Pub Date : 2024-07-26DOI: 10.1177/09544062241264706
Xuejian Zhang, Xiaobing Hu, Hang Li, Zheyuan Zhang, Haijun Chen
Motion errors in the trajectory of a six-joint industrial robotic arm’s end-effector can significantly impact machining precision. Complex milling operations can lead to deviations from the intended path due to the robotic arm’s structural characteristics. These errors often exhibit periodic and position-dependent variations, underscoring the need for meticulous control measures. To address this challenge, we propose a novel motion decomposition-based error compensation technique for a six-joint industrial robotic arm. This approach involves breaking down the robot’s motion trajectory into distinct components and constructing prediction models for each component using a BP neural network. These models are then optimized using the Whale Optimization Algorithm (CIWOA) and an adaptive chaotic mapping clustering approach to improve efficiency and global optimization. The proposed method is applied to various motion types of the robotic arm, resulting in substantial enhancements in absolute positioning accuracy. Experimental validation confirms the reliability of the CIWOA-BP neural network prediction model and the effectiveness of the nonparametric accuracy compensation method in refining motion planning precision.
六关节工业机器人手臂末端执行器轨迹的运动误差会严重影响加工精度。由于机械臂的结构特性,复杂的铣削操作会导致偏离预定路径。这些误差通常会表现出周期性和位置依赖性变化,因此需要采取细致的控制措施。为了应对这一挑战,我们提出了一种基于运动分解的新型误差补偿技术,用于六关节工业机械臂。这种方法包括将机器人的运动轨迹分解为不同的组件,并使用 BP 神经网络为每个组件构建预测模型。然后使用鲸鱼优化算法(CIWOA)和自适应混沌映射聚类方法对这些模型进行优化,以提高效率和全局优化。所提出的方法适用于机械臂的各种运动类型,从而大大提高了绝对定位精度。实验验证证实了 CIWOA-BP 神经网络预测模型的可靠性,以及非参数精度补偿方法在提高运动规划精度方面的有效性。
{"title":"Research on six-joint industrial robotic arm positioning error compensation algorithm based on motion decomposition and improved CIWOA-BP neural network","authors":"Xuejian Zhang, Xiaobing Hu, Hang Li, Zheyuan Zhang, Haijun Chen","doi":"10.1177/09544062241264706","DOIUrl":"https://doi.org/10.1177/09544062241264706","url":null,"abstract":"Motion errors in the trajectory of a six-joint industrial robotic arm’s end-effector can significantly impact machining precision. Complex milling operations can lead to deviations from the intended path due to the robotic arm’s structural characteristics. These errors often exhibit periodic and position-dependent variations, underscoring the need for meticulous control measures. To address this challenge, we propose a novel motion decomposition-based error compensation technique for a six-joint industrial robotic arm. This approach involves breaking down the robot’s motion trajectory into distinct components and constructing prediction models for each component using a BP neural network. These models are then optimized using the Whale Optimization Algorithm (CIWOA) and an adaptive chaotic mapping clustering approach to improve efficiency and global optimization. The proposed method is applied to various motion types of the robotic arm, resulting in substantial enhancements in absolute positioning accuracy. Experimental validation confirms the reliability of the CIWOA-BP neural network prediction model and the effectiveness of the nonparametric accuracy compensation method in refining motion planning precision.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"83 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241266319
Zhiwei Liu, Qiong Wang, Hanqing Guan
To avoid harmful and even catastrophic influences on internal combustion engine-generator set, it is essential to investigate early faults such as misalignment, rotor rubbing, shaft cracks, and bearing faults. To study the effect of the misalignment of the elastic coupling on vibration characteristics of the rotor system, experiment with different misalignment amplitudes and types is carried out on a flywheel-elastic coupling rotor test rig. Vibration responses of the rotor system with different amplitudes of parallel and angular misalignment are illustrated by amplitude frequency response curves, orbit plots and frequency spectra. Super-harmonic resonance phenomenon is revealed. Based on the misalignment of the high elastic coupling, dynamical equations of a generator rotor system, excited also by unbalanced magnetic pull and mass unbalance, are derived using the energy method and numerically investigated by the Runge-Kutta method. The theoretical results are in good accordance with the experimental ones. Besides, a new phenomenon of the flywheel-elastic coupling vibration system is found in the experiment.
