首页 > 最新文献

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science最新文献

英文 中文
Design and kinematics analysis of a parabolic cylinder deployment mechanism with modular over-constrained triangular pyramid 带有模块化超约束三角锥的抛物面圆柱体展开机构的设计与运动学分析
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241262223
Hui Yang, Dongtian Wu, Yan Wang, Hong Xiao
Space missions require novel mechanisms that can have compact form in complex space environments. This study proposes a modular triangular pyramid parabolic cylinder deployment mechanism. The modular deployable unit contains an over-constrained triangular pyramid deployable mechanism and a symmetrical trapezoidal Bricard linkage that drives the longitudinal and transverse motions of the mechanism. A cable net is added between two symmetrical linkages to form a parabolic cylindrical reflector and is analyzed by the force density method. The Denavit-Hartenberg (D-H) coordinate method is used to analyze the kinematic characteristics. Based on the analytical solution for the angular displacement, the degrees of freedom of the mechanism are derived from screw theory. Subsequently, the angular velocity and acceleration of the joint points are obtained. Finally, kinematic models of the modular triangular pyramid parabolic cylinder deployable mechanism are established, and the accuracy of the theoretical model is verified using a numerical method. This novel parabolic cylinder deployable mechanism will have a significant influence in aerospace domain. Crucially, the work has value to design deployment mechanism for parabolic cylinder antenna.
太空任务需要在复杂的太空环境中具有紧凑外形的新型机构。本研究提出了一种模块化三角金字塔抛物面圆柱体展开机构。模块化可展开单元包含一个过度受限的三角形金字塔可展开机构和一个对称的梯形布里卡德连杆机构,后者驱动机构的纵向和横向运动。在两个对称连杆之间增加了一个缆网,形成抛物线圆柱形反射器,并采用力密度法进行分析。采用 Denavit-Hartenberg (D-H) 坐标法分析运动特性。根据角位移的解析解,从螺杆理论推导出机构的自由度。随后,得到关节点的角速度和加速度。最后,建立了模块化三角金字塔抛物面圆柱体可展开机构的运动学模型,并通过数值方法验证了理论模型的准确性。这种新型抛物面圆柱体可展开机构将在航空航天领域产生重大影响。最重要的是,这项工作对抛物面圆柱体天线的展开机构设计具有重要价值。
{"title":"Design and kinematics analysis of a parabolic cylinder deployment mechanism with modular over-constrained triangular pyramid","authors":"Hui Yang, Dongtian Wu, Yan Wang, Hong Xiao","doi":"10.1177/09544062241262223","DOIUrl":"https://doi.org/10.1177/09544062241262223","url":null,"abstract":"Space missions require novel mechanisms that can have compact form in complex space environments. This study proposes a modular triangular pyramid parabolic cylinder deployment mechanism. The modular deployable unit contains an over-constrained triangular pyramid deployable mechanism and a symmetrical trapezoidal Bricard linkage that drives the longitudinal and transverse motions of the mechanism. A cable net is added between two symmetrical linkages to form a parabolic cylindrical reflector and is analyzed by the force density method. The Denavit-Hartenberg (D-H) coordinate method is used to analyze the kinematic characteristics. Based on the analytical solution for the angular displacement, the degrees of freedom of the mechanism are derived from screw theory. Subsequently, the angular velocity and acceleration of the joint points are obtained. Finally, kinematic models of the modular triangular pyramid parabolic cylinder deployable mechanism are established, and the accuracy of the theoretical model is verified using a numerical method. This novel parabolic cylinder deployable mechanism will have a significant influence in aerospace domain. Crucially, the work has value to design deployment mechanism for parabolic cylinder antenna.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on Fe3O4 nanoparticle separation from water flow using magnetic field: A 3D simulation 利用磁场从水流中分离 Fe3O4 纳米粒子的数值研究:三维模拟
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241259613
Mozhgan Farzin, Amin Haghighi Poshtiri, Ramin Kouhikamali
The development of magnetic separation technology using magnetic nanoparticles offers a promising avenue for targeted drug delivery and dealing with the upcoming water crises, environmental pollution and the gradual mineral resource depletion. In this study, a three-dimensional Lagrangian Discrete Phase Model (DPM) is carried out to simulate the performance of Fe3O4 nanoparticles to improve the separation process under the influence of an external magnetic field within a horizontal pipe. The crucial role of the drag force in capture efficiency (CE) prompted its examination, simulating various drag models for groups of particles. The Stokes-Cunningham model, showing a 3.59% average error is a suitable choice compared to experimental results. The research examines the impact of effective parameters, including flow velocity, magnetic field intensity, wire location, particle size and mass flow rate, and pipe diameter on CE and flow pattern. The results show that increasing nanoparticle concentration reshapes the flow pattern due to secondary flows without significantly changing separation efficiency. Moreover, decreasing flow velocity, diminishes drag force and enhances magnetic force impact. Specifically, reducing the velocity to a third increases CE by 37%. Furthermore, capture capacity varies approximately linearly with electric current. Due to the magnetic force’s role as a volumetric force in interphase momentum transfer, the increase in particle size from 200 to 500 nm at 3 × 105 A enhances CE by nearly 50%. However, increasing the pipe diameter diminishes particle capture, attributed to higher Reynolds numbers. According to the results, the impact of increasing magnetic field intensity and particle size on CE improvement is notably more pronounced compared to the effect of flow velocity reduction. A comparative analysis of three injection types reveals that using the group injection type helps to select an appropriate injection location to increase CE and identify the final positions of nanoparticles.
