Pub Date : 2025-01-01Epub Date: 2024-08-30DOI: 10.1007/s00709-024-01982-7
Lorenzo Alibardi
Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.
{"title":"Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards.","authors":"Lorenzo Alibardi","doi":"10.1007/s00709-024-01982-7","DOIUrl":"10.1007/s00709-024-01982-7","url":null,"abstract":"<p><p>Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"99-115"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-29DOI: 10.1007/s00709-024-01983-6
Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang
Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.
紫酸磷酸酶(PAPs)在植物磷营养中发挥着重要作用,是金属磷酯酶的一个重要家族。本研究旨在鉴定小麦 A/B/D 基因组中的 PAP 基因,以阐明该基因家族在植物中的进化机制,并为后续小麦作物磷利用效率的研究提供基因组信息。通过使用拟南芥和大麦的 PAP 蛋白序列作为 BLASTP 对小麦蛋白数据库的查询,从 A/B/D 基因组中共鉴定出 105 个 PAP 基因(TaPAPs)。根据基因结构的相似性和存在的保守蛋白基序,将 TaPAPs 分成六个亚家族:Ia(17 个)、Ib(26 个)、IIa(11 个)、IIb(30 个)、IIIa(12 个)和 IIIb(9 个)。大多数 TaPAPs 来自串联重复(20 个)或节段重复(87 个),其中同源染色体 5A/B/D 上的重复 PAP 基因最多。进一步的分析表明,TaPAPs 负责调节种子、根和叶的发育、激素合成和信号转导,以及植物对非生物胁迫(包括低温、干旱和厌氧条件)的反应。9个TaPAP(TaPAP9-4A/4B/4D、TaPAP24-6A/6B/6D和TaPAP28-7A/7B/7D)在根、芽、叶、穗和种子等不同组织中呈组成型表达,其余基因则表现出组织特异性表达模式。关于对磷酸盐(Pi)剥夺的响应,57 个 TaPAPs 在 Pi 胁迫下在根中高表达,其中包括来自 IIIb 亚家族的 TaPAP31-4A、4B 和 4D 同源物。TaPAP31-4A转基因通过增强磷酸酶的分泌,促进了植物的生长和发育,同时增强了植物对Pi-缺失胁迫的抵抗力。这些发现为理解 TaPAPs 的作用奠定了科学基础,为确定更多候选基因和培育对低磷条件耐受性更强的小麦新品种提供了宝贵的见解。
{"title":"Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.).","authors":"Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang","doi":"10.1007/s00709-024-01983-6","DOIUrl":"10.1007/s00709-024-01983-6","url":null,"abstract":"<p><p>Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"73-86"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-29DOI: 10.1007/s00709-024-01980-9
Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira
In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.
{"title":"Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae).","authors":"Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira","doi":"10.1007/s00709-024-01980-9","DOIUrl":"10.1007/s00709-024-01980-9","url":null,"abstract":"<p><p>In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"87-98"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-07DOI: 10.1007/s00709-024-01977-4
Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos
Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.
煤烟霉是一种吸附性附生真菌,主要生长在昆虫的分泌物上,但也可能与植物的分泌物有关。在这项研究中,我们旨在描述 Capnodium alfenasii 煤烟霉与 Azadirachta indica 的花外芽蜜腺之间的相互作用。我们对未受 C. alfenasii 侵染和受 C. alfenasii 侵染的 A. indica 花外茎蜜腺的连续切片进行了解剖学和组织化学研究。测定了分泌的花蜜中可溶性糖的总含量,并评估了真菌在蒸馏水、葡萄糖和花蜜溶液中的分生孢子萌发情况。籼稻的嫩枝蜜腺是拉长的结构,成对出现在叶柄基部附近。渗出的花蜜平均每微升含有 534.8 微克的总可溶性糖,为分生孢子的发芽和真菌的生长提供了理想的条件。C. alfenasii菌丝在花蜜上生长,从角质层的破损处穿入,在角质层下移动,并通过细胞间和细胞内途径穿入分泌组织。本报告首次描述了 C. alfenasii 与籼稻蜜腺的相互作用,包括菌丝穿透蜜腺组织和植物防御机制。
{"title":"Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.","authors":"Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos","doi":"10.1007/s00709-024-01977-4","DOIUrl":"10.1007/s00709-024-01977-4","url":null,"abstract":"<p><p>Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"51-59"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Germination is an essential phenomenon in the life cycle of plants, and a variety of external and internal factors influence it. Fire and the produced smoke have been vital environmental stimulants for the germination of seeds in many plant species, like Leucospermum cordifolium and Serruria florida. These plants do not germinate at all if fire and smoke are not present. This phenomenon of germination in plant species has existed in the ecosystem since ancient times. Various studies to study the response of seeds to smoke and its extracts have been undertaken for stimulation of germination by burning various plant materials and bubbling the smoke produced through water. The application of plant-derived smoke and smoke water is well known for promoting germination, breaking dormancy, and checking abiotic stress. This significantly indicates that plant-derived smoke contains some bioactive metabolites responsible for the physiological metabolism of seed germination and is involved in enhancing seed vigor. The present review deals with the ancient use of smoke and smoke extracts for seed priming, the cost-efficient method of its preparation, the mode of action of karrikins relating to its perception by plants, and its significant effects on various crops, including its ability to check biotic and abiotic stresses.