{"title":"Vibration characteristics of a rotating flywheel-flexible coupling system with misalignment fault: Experiment and simulation","authors":"Zhiwei Liu, Qiong Wang, Hanqing Guan","doi":"10.1177/09544062241266319","DOIUrl":"https://doi.org/10.1177/09544062241266319","url":null,"abstract":"To avoid harmful and even catastrophic influences on internal combustion engine-generator set, it is essential to investigate early faults such as misalignment, rotor rubbing, shaft cracks, and bearing faults. To study the effect of the misalignment of the elastic coupling on vibration characteristics of the rotor system, experiment with different misalignment amplitudes and types is carried out on a flywheel-elastic coupling rotor test rig. Vibration responses of the rotor system with different amplitudes of parallel and angular misalignment are illustrated by amplitude frequency response curves, orbit plots and frequency spectra. Super-harmonic resonance phenomenon is revealed. Based on the misalignment of the high elastic coupling, dynamical equations of a generator rotor system, excited also by unbalanced magnetic pull and mass unbalance, are derived using the energy method and numerically investigated by the Runge-Kutta method. The theoretical results are in good accordance with the experimental ones. Besides, a new phenomenon of the flywheel-elastic coupling vibration system is found in the experiment.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"51 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241261252
Lan Zhang, Jing Wen, Hang Zhang, Guoqiang Zhang, Ming Liu, Feihong Yun, Shoubo Shang
The submarine pipe stopper is prone to failure at large pressure and high temperature conditions. This work focuses on the submarine pipe stopper’s sealing failure caused by excessive shear stress and high temperature. First, the working principle of the sealing device in the stopper was analyzed and its performance was verified through land and sea trials. Then a comprehensive evaluation model fit for the large working pressure was established by analyzing the rubber cylinder’s sealing performance and strength. Next, the model was modified by simulation using the nitrile rubber (NBR) cylinder and the fluororubber (FKM) cylinder were used as examples to revise the comprehensive evaluation model while taking temperature into account. The maximum contact stress and the maximum shear stress of the NBR rubber cylinder at 100°C increased by 28% and 30.62% compared to 25°C, and that of the FKM rubber cylinder increased by 24% and 26.12%. In comparison to 25°C, the maximum contact stress and maximum shear stress of the NBR rubber cylinder increased by 28% and 30.62% at 100°C, while the FKM rubber cylinder had an increase of 24% and 26.12%. At 100°C, the NBR rubber cylinder exhibits a maximum contact stress of 4.71 MPa and a maximum shear stress of 1.18 MPa, whereas the FKM rubber cylinder displays maximum contact and shear stresses of 5.09 and 2.44 MPa. Finally, the rubber cylinder’s maximum working pressure at different temperatures was derived, and the influence of its parameters was discussed. The maximum working pressure at 100°C is only 21% of what the rubber cylinder can bear at 25°C. This work is of great significance for accurately evaluating the rubber cylinder’s sealing performance in the submarine pipe stopper and provides new ideas for the rubber cylinder’s design at high-temperature conditions.