利用磁性纳米粒子开发磁性分离技术为靶向给药和应对即将到来的水危机、环境污染和矿产资源逐渐枯竭提供了一条前景广阔的途径。本研究利用三维拉格朗日离散相模型(DPM)模拟了 Fe3O4 纳米粒子在水平管道内受外磁场影响时改善分离过程的性能。阻力在捕获效率(CE)中的关键作用促使我们对其进行研究,并模拟了颗粒组的各种阻力模型。与实验结果相比,斯托克斯-坎宁安模型的平均误差为 3.59%,是一个合适的选择。研究考察了有效参数对 CE 和流动模式的影响,包括流速、磁场强度、导线位置、颗粒大小和质量流量以及管道直径。结果表明,纳米粒子浓度的增加会因二次流而改变流动模式,但不会显著改变分离效率。此外,降低流速可减少阻力,增强磁力影响。具体来说,将流速降低到三分之一,CE 会增加 37%。此外,捕获能力与电流大致呈线性关系。由于磁力在相间动量传递中起到体积力的作用,在 3 × 105 A 电流条件下,粒径从 200 纳米增加到 500 纳米,CE 提高了近 50%。然而,由于雷诺数较高,增加管道直径会减少颗粒捕获。结果表明,与流速降低的影响相比,磁场强度和颗粒尺寸的增加对 CE 改善的影响更为明显。对三种喷射类型的比较分析表明,使用分组喷射类型有助于选择合适的喷射位置来提高 CE 值,并确定纳米粒子的最终位置。
{"title":"Numerical study on Fe3O4 nanoparticle separation from water flow using magnetic field: A 3D simulation","authors":"Mozhgan Farzin, Amin Haghighi Poshtiri, Ramin Kouhikamali","doi":"10.1177/09544062241259613","DOIUrl":"https://doi.org/10.1177/09544062241259613","url":null,"abstract":"The development of magnetic separation technology using magnetic nanoparticles offers a promising avenue for targeted drug delivery and dealing with the upcoming water crises, environmental pollution and the gradual mineral resource depletion. In this study, a three-dimensional Lagrangian Discrete Phase Model (DPM) is carried out to simulate the performance of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles to improve the separation process under the influence of an external magnetic field within a horizontal pipe. The crucial role of the drag force in capture efficiency (CE) prompted its examination, simulating various drag models for groups of particles. The Stokes-Cunningham model, showing a 3.59% average error is a suitable choice compared to experimental results. The research examines the impact of effective parameters, including flow velocity, magnetic field intensity, wire location, particle size and mass flow rate, and pipe diameter on CE and flow pattern. The results show that increasing nanoparticle concentration reshapes the flow pattern due to secondary flows without significantly changing separation efficiency. Moreover, decreasing flow velocity, diminishes drag force and enhances magnetic force impact. Specifically, reducing the velocity to a third increases CE by 37%. Furthermore, capture capacity varies approximately linearly with electric current. Due to the magnetic force’s role as a volumetric force in interphase momentum transfer, the increase in particle size from 200 to 500 nm at 3 × 10<jats:sup>5</jats:sup> A enhances CE by nearly 50%. However, increasing the pipe diameter diminishes particle capture, attributed to higher Reynolds numbers. According to the results, the impact of increasing magnetic field intensity and particle size on CE improvement is notably more pronounced compared to the effect of flow velocity reduction. A comparative analysis of three injection types reveals that using the group injection type helps to select an appropriate injection location to increase CE and identify the final positions of nanoparticles.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and performance analysis of continuum manipulator with twisting rotation 带扭转旋转功能的连续机械手的设计与性能分析
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241261593
Junfeng Hu, Hao Zhou
The continuum manipulator exhibits excellent flexibility, enabling it to navigate through unstructured and narrow spaces. However, the current motion capabilities of the continuum arm are limited to expansion, bending, or their combination, which restricts its application range and potential uses. Designing a continuum manipulator capable of twisting motion around its axis poses a significant challenge. In this study, we propose a torsion module for the continuum manipulator that enables twisting motions. This module comprises a central trunk made of a torsion spring and a driving mechanism consisting of two tendons arranged in cylindrical helix symmetry. By stretching these driving cables, the module can achieve twisting motion. We describe the principle behind torsional motion, establish a kinematic model for the continuum torsional module, and analyze how structural parameters affect its performance in terms of twisting motion. Furthermore, we construct a continuum arm incorporating this torsion module to enable both twisting and bending motions. We present examples showcasing the versatile capabilities of this continuum manipulator in various specialized scenarios. Experimental results demonstrate that the addition of torsional functionality enhances dexterity and expands design possibilities for continuum manipulators.
