of the key points in the known workspace, the optimal path points in the joint space are obtained by a path point solution method considering the joint load characteristics. On this basis, a multi-objective model considering running time and energy consumption is established to plan the interpolation trajectory of the joint space of the quintic B-spline curve. Finally, constrained by the velocity, acceleration and torque of the joint of the manipulator, the optimal solution is obtained by using the elite non-dominated sorting genetic algorithm (NSGA-II), and the optimal weight factor is selected by a multi-objective adaptive optimization method to obtain the optimal position-time series. The experimental results show that compared with the quintic polynomial trajectory optimization method, the energy consumption of the proposed method is reduced by 10.90% under the same working efficiency. The research results of this paper provide a new optimization idea for other target trajectory planning.
{"title":"Research on time-energy optimal trajectory planning of articulated heavy-duty robot","authors":"Ming Han, Bin Xiong, Jinyue Liu, Dong Yang, Tiejun Li","doi":"10.1177/09544062241266149","DOIUrl":"https://doi.org/10.1177/09544062241266149","url":null,"abstract":"Articulated heavy-duty robots are more and more widely used in the construction environment. Aiming at the problems of low working efficiency and high energy consumption of this kind of robot, a multi-objective adaptive trajectory planning method combining path optimization and trajectory optimization is proposed to improve the working efficiency of the robot and reduce energy consumption. Firstly, based on kinematics and dynamic analysis considering friction, the energy consumption model of robot trajectory is constructed. Then, according to the posture of the key points in the known workspace, the optimal path points in the joint space are obtained by a path point solution method considering the joint load characteristics. On this basis, a multi-objective model considering running time and energy consumption is established to plan the interpolation trajectory of the joint space of the quintic B-spline curve. Finally, constrained by the velocity, acceleration and torque of the joint of the manipulator, the optimal solution is obtained by using the elite non-dominated sorting genetic algorithm (NSGA-II), and the optimal weight factor is selected by a multi-objective adaptive optimization method to obtain the optimal position-time series. The experimental results show that compared with the quintic polynomial trajectory optimization method, the energy consumption of the proposed method is reduced by 10.90% under the same working efficiency. The research results of this paper provide a new optimization idea for other target trajectory planning.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"4 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241262255
K. Ravi Kumar, K. Sivavel Annamalai, H. Sriram, Nisha Soms
This study is on the mechanical properties of bronze infill poly lactic acid composites fabricated by fused deposition modelling. By changing the nozzle temperature, printing speed, layer thickness and infill density the mechanical properties of the composites were studied. Tensile, flexural and impact strength tests were conducted on the composite specimen. Mathematical models were developed using response surface methodology and the significance of the models was tested using analysis of variance. Increase in infill density and nozzle temperature increased the strengths of the composites. Increase in layer thickness and printing speed decreased the strengths of the composite specimen. Tensile strength is primarily influenced by infill density (38.82%), flexural strength is primarily influenced by Nozzle Temperature contributes (44.02%) while Infill density (58.12%) plays the major role in contributing the impact strength followed by other parameters. The highest tensile strength, flexural strength, impact strength values obtained in this study are 19.3 (N/mm2), 36.08 (N/mm2) and 0.26 (kJ/m2) respectively. The mechanism of the fractured specimen was investigated using scanning electron microscopy. Fracture mechanisms such as cracks, infill gaps, voids, interface, delamination, hillocks, particle pull out, delamination had an effect on the fracture of composite specimens.
{"title":"Investigation on mechanical properties of bronze infill PLA composite fabricated by fused deposition modelling","authors":"K. Ravi Kumar, K. Sivavel Annamalai, H. Sriram, Nisha Soms","doi":"10.1177/09544062241262255","DOIUrl":"https://doi.org/10.1177/09544062241262255","url":null,"abstract":"This study is on the mechanical properties of bronze infill poly lactic acid composites fabricated by fused deposition modelling. By changing the nozzle temperature, printing speed, layer thickness and infill density the mechanical properties of the composites were studied. Tensile, flexural and impact strength tests were conducted on the composite specimen. Mathematical models were developed using response surface methodology and the significance of the models was tested using analysis of variance. Increase in infill density and nozzle temperature increased the strengths of the composites. Increase in layer thickness and printing speed decreased the strengths of the composite specimen. Tensile strength is primarily influenced by infill density (38.82%), flexural strength is primarily influenced by Nozzle Temperature contributes (44.02%) while Infill density (58.12%) plays the major role in contributing the impact strength followed by other parameters. The highest tensile strength, flexural strength, impact strength values obtained in this study are 19.3 (N/mm<jats:sup>2</jats:sup>), 36.08 (N/mm<jats:sup>2</jats:sup>) and 0.26 (kJ/m<jats:sup>2</jats:sup>) respectively. The mechanism of the fractured specimen was investigated using scanning electron microscopy. Fracture mechanisms such as cracks, infill gaps, voids, interface, delamination, hillocks, particle pull out, delamination had an effect on the fracture of composite specimens.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"71 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}