{"title":"Mechanical comprehensive evaluation model and sealing performance research of rubber cylinder at large pressure and high temperature","authors":"Lan Zhang, Jing Wen, Hang Zhang, Guoqiang Zhang, Ming Liu, Feihong Yun, Shoubo Shang","doi":"10.1177/09544062241261252","DOIUrl":"https://doi.org/10.1177/09544062241261252","url":null,"abstract":"The submarine pipe stopper is prone to failure at large pressure and high temperature conditions. This work focuses on the submarine pipe stopper’s sealing failure caused by excessive shear stress and high temperature. First, the working principle of the sealing device in the stopper was analyzed and its performance was verified through land and sea trials. Then a comprehensive evaluation model fit for the large working pressure was established by analyzing the rubber cylinder’s sealing performance and strength. Next, the model was modified by simulation using the nitrile rubber (NBR) cylinder and the fluororubber (FKM) cylinder were used as examples to revise the comprehensive evaluation model while taking temperature into account. The maximum contact stress and the maximum shear stress of the NBR rubber cylinder at 100°C increased by 28% and 30.62% compared to 25°C, and that of the FKM rubber cylinder increased by 24% and 26.12%. In comparison to 25°C, the maximum contact stress and maximum shear stress of the NBR rubber cylinder increased by 28% and 30.62% at 100°C, while the FKM rubber cylinder had an increase of 24% and 26.12%. At 100°C, the NBR rubber cylinder exhibits a maximum contact stress of 4.71 MPa and a maximum shear stress of 1.18 MPa, whereas the FKM rubber cylinder displays maximum contact and shear stresses of 5.09 and 2.44 MPa. Finally, the rubber cylinder’s maximum working pressure at different temperatures was derived, and the influence of its parameters was discussed. The maximum working pressure at 100°C is only 21% of what the rubber cylinder can bear at 25°C. This work is of great significance for accurately evaluating the rubber cylinder’s sealing performance in the submarine pipe stopper and provides new ideas for the rubber cylinder’s design at high-temperature conditions.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"57 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uncertainties in robotic assembly can substantially influence the quality of assembly task planning, often resulting in suboptimal solutions. It is crucial to account for these uncertainties when developing assembly task plans that are both efficient and practical for multi-part products. To address such issues, the proposed method integrates the NelderMead simplex algorithm with the Class Topper Optimisation Algorithm to create a hybrid NelderMead Class Topper Optimisation Algorithm. This study uses a vibration generator as an example to illustrate the application of the proposed method. Ensuring tool accessibility is emphasised, and the assembly tasks are initialised accordingly. The feasibility of these tasks is determined using liaison and tool-integrated geometric feasibility predicate analysis. Multiple criteria are considered to achieve the most efficient robotic assembly task planning, including part reorientation, gripper or tool change and the energy required to assemble the part. The effectiveness and robustness of the proposed optimisation algorithm are demonstrated by comparing it with other algorithms, such as the teaching-learning-based algorithm, the genetic algorithm, the bees algorithm and the particle swarm optimisation algorithm. The results have shown that the proposed approach is highly effective for real-industrial relevant problems.
机器人装配中的不确定性会严重影响装配任务规划的质量,往往会导致次优解决方案的产生。在为多部件产品制定既高效又实用的装配任务计划时,考虑这些不确定性至关重要。为了解决这些问题,我们提出的方法将 NelderMead 单纯形算法与 Class Topper 优化算法相结合,创建了混合 NelderMead Class Topper 优化算法。本研究以一台振动发生器为例,说明了拟议方法的应用。强调确保工具的可及性,并相应地对装配任务进行初始化。使用联络和工具集成几何可行性谓词分析确定这些任务的可行性。为实现最高效的机器人装配任务规划,考虑了多个标准,包括零件重新定向、夹具或工具更换以及装配零件所需的能量。通过与基于教学的算法、遗传算法、蜜蜂算法和粒子群优化算法等其他算法进行比较,证明了所提出的优化算法的有效性和稳健性。结果表明,所提出的方法对实际工业相关问题非常有效。
{"title":"Enhancing efficiency and accuracy in robotic assembly task planning through tool integration using a hybrid class topper optimisation algorithm","authors":"Chiranjibi Champatiray, MVA Raju Bahubalendruni, Golak Bihari Mahanta, Duc Truong Pham, Rabindra Narayan Mahapatra","doi":"10.1177/09544062241264708","DOIUrl":"https://doi.org/10.1177/09544062241264708","url":null,"abstract":"Uncertainties in robotic assembly can substantially influence the quality of assembly task planning, often resulting in suboptimal solutions. It is crucial to account for these uncertainties when developing assembly task plans that are both efficient and practical for multi-part products. To address such issues, the proposed method integrates the NelderMead simplex algorithm with the Class Topper Optimisation Algorithm to create a hybrid NelderMead Class Topper Optimisation Algorithm. This study uses a vibration generator as an example to illustrate the application of the proposed method. Ensuring tool accessibility is emphasised, and the assembly tasks are initialised accordingly. The feasibility of these tasks is determined using liaison and tool-integrated geometric feasibility predicate analysis. Multiple criteria are considered to achieve the most efficient robotic assembly task planning, including part reorientation, gripper or tool change and the energy required to assemble the part. The effectiveness and robustness of the proposed optimisation algorithm are demonstrated by comparing it with other algorithms, such as the teaching-learning-based algorithm, the genetic algorithm, the bees algorithm and the particle swarm optimisation algorithm. The results have shown that the proposed approach is highly effective for real-industrial relevant problems.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241264950