连续机械臂具有出色的灵活性,能够在非结构化的狭窄空间中穿行。然而,目前连续机械臂的运动能力仅限于伸缩、弯曲或它们的组合,这限制了它的应用范围和潜在用途。设计一种能够绕其轴线进行扭转运动的连续机械手是一项重大挑战。在这项研究中,我们提出了一种可实现扭转运动的连续机械手扭转模块。该模块包括一个由扭转弹簧组成的中心躯干和一个由两条呈圆柱螺旋对称排列的韧带组成的驱动机构。通过拉伸这些驱动缆绳,该模块可以实现扭转运动。我们描述了扭转运动背后的原理,建立了连续扭转模块的运动学模型,并分析了结构参数如何影响模块的扭转运动性能。此外,我们还构建了一个包含该扭转模块的连续臂,以实现扭转和弯曲运动。我们通过实例展示了这种连续机械手在各种特殊场景下的多功能性。实验结果表明,增加扭转功能可以提高灵巧性,拓展连续机械手的设计可能性。
{"title":"Design and performance analysis of continuum manipulator with twisting rotation","authors":"Junfeng Hu, Hao Zhou","doi":"10.1177/09544062241261593","DOIUrl":"https://doi.org/10.1177/09544062241261593","url":null,"abstract":"The continuum manipulator exhibits excellent flexibility, enabling it to navigate through unstructured and narrow spaces. However, the current motion capabilities of the continuum arm are limited to expansion, bending, or their combination, which restricts its application range and potential uses. Designing a continuum manipulator capable of twisting motion around its axis poses a significant challenge. In this study, we propose a torsion module for the continuum manipulator that enables twisting motions. This module comprises a central trunk made of a torsion spring and a driving mechanism consisting of two tendons arranged in cylindrical helix symmetry. By stretching these driving cables, the module can achieve twisting motion. We describe the principle behind torsional motion, establish a kinematic model for the continuum torsional module, and analyze how structural parameters affect its performance in terms of twisting motion. Furthermore, we construct a continuum arm incorporating this torsion module to enable both twisting and bending motions. We present examples showcasing the versatile capabilities of this continuum manipulator in various specialized scenarios. Experimental results demonstrate that the addition of torsional functionality enhances dexterity and expands design possibilities for continuum manipulators.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance enhancement of solar air heater with two-sided curvilinear transverse rib: Experimental and numerical investigation 采用双面曲线横肋的太阳能空气加热器的性能提升:实验和数值研究
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241258078
Dharam Singh, Vikash Kumar
Solar energy as prime energy source draws attention of world due to its availability and eco-friendliness. Low performance of solar air heater create curiosity for researchers to increase its performance. To enhance performance of solar air heater active and passive techniques used by researcher. Surface modification is one of the most prominent passive techniques to improve the performance. Present experimental and numerical investigation explore thermal characteristics of two-sided curvilinear rib roughened solar air heater. An indoor experiment was performed on two side curvilinear rib roughened absorber plate having constant heat flux of 1000 W/m2. Parallelly 2-dimensional numerical simulation was also performed to explore flow behavior and to complete investigation within optimum cost. ANSYS Fluent 2021.R was used for performing this simulation with K-ε RNG model with enhanced wall treatment. Velocity inlet and pressure outlet was selected as boundary condition. Main roughness and flow parameters were relative roughness height ( e/ D h = 0.21–0.042), relative roughness pitch ( p/ e = 7.14–35.71), and Reynolds number ( Re = 3800–18,000). Maximum value of Nusselt number improvement ratio and friction factor improvement ratio was 3.17 and 3.26 at roughness and flow parameter of ( e/ D h = 0.042, p/ e = 15, Re = 15,000) and ( e/ D h = 0.042, p/ e = 7.14, Re = 3800) respectively. Thermohydraulic performance parameter achieved its maximum value of 2.77 at e/ D h = 0.042, p/ e = 17.85, and Re = 18,000.