Chithambaram Karunanithi, Senthilnathan Natarajan
Three-dimensional polymer printing is becoming more popular due to its effectiveness in creating components of any geometric design. Polymer materials can be used at low temperatures but are weaker than other functional materials. Polyetheretherketone (PEEK) is a thermoplastic with outstanding mechanical properties that can tolerate high temperatures. A high-temperature fused deposition modeling machine manufactured PEEK specimens in this experiment to find the ideal printing parameters S1, S2, S3, and S4 were made using varying printing speeds and layer thicknesses. The polymer sample’s exterior surface was analyzed using FESEM, while physical characterization was conducted through X-ray diffraction analysis and water contact angle measurement. The strength of each sample in the relevant variables was determined using mechanical testing, such as tensile and compression tests. It was found that specimen S3 having a layer thickness of 0.15 mm and printing speed of 20 mm/s showed a high tensile and compressive strength value of about 78 and 144 MPa respectively than the other three samples. In addition, the fractured tensile samples were analyzed with scanning electron microscopy to discover the factors that contributed to the disparity in the values of their strengths.
{"title":"Mechanical and microstructural investigation of three-dimensionally printed PEEK polymer","authors":"Chithambaram Karunanithi, Senthilnathan Natarajan","doi":"10.1177/09544062241264950","DOIUrl":"https://doi.org/10.1177/09544062241264950","url":null,"abstract":"Three-dimensional polymer printing is becoming more popular due to its effectiveness in creating components of any geometric design. Polymer materials can be used at low temperatures but are weaker than other functional materials. Polyetheretherketone (PEEK) is a thermoplastic with outstanding mechanical properties that can tolerate high temperatures. A high-temperature fused deposition modeling machine manufactured PEEK specimens in this experiment to find the ideal printing parameters S1, S2, S3, and S4 were made using varying printing speeds and layer thicknesses. The polymer sample’s exterior surface was analyzed using FESEM, while physical characterization was conducted through X-ray diffraction analysis and water contact angle measurement. The strength of each sample in the relevant variables was determined using mechanical testing, such as tensile and compression tests. It was found that specimen S3 having a layer thickness of 0.15 mm and printing speed of 20 mm/s showed a high tensile and compressive strength value of about 78 and 144 MPa respectively than the other three samples. In addition, the fractured tensile samples were analyzed with scanning electron microscopy to discover the factors that contributed to the disparity in the values of their strengths.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"51 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1177/09544062241263411
Rugui Wang, Ningjuan Zhao, Yichen Dong, Lin Li, Zhipeng Fan
This paper focuses on a metamorphic palletizing robot, elaborating on its working principles and analyzing its working trajectory. The primary aim is to address the complex challenge of multi-objective trajectory planning during the robot’s motion, with a focus on minimizing time, energy consumption, and jerk. We present a general formula for optimizing multiple objectives, taking into account transformation characteristics based on actual working conditions. The optimization process employs the Non-dominated Sorting Genetic Algorithm with an elite strategy (NSGA-II), while Particle Swarm Optimization (PSO) is integrated into the optimization progression to identify specific metamorphic points. This approach ultimately produces a set of Pareto optimal solutions. From this set, the solution with the lowest time consumption is chosen as the definitive option for multi-objective planning. The joint driving functions of the robot during configuration transformations and within each configuration are analyzed accordingly. To ensure precision, the joint driving functions employed in the experiment are fine-tuned with pulse compensation values. Subsequently, experimental validation is carried out to verify the accuracy and practical feasibility of the multi-objective trajectory planning method.