太阳能作为主要能源,因其可用性和生态友好性而备受世界关注。太阳能空气加热器的低性能使研究人员对提高其性能产生了好奇。为了提高太阳能空气加热器的性能,研究人员采用了主动和被动技术。表面改性是提高性能的最重要的被动技术之一。本实验和数值研究探讨了双面曲线肋条粗化太阳能空气加热器的热特性。在热通量恒定为 1000 W/m2 的双面曲线肋条粗化吸收板上进行了室内实验。同时还进行了二维数值模拟,以探索流动行为,并以最佳成本完成研究。ANSYS Fluent 2021.R 用于执行该模拟,采用 K-ε RNG 模型并增强了壁面处理。选择速度入口和压力出口作为边界条件。主要粗糙度和流动参数为相对粗糙度高度(e/ D h = 0.21-0.042)、相对粗糙度间距(p/ e = 7.14-35.71)和雷诺数(Re = 3800-18,000)。当粗糙度和流动参数分别为 ( e/ D h = 0.042, p/ e = 15, Re = 15,000) 和 ( e/ D h = 0.042, p/ e = 7.14, Re = 3800) 时,努塞尔特数改进率和摩擦因数改进率的最大值分别为 3.17 和 3.26。热液压性能参数在 e/ D h = 0.042、p/ e = 17.85 和 Re = 18,000 时达到最大值 2.77。
{"title":"Performance enhancement of solar air heater with two-sided curvilinear transverse rib: Experimental and numerical investigation","authors":"Dharam Singh, Vikash Kumar","doi":"10.1177/09544062241258078","DOIUrl":"https://doi.org/10.1177/09544062241258078","url":null,"abstract":"Solar energy as prime energy source draws attention of world due to its availability and eco-friendliness. Low performance of solar air heater create curiosity for researchers to increase its performance. To enhance performance of solar air heater active and passive techniques used by researcher. Surface modification is one of the most prominent passive techniques to improve the performance. Present experimental and numerical investigation explore thermal characteristics of two-sided curvilinear rib roughened solar air heater. An indoor experiment was performed on two side curvilinear rib roughened absorber plate having constant heat flux of 1000 W/m<jats:sup>2</jats:sup>. Parallelly 2-dimensional numerical simulation was also performed to explore flow behavior and to complete investigation within optimum cost. ANSYS Fluent 2021.R was used for performing this simulation with K-ε RNG model with enhanced wall treatment. Velocity inlet and pressure outlet was selected as boundary condition. Main roughness and flow parameters were relative roughness height ( e/ D<jats:sub> h</jats:sub> = 0.21–0.042), relative roughness pitch ( p/ e = 7.14–35.71), and Reynolds number ( Re = 3800–18,000). Maximum value of Nusselt number improvement ratio and friction factor improvement ratio was 3.17 and 3.26 at roughness and flow parameter of ( e/ D<jats:sub> h</jats:sub> = 0.042, p/ e = 15, Re = 15,000) and ( e/ D<jats:sub> h</jats:sub> = 0.042, p/ e = 7.14, Re = 3800) respectively. Thermohydraulic performance parameter achieved its maximum value of 2.77 at e/ D<jats:sub> h</jats:sub> = 0.042, p/ e = 17.85, and Re = 18,000.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process improvement in Zamak injection machines for automotive component fabrication 用于汽车零部件制造的扎马克注塑机的工艺改进
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241262962
José Luís Torres Alves Pereira, Raul Duarte Salgueiral Gomes Campilho, Francisco José Gomes da Silva
Die casting processes are nowadays widely used in the industry and differentiate from metal casting from the high-speed and pressure applied to inject the metal into the cavity. Due to this procedure, the produced parts manage to acquire better mechanical characteristics, dimensional precision, and smaller roughness. Due to the automation possibility, and mould coating possibilities, the process becomes cost competitive at significant production rates. However, to assure proper functioning and extended life of die casting equipment, it is necessary to continuously control the process variables, undertake maintenance, and implement process improvement actions to the production lines. The objective of the present work is to improve the efficiency of a Zamak die cast injection line for cable terminals used in Bowden or control cables for the automotive industry. By reducing wear and number of failures of standard components in this production line, and thus by diminishing the stoppage and replacement costs, it becomes possible to improve the current process. By applying specific improvements to the injection subset, heating element, and pump, including geometry modifications to the injection elements and respective interactions, heat treatments, higher power resistor, and groove/ring system in the pumps’ piston, a significant process improvement was accomplished by the proposed and tested modifications, leading to reduction of failures and operational costs, and consequently higher competitiveness of the process.