{"title":"Multi-objective trajectory planning and implementation of a metamorphic palletizing robot","authors":"Rugui Wang, Ningjuan Zhao, Yichen Dong, Lin Li, Zhipeng Fan","doi":"10.1177/09544062241263411","DOIUrl":"https://doi.org/10.1177/09544062241263411","url":null,"abstract":"This paper focuses on a metamorphic palletizing robot, elaborating on its working principles and analyzing its working trajectory. The primary aim is to address the complex challenge of multi-objective trajectory planning during the robot’s motion, with a focus on minimizing time, energy consumption, and jerk. We present a general formula for optimizing multiple objectives, taking into account transformation characteristics based on actual working conditions. The optimization process employs the Non-dominated Sorting Genetic Algorithm with an elite strategy (NSGA-II), while Particle Swarm Optimization (PSO) is integrated into the optimization progression to identify specific metamorphic points. This approach ultimately produces a set of Pareto optimal solutions. From this set, the solution with the lowest time consumption is chosen as the definitive option for multi-objective planning. The joint driving functions of the robot during configuration transformations and within each configuration are analyzed accordingly. To ensure precision, the joint driving functions employed in the experiment are fine-tuned with pulse compensation values. Subsequently, experimental validation is carried out to verify the accuracy and practical feasibility of the multi-objective trajectory planning method.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"38 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, the ballistic response of thin sheets of the aluminium AA2014-T6 in monolithic and homo-stacked configurations was studied experimentally and numerically. Firstly, the experiments were performed on 1 and 2 mm thick monolithic and 1 + 1 mm homo-stacked target plates with blunt and hemispherical nose shape projectiles at different velocities. All experiments were carried out using a single stage gas gun coupled with two ultra-high-speed cameras. Transient response and full-field out-of-plane displacement of the target plates are analysed using 3D digital image correlation technique (3D-DIC). During the investigations the nose shapes of the projectile were found to have a significant influence on both out-of-plane displacement and failure mode of the impacted plates. The target plate is penetrated by shear plugging in the event of a blunt projectile, whereas for a hemispherical projectile impact, penetration occurred from first tensile stretching and then shear plugging. It was also found that the ejected plug and hole size are almost the same and equal to the projectile’s diameter for blunt projectiles. While in case of hemispherical impact both were less than the projectile’s diameter. Secondly, 3D FE simulations for all the configurations were also performed using J-C plasticity and damage criteria. The simulation results were found to be in accordance with the experimental results in terms of failure mode, ejected plug size and plate hole size. Detailed Russel error analysis was also performed to validate the correlation between the experimental and numerical data.
{"title":"Experimental and numerical investigation of monolithic and homo-stacked target plates of AA2014-T6 subjected to blunt and hemispherical projectiles","authors":"Anoop Kumar Pandouria, Rohit Kumar, Kuldeep Yadav, Purnashis Chakraborty, Vikrant Tiwari","doi":"10.1177/09544062241263413","DOIUrl":"https://doi.org/10.1177/09544062241263413","url":null,"abstract":"In this article, the ballistic response of thin sheets of the aluminium AA2014-T6 in monolithic and homo-stacked configurations was studied experimentally and numerically. Firstly, the experiments were performed on 1 and 2 mm thick monolithic and 1 + 1 mm homo-stacked target plates with blunt and hemispherical nose shape projectiles at different velocities. All experiments were carried out using a single stage gas gun coupled with two ultra-high-speed cameras. Transient response and full-field out-of-plane displacement of the target plates are analysed using 3D digital image correlation technique (3D-DIC). During the investigations the nose shapes of the projectile were found to have a significant influence on both out-of-plane displacement and failure mode of the impacted plates. The target plate is penetrated by shear plugging in the event of a blunt projectile, whereas for a hemispherical projectile impact, penetration occurred from first tensile stretching and then shear plugging. It was also found that the ejected plug and hole size are almost the same and equal to the projectile’s diameter for blunt projectiles. While in case of hemispherical impact both were less than the projectile’s diameter. Secondly, 3D FE simulations for all the configurations were also performed using J-C plasticity and damage criteria. The simulation results were found to be in accordance with the experimental results in terms of failure mode, ejected plug size and plate hole size. Detailed Russel error analysis was also performed to validate the correlation between the experimental and numerical data.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rolling bearings are crucial components of rotating machinery, and their health states directly affect the overall performance of the machinery. Therefore, it is exceedingly necessary to detect and diagnose bearing faults. Numerous bearing fault diagnosis methods have been successfully used for ensuring the safe operation of rotating machinery. However, in practical working environments, there is a considerable amount of noise, resulting in traditional methods incapable of achieving accurate fault diagnosis. This paper proposes a new multi-head attention residual network (MARNet) for rolling bearing fault diagnosis under noisy condition. MARNet optimizes residual units by simplifying multi-layer convolutions into a single-layer convolution and replaces the rectified linear unit (ReLU) function with the exponential linear unit (ELU) function to obtain a more appropriate activation function. Additionally, the multi-head attention mechanism is introduced into the residual block to capture correlation information between any two time sequences, enhancing the network’s feature extraction capability. The effectiveness and superiority of the MARNet in noisy environments are demonstrated through conducting the two bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The experiment results show that the proposed method exhibits anti-noise characteristics and generalization capability compared with several up-to-date deep learning methods for fault diagnosis of rolling bearings.
{"title":"MARNet: Multi-head attention residual network for rolling bearing fault diagnosis under noisy condition","authors":"Linfeng Deng, Guojun Wang, Cheng Zhao, Yuanwen Zhang","doi":"10.1177/09544062241259614","DOIUrl":"https://doi.org/10.1177/09544062241259614","url":null,"abstract":"Rolling bearings are crucial components of rotating machinery, and their health states directly affect the overall performance of the machinery. Therefore, it is exceedingly necessary to detect and diagnose bearing faults. Numerous bearing fault diagnosis methods have been successfully used for ensuring the safe operation of rotating machinery. However, in practical working environments, there is a considerable amount of noise, resulting in traditional methods incapable of achieving accurate fault diagnosis. This paper proposes a new multi-head attention residual network (MARNet) for rolling bearing fault diagnosis under noisy condition. MARNet optimizes residual units by simplifying multi-layer convolutions into a single-layer convolution and replaces the rectified linear unit (ReLU) function with the exponential linear unit (ELU) function to obtain a more appropriate activation function. Additionally, the multi-head attention mechanism is introduced into the residual block to capture correlation information between any two time sequences, enhancing the network’s feature extraction capability. The effectiveness and superiority of the MARNet in noisy environments are demonstrated through conducting the two bearing datasets from Case Western Reserve University (CWRU) and Paderborn University (PU). The experiment results show that the proposed method exhibits anti-noise characteristics and generalization capability compared with several up-to-date deep learning methods for fault diagnosis of rolling bearings.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544062241258073
Alberto Dal Maso, Francesca Cosmi
To design a comfortable hand support, the population-specific morphological characteristics of human hands must be known. Surface and bone anthropometric data from 177 radiograms of the left hands of an unselected sample of 87 subjects (training set) belonging to the Italian, female population (age 58 ± 12) were collected. Hand Length (HL) and Hand Width (HW) were respectively 172 ± 8 mm and 81 ± 4 mm; Hand Bone Length (HBL) was 179 ± 8 mm. A separate validation set consisting of 25 radiograms from 25 patients belonging to the same population was also collected. Bone and surface measurements were compared to validate the relationships proposed by Kong et al. Their approach applied to the validation set resulted in errors between 3.1% and 8.7%, which is almost as accurate (low bias) but somewhat less precise (higher mean errors) than what found by Kong et al. on their own sample belonging to the Korean population. Two methods were developed to predict the positions of the Metacarpo-phalangeal joints of the Index, Middle, and Ring fingers with reference to the Index-Middle interdigital crotch: method PM, based on the population mean, and method PR, which also considers the Hand Width. The overall average estimation error for method PM is 1.87 mm, while for method PR it is 1.69 mm. Method PR compared to method PM improves the precision by up to 32% in the x direction and 3% in the y direction. Based on these results, a 3D CAD hand model representing the target population was developed, which can be used for the design of population-specific ergonomic medical devices.