压铸工艺是当今工业中广泛使用的工艺,它与金属铸造的区别在于将金属注入型腔时所采用的高速度和压力。由于采用了这种工艺,生产出的零件能够获得更好的机械特性、更高的尺寸精度和更小的粗糙度。由于可以实现自动化和模具涂层,该工艺在大幅提高生产率时具有成本竞争力。然而,为了确保压铸设备的正常运行并延长其使用寿命,有必要对生产线进行持续的工艺变量控制、维护和工艺改进。本项目旨在提高扎马克压铸注塑生产线的效率,该生产线用于生产汽车行业鲍登电缆或控制电缆中使用的电缆端子。通过减少生产线上标准组件的磨损和故障次数,从而降低停工和更换成本,就有可能改进当前的工艺。通过对喷射组件、加热元件和泵进行具体的改进,包括对喷射元件的几何形状和各自的相互作用进行修改、热处理、更大功率的电阻器以及泵活塞中的槽/环系统,建议和测试的改进实现了显著的工艺改进,减少了故障和运营成本,从而提高了工艺的竞争力。
{"title":"Process improvement in Zamak injection machines for automotive component fabrication","authors":"José Luís Torres Alves Pereira, Raul Duarte Salgueiral Gomes Campilho, Francisco José Gomes da Silva","doi":"10.1177/09544062241262962","DOIUrl":"https://doi.org/10.1177/09544062241262962","url":null,"abstract":"Die casting processes are nowadays widely used in the industry and differentiate from metal casting from the high-speed and pressure applied to inject the metal into the cavity. Due to this procedure, the produced parts manage to acquire better mechanical characteristics, dimensional precision, and smaller roughness. Due to the automation possibility, and mould coating possibilities, the process becomes cost competitive at significant production rates. However, to assure proper functioning and extended life of die casting equipment, it is necessary to continuously control the process variables, undertake maintenance, and implement process improvement actions to the production lines. The objective of the present work is to improve the efficiency of a Zamak die cast injection line for cable terminals used in Bowden or control cables for the automotive industry. By reducing wear and number of failures of standard components in this production line, and thus by diminishing the stoppage and replacement costs, it becomes possible to improve the current process. By applying specific improvements to the injection subset, heating element, and pump, including geometry modifications to the injection elements and respective interactions, heat treatments, higher power resistor, and groove/ring system in the pumps’ piston, a significant process improvement was accomplished by the proposed and tested modifications, leading to reduction of failures and operational costs, and consequently higher competitiveness of the process.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved transmission efficiency prediction method for nonlinear characteristics of the cycloid reducer 针对摆线针轮减速机非线性特性的改进型传动效率预测方法
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241258908
Xincheng Wang, Huaming Wang, Luyang Li, Linbo Hao
This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.
本研究旨在准确预测摆线针轮减速器在不同工作条件下传动效率的非线性特性。首先,对所设计的摆线针轮减速器中的多源误差(MSE)进行了等效建模。针对摆线针轮传动机构、输出机构和轴承提出了考虑 MSE 的受力分析算法。其次,建立了与负载相关的功率损耗数学模型,并使用等效测试对与负载无关的功率损耗进行建模。随后,提出了一种改进的摆线针轮减速机传动效率预测(TEP)方法,并将其应用于不同工作条件下的原型机性能预测。讨论了改进的 TEP 方法相对于传统方法的优势,并总结了 MSE 和与负载无关的功率损耗对传输效率非线性特性的影响。最后,对减速器原型进行了测试,发现测试结果与所提出的 TEP 方法得出的结果十分吻合。本研究的主要贡献在于为摆线针轮减速器非线性传动效率的优化设计奠定了坚实的算法和建模基础,并为其工程应用提供了可靠的指导。
{"title":"An improved transmission efficiency prediction method for nonlinear characteristics of the cycloid reducer","authors":"Xincheng Wang, Huaming Wang, Luyang Li, Linbo Hao","doi":"10.1177/09544062241258908","DOIUrl":"https://doi.org/10.1177/09544062241258908","url":null,"abstract":"This study aims to accurately predict the nonlinear characteristics of transmission efficiency of cycloid reducers under different operating conditions. Firstly, equivalent modeling of the multi-source errors (MSEs) in the designed cycloid reducer is conducted. Force analysis algorithms considering MSEs are proposed for the cycloid drive mechanism, the output mechanism, and the bearings. Secondly, mathematical models are established for the load-dependent power losses, while an equivalent test is used for modeling load-independent power losses. Subsequently, an improved transmission efficiency prediction (TEP) method for cycloid reducers is proposed, which is then applied to the performance prediction of a prototype under different operating conditions. The advantages of the improved TEP method over the conventional method are discussed, and the influences of MSEs and load-independent power losses on the nonlinear characteristics of transmission efficiency are summarized. Finally, tests are conducted for the reducer prototype, and the test results are found to be in good agreement with the results obtained by the proposed TEP method. The main contribution of this study is to establish a solid algorithmic and modeling foundation for the optimal design of nonlinear transmission efficiency in cycloid reducers and provide reliable guidance for their engineering applications.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the effect of bearing position and stiffness on the dynamic behavior of output stage of CHT system based on the cylindrical gear meshing 研究轴承位置和刚度对基于圆柱齿轮啮合的 CHT 系统输出级动态行为的影响
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241259609
Xiaoyu Che, Rupeng Zhu
The internal and external rotor shafts are important components to transfer power in coaxial helicopters, and bearing supports could affect the dynamic behavior of the transmission system. In order to explore the influence of bearing support structure, bearing position and support stiffness on the dynamic behavior of the output stage of coaxial helicopter transmission (CHT) system based on the cylindrical gear meshing, a rigid-flexible coupled dynamic model is established under cantilever-cantilever support structure and cantilever-simple support structure considering the flexibility of rotor shaft based on Timoshenko beam theory, and time-varying mesh stiffness (TVMS), comprehensive meshing error are also considered. Newmark-beta numerical method was applied to calculate the dynamic response. The result indicates that the load sharing performance of gear pair using cantilever-simple support structure is better than that of cantilever-cantilever structure, but the maximum vibration displacement of bull gears is reduced apparently. Simultaneously, the bearing positions and stiffness can be adjusted to achieve better performance in load distribution and maximum vibration displacement of bull gears.
内外转子轴是同轴直升机动力传输的重要部件,轴承支撑会影响传动系统的动态特性。为了探讨轴承支撑结构、轴承位置和支撑刚度对基于圆柱齿轮啮合的同轴直升机传动(CHT)系统输出级动态行为的影响,基于季莫申科梁理论建立了考虑转子轴柔性的悬臂-悬臂支撑结构和悬臂-简支撑结构下的刚柔耦合动态模型,并考虑了时变啮合刚度(TVMS)和综合啮合误差。采用 Newmark-beta 数值方法计算动态响应。结果表明,采用悬臂-简支结构的齿轮副的负载分担性能优于悬臂-悬臂结构,但牛齿轮的最大振动位移明显减小。同时,可通过调整支承位置和刚度来实现更好的负载分配性能和公牛齿轮的最大振动位移。
{"title":"Study on the effect of bearing position and stiffness on the dynamic behavior of output stage of CHT system based on the cylindrical gear meshing","authors":"Xiaoyu Che, Rupeng Zhu","doi":"10.1177/09544062241259609","DOIUrl":"https://doi.org/10.1177/09544062241259609","url":null,"abstract":"The internal and external rotor shafts are important components to transfer power in coaxial helicopters, and bearing supports could affect the dynamic behavior of the transmission system. In order to explore the influence of bearing support structure, bearing position and support stiffness on the dynamic behavior of the output stage of coaxial helicopter transmission (CHT) system based on the cylindrical gear meshing, a rigid-flexible coupled dynamic model is established under cantilever-cantilever support structure and cantilever-simple support structure considering the flexibility of rotor shaft based on Timoshenko beam theory, and time-varying mesh stiffness (TVMS), comprehensive meshing error are also considered. Newmark-beta numerical method was applied to calculate the dynamic response. The result indicates that the load sharing performance of gear pair using cantilever-simple support structure is better than that of cantilever-cantilever structure, but the maximum vibration displacement of bull gears is reduced apparently. Simultaneously, the bearing positions and stiffness can be adjusted to achieve better performance in load distribution and maximum vibration displacement of bull gears.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of constitutive model and simulation study on sealing performance of special-shaped rubber cylinder for inner packer in deepwater pipeline 深水管道内封隔器异形橡胶圆筒密封性能的构成模型建立与仿真研究
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241259610
Lan Zhang, Guoqiang Zhang, Jing Wen, Feihong Yun, Ming Liu
It’s important to improve the sealing performance of the inner packer in deepwater pipelines, which is an emergency sealing and oil control equipment. The deformation characteristics and sealing stress conditions of the packer’s sealant cylinder are analyzed, and the hyperelastic constitutive model is determined based on uniaxial tensile experiments. The effective contact stress and effective contact range between the rubber cylinder and the pipe wall are the main parameters for evaluating the sealing performance. Through simulation, it was found that the rubber cylinder on the force application side plays a major sealing role, and severe stress can lead to shoulder protrusions. The location of fatigue damage on the rubber cylinder’s shoulder is consistent with the sea trial. Therefore, special-shaped rubber cylinders with different structures are designed to address the shoulder protrusion. The simulation shows that the sealing performance of the right-angled trapezoidal double-layer rubber cylinder with force applied on the slope side(S-RARC) is significantly better than the original rubber cylinder(ORC), and it does not produce shoulder protrusions.