{"title":"Hand anthropometrics from radiograms of Italian women: A population-specific ergonomic design procedure","authors":"Alberto Dal Maso, Francesca Cosmi","doi":"10.1177/09544062241258073","DOIUrl":"https://doi.org/10.1177/09544062241258073","url":null,"abstract":"To design a comfortable hand support, the population-specific morphological characteristics of human hands must be known. Surface and bone anthropometric data from 177 radiograms of the left hands of an unselected sample of 87 subjects (training set) belonging to the Italian, female population (age 58 ± 12) were collected. Hand Length (HL) and Hand Width (HW) were respectively 172 ± 8 mm and 81 ± 4 mm; Hand Bone Length (HBL) was 179 ± 8 mm. A separate validation set consisting of 25 radiograms from 25 patients belonging to the same population was also collected. Bone and surface measurements were compared to validate the relationships proposed by Kong et al. Their approach applied to the validation set resulted in errors between 3.1% and 8.7%, which is almost as accurate (low bias) but somewhat less precise (higher mean errors) than what found by Kong et al. on their own sample belonging to the Korean population. Two methods were developed to predict the positions of the Metacarpo-phalangeal joints of the Index, Middle, and Ring fingers with reference to the Index-Middle interdigital crotch: method PM, based on the population mean, and method PR, which also considers the Hand Width. The overall average estimation error for method PM is 1.87 mm, while for method PR it is 1.69 mm. Method PR compared to method PM improves the precision by up to 32% in the x direction and 3% in the y direction. Based on these results, a 3D CAD hand model representing the target population was developed, which can be used for the design of population-specific ergonomic medical devices.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"51 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/09544062241259611
Siddharth Kumar, Sarthak S Singh
Epoxy resin controls the mechanical behavior of fiber-reinforced epoxy composites, which are extensively deployed in the aerospace and automotive industries. For numerical simulations to accurately predict the mechanical deformations of these components under multi-axial loading, matrix characteristics must account for tension, compression, and shear loads at varying strain rates. The existing literature lacks a comprehensive approach to predicting the experimental outcomes across all three loading conditions in a polymer matrix simultaneously using a unified set of viscoelastic or viscoplastic model parameters. In this study, the Three-Network (TN) viscoplastic model was successfully applied to concurrently predict the tension, compression, and shear experimental data of an epoxy resin, published by Littel et al. ( Journal of Aerospace Engg., 2008). The elastic modulus, strain softening-hardening response after yield for tension-compression deformation, and post-yield stress saturation under shear deformation are all accurately predicted by the model at different rates of loading conditions. The predicted and simulated results matched well when the TN viscoplastic model predicted parameters were employed as material property in Abaqus (a commercial finite element software) to simulate the deformation modes. This integrated approach highlights the potential of the TN model in enabling precise predictions for epoxy-based composites, which is crucial for optimizing their performance and reliability in aerospace engineering.
{"title":"Concurrent predictions of tension, compression, and shear characteristics of epoxy using three-network viscoplastic model","authors":"Siddharth Kumar, Sarthak S Singh","doi":"10.1177/09544062241259611","DOIUrl":"https://doi.org/10.1177/09544062241259611","url":null,"abstract":"Epoxy resin controls the mechanical behavior of fiber-reinforced epoxy composites, which are extensively deployed in the aerospace and automotive industries. For numerical simulations to accurately predict the mechanical deformations of these components under multi-axial loading, matrix characteristics must account for tension, compression, and shear loads at varying strain rates. The existing literature lacks a comprehensive approach to predicting the experimental outcomes across all three loading conditions in a polymer matrix simultaneously using a unified set of viscoelastic or viscoplastic model parameters. In this study, the Three-Network (TN) viscoplastic model was successfully applied to concurrently predict the tension, compression, and shear experimental data of an epoxy resin, published by Littel et al. ( Journal of Aerospace Engg., 2008). The elastic modulus, strain softening-hardening response after yield for tension-compression deformation, and post-yield stress saturation under shear deformation are all accurately predicted by the model at different rates of loading conditions. The predicted and simulated results matched well when the TN viscoplastic model predicted parameters were employed as material property in Abaqus (a commercial finite element software) to simulate the deformation modes. This integrated approach highlights the potential of the TN model in enabling precise predictions for epoxy-based composites, which is crucial for optimizing their performance and reliability in aerospace engineering.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"95 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}