封隔器是深水管道的应急密封和控油设备,提高封隔器的密封性能非常重要。本文分析了封隔器密封胶筒的变形特性和密封应力条件,并根据单轴拉伸实验确定了超弹性构成模型。橡胶筒与管壁的有效接触应力和有效接触范围是评价密封性能的主要参数。通过模拟发现,受力侧的橡胶圆筒起着主要的密封作用,严重的应力会导致肩部突出。橡胶圆筒肩部的疲劳损伤位置与海试结果一致。因此,设计了不同结构的异形橡胶圆筒来解决肩部突出问题。模拟结果表明,斜面受力的直角梯形双层橡胶圆筒(S-RARC)的密封性能明显优于原始橡胶圆筒(ORC),且不会产生肩突。
{"title":"Establishment of constitutive model and simulation study on sealing performance of special-shaped rubber cylinder for inner packer in deepwater pipeline","authors":"Lan Zhang, Guoqiang Zhang, Jing Wen, Feihong Yun, Ming Liu","doi":"10.1177/09544062241259610","DOIUrl":"https://doi.org/10.1177/09544062241259610","url":null,"abstract":"It’s important to improve the sealing performance of the inner packer in deepwater pipelines, which is an emergency sealing and oil control equipment. The deformation characteristics and sealing stress conditions of the packer’s sealant cylinder are analyzed, and the hyperelastic constitutive model is determined based on uniaxial tensile experiments. The effective contact stress and effective contact range between the rubber cylinder and the pipe wall are the main parameters for evaluating the sealing performance. Through simulation, it was found that the rubber cylinder on the force application side plays a major sealing role, and severe stress can lead to shoulder protrusions. The location of fatigue damage on the rubber cylinder’s shoulder is consistent with the sea trial. Therefore, special-shaped rubber cylinders with different structures are designed to address the shoulder protrusion. The simulation shows that the sealing performance of the right-angled trapezoidal double-layer rubber cylinder with force applied on the slope side(S-RARC) is significantly better than the original rubber cylinder(ORC), and it does not produce shoulder protrusions.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on AZ31 magnesium alloy tee joint tube with lateral hole by hot extrusion forming with sand mandrel limited by stainless steel gasket 带侧孔的 AZ31 镁合金三通接头管研究--以不锈钢垫片为限制的砂芯棒热挤压成形
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-07-23 DOI: 10.1177/09544062241261546
Shi Shengnan, Wang Hongyu, Li Yuanyuan, Sun Juncai, Huang Naibao, Sun Jie, Zhang Shunhu
As one of the lightest metals in the world, magnesium alloy can be used to reduce weight and save energy. Magnesium alloy tubes with different shapes can also further direct the transportation of fluid in this light weight. But the tee joint tube is difficult formed because of the complex shapes. In this paper, magnesium alloy tube is applied to form tee joint tube with sand mandrel. During the deformation, the magnesium alloy tube is driven by the sand mandrel pressed by the push. Different from traditional extruding with full tubes without hole on the sidewall, some tube with holes on the sidewalls are also used in the extrusion. All the key parameters such as extrusion depth, temperature, tube length, hole size, and hole location are discussed in both simulations and experiments. After the extrusion results are obtained, the microhardness and microstructures are observed to explain the promotion of the mechanical properties. Based on the results received from both simulations and experiments, deeper extrusion depth, higher temperature, shorter length of tube, larger size of the hole, and the higher location of the hole influence positively on forming results. No matter there are holes or not on the sidewalls, the errors between the results in simulation and experiment are small. Also the simulation and experiment results can be used to investigate the shape of tee joint tubes. The surface quality can be also measured to prove the surfaces in extrusion with sand mandrel acceptable. A novel strategy to sand mandrel extrusion of magnesium alloy tee joint tube by tube with holes on sidewall is provided.
作为世界上最轻的金属之一,镁合金可用于减轻重量和节约能源。不同形状的镁合金管也能在轻质的基础上进一步引导流体的输送。但三通接头管因形状复杂而难以成型。本文将镁合金管应用于用砂芯棒成型三通接头管。在变形过程中,镁合金管在砂芯轴的推动下被挤压。与传统的挤压全管无侧壁孔不同,挤压中也使用了一些侧壁带孔的管材。所有关键参数,如挤压深度、温度、管子长度、孔尺寸和孔位置,都在模拟和实验中进行了讨论。得出挤压结果后,观察微硬度和微观结构,以解释机械性能的提升。根据模拟和实验的结果,挤压深度越深、温度越高、管子长度越短、孔的尺寸越大、孔的位置越高,对成型结果的影响越大。无论侧壁是否有孔,模拟结果与实验结果的误差都很小。模拟和实验结果还可用于研究三通接头管的形状。还可以测量表面质量,以证明使用砂芯棒挤压的表面是合格的。本论文提供了一种新的策略,通过侧壁带孔的管材,用砂芯棒挤压镁合金三通接头管。
{"title":"Research on AZ31 magnesium alloy tee joint tube with lateral hole by hot extrusion forming with sand mandrel limited by stainless steel gasket","authors":"Shi Shengnan, Wang Hongyu, Li Yuanyuan, Sun Juncai, Huang Naibao, Sun Jie, Zhang Shunhu","doi":"10.1177/09544062241261546","DOIUrl":"https://doi.org/10.1177/09544062241261546","url":null,"abstract":"As one of the lightest metals in the world, magnesium alloy can be used to reduce weight and save energy. Magnesium alloy tubes with different shapes can also further direct the transportation of fluid in this light weight. But the tee joint tube is difficult formed because of the complex shapes. In this paper, magnesium alloy tube is applied to form tee joint tube with sand mandrel. During the deformation, the magnesium alloy tube is driven by the sand mandrel pressed by the push. Different from traditional extruding with full tubes without hole on the sidewall, some tube with holes on the sidewalls are also used in the extrusion. All the key parameters such as extrusion depth, temperature, tube length, hole size, and hole location are discussed in both simulations and experiments. After the extrusion results are obtained, the microhardness and microstructures are observed to explain the promotion of the mechanical properties. Based on the results received from both simulations and experiments, deeper extrusion depth, higher temperature, shorter length of tube, larger size of the hole, and the higher location of the hole influence positively on forming results. No matter there are holes or not on the sidewalls, the errors between the results in simulation and experiment are small. Also the simulation and experiment results can be used to investigate the shape of tee joint tubes. The surface quality can be also measured to prove the surfaces in extrusion with sand mandrel acceptable. A novel strategy to sand mandrel extrusion of magnesium alloy tee joint tube by tube with holes on sidewall is provided.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machinability investigation and surface modification of nano-TiB2 and AlN grafted MWCNT hybridized Al 7075 matrix ternary composite through powder-mixed EDM 通过粉末混合电火花加工研究纳米 TiB2 和 AlN 接枝 MWCNT 杂化 Al 7075 基体三元复合材料的可加工性和表面改性
IF 2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Pub Date : 2024-06-24 DOI: 10.1177/09544062241257088
Rahul Chandra Pradhan, Diptikanta Das, Barada Prasanna Sahoo, Chandrika Samal
This paper accentuates powder-mixed electrical discharge machining (EDM) performance of a newly designed nano-TiB2 and AlN grafted multiwall carbon nano-tube (MWCNT) hybridized Al 7075 matrix ternary composite. The hybrid metal matrix composite (MMC) was fabricated through squeeze casting route, preceded by two-stage reinforcement addition, mechanical agitation, and ultrasonic treatment. EDM was carried out using cryogenic treated Cu electrode and Al2O3 particle-mixed dielectric medium. Influence of EDM process variables, that is, peak current ( I P), pulse-on time ( T ON), and powder concentration ( P C) on machinability of the hybrid MMC was studied considering material removal rate (MRR), tool wear rate (TWR), and average surface roughness ( Ra) as quality indicators. Effects of machining and Al2O3 particle addition on surface morphology of the hybrid MMC were also explored through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and elemental mapping. Results reveal elevation of MRR, reduction of TWR and improvement of surface finish during powder-mixed EDM in comparison to the non-mixed (conventional) EDM. Maximum traces of Al2O3 particle deposition was identified on the machined surfaces while using the powder concentration of 1.5 g/l within the dielectric.
本文重点介绍了一种新设计的纳米 TiB2 和 AlN 接枝多壁碳纳米管(MWCNT)杂化 Al 7075 基体三元复合材料的粉末混合电火花加工(EDM)性能。混合金属基复合材料(MMC)是通过挤压铸造工艺制成的,在此之前经过了两阶段的增强添加、机械搅拌和超声波处理。电火花加工使用低温处理过的铜电极和 Al2O3 粒子混合介质。以材料去除率(MRR)、刀具磨损率(TWR)和平均表面粗糙度(Ra)为质量指标,研究了电火花加工工艺变量,即峰值电流(I P)、脉冲开启时间(T ON)和粉末浓度(P C)对混合 MMC 加工性的影响。研究还通过扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDS)和元素图谱探讨了加工和添加 Al2O3 粒子对混合 MMC 表面形貌的影响。结果显示,与非混合(传统)电火花加工相比,混合粉末电火花加工的 MRR 提高了,TWR 降低了,表面光洁度改善了。在电介质中使用浓度为 1.5 g/l 的粉末时,加工表面的 Al2O3 颗粒沉积痕迹最大。
{"title":"Machinability investigation and surface modification of nano-TiB2 and AlN grafted MWCNT hybridized Al 7075 matrix ternary composite through powder-mixed EDM","authors":"Rahul Chandra Pradhan, Diptikanta Das, Barada Prasanna Sahoo, Chandrika Samal","doi":"10.1177/09544062241257088","DOIUrl":"https://doi.org/10.1177/09544062241257088","url":null,"abstract":"This paper accentuates powder-mixed electrical discharge machining (EDM) performance of a newly designed nano-TiB<jats:sub>2</jats:sub> and AlN grafted multiwall carbon nano-tube (MWCNT) hybridized Al 7075 matrix ternary composite. The hybrid metal matrix composite (MMC) was fabricated through squeeze casting route, preceded by two-stage reinforcement addition, mechanical agitation, and ultrasonic treatment. EDM was carried out using cryogenic treated Cu electrode and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle-mixed dielectric medium. Influence of EDM process variables, that is, peak current ( I<jats:sub> P</jats:sub>), pulse-on time ( T<jats:sub> ON</jats:sub>), and powder concentration ( P<jats:sub> C</jats:sub>) on machinability of the hybrid MMC was studied considering material removal rate (MRR), tool wear rate (TWR), and average surface roughness ( Ra) as quality indicators. Effects of machining and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle addition on surface morphology of the hybrid MMC were also explored through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and elemental mapping. Results reveal elevation of MRR, reduction of TWR and improvement of surface finish during powder-mixed EDM in comparison to the non-mixed (conventional) EDM. Maximum traces of Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> particle deposition was identified on the machined surfaces while using the powder concentration of 1.5 g/l within the dielectric.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1