{"title":"Smoke-water treatment of seeds, an ancient technique for increasing seed vigor.","authors":"Nidhi Pandey, Sandeep Nalla, Abhinav Dayal, Prashant Rai, Vaidurya Pratap Sahi","doi":"10.1007/s00709-024-01975-6","DOIUrl":"10.1007/s00709-024-01975-6","url":null,"abstract":"<p><p>Germination is an essential phenomenon in the life cycle of plants, and a variety of external and internal factors influence it. Fire and the produced smoke have been vital environmental stimulants for the germination of seeds in many plant species, like Leucospermum cordifolium and Serruria florida. These plants do not germinate at all if fire and smoke are not present. This phenomenon of germination in plant species has existed in the ecosystem since ancient times. Various studies to study the response of seeds to smoke and its extracts have been undertaken for stimulation of germination by burning various plant materials and bubbling the smoke produced through water. The application of plant-derived smoke and smoke water is well known for promoting germination, breaking dormancy, and checking abiotic stress. This significantly indicates that plant-derived smoke contains some bioactive metabolites responsible for the physiological metabolism of seed germination and is involved in enhancing seed vigor. The present review deals with the ancient use of smoke and smoke extracts for seed priming, the cost-efficient method of its preparation, the mode of action of karrikins relating to its perception by plants, and its significant effects on various crops, including its ability to check biotic and abiotic stresses.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"3-13"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-09DOI: 10.1007/s00709-024-01985-4
Lubia María Guedes, Narciso Aguilera, Vinícius Coelho Kuster, Renê Gonçalves da Silva Carneiro, Denis Coelho de Oliveira
Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.
{"title":"Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality.","authors":"Lubia María Guedes, Narciso Aguilera, Vinícius Coelho Kuster, Renê Gonçalves da Silva Carneiro, Denis Coelho de Oliveira","doi":"10.1007/s00709-024-01985-4","DOIUrl":"10.1007/s00709-024-01985-4","url":null,"abstract":"<p><p>Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"149-165"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1007/s00709-024-02024-y
Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva
Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp. strain B44. Amoeboid cells of this algae are able to transform into flagellates, and this transition can be triggered by prolonged mechanical disturbance. Thin branching pseudopodia of the neighboring rhizochromuline cells fuse to form a meroplasmodium. The pseudopodia contain microtubules, but do not contain actin microfilaments; actin forms the cytoplasmic cytoskeleton and extends only to the bases of the pseudopodia. Microtubule-driven pseudopodia are characteristic to a plethora of eukaryotes, but the role of microtubular and actin cytoskeleton in locomotion of these organisms remains poorly understood. We conducted a series of experiments where amoeboid cells of Rhizochromulina sp. B44 were treated with either 10 µM nocodazole, 10 µM latrunculin B, or both drugs simultaneously. Cellular locomotion was captured on camera, tracked, and then analyzed with the help of the generalized additive mixed model. The obtained results indicate that both drugs, when applied separately, decrease the motility of the studied cells. Unexpectedly, the combined treatment had the opposite effect, as the cells became more motile. The analysis also revealed a non-linear pattern of relationship between motility of amoeboid cells of rhizochromulines and density of their population.
{"title":"Effects of nocodazole and latrunculin B on locomotion of amoeboid cells of Rhizochromulina sp. strain B44 (Heterokontophyta, Dictyochophyceae).","authors":"Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva","doi":"10.1007/s00709-024-02024-y","DOIUrl":"https://doi.org/10.1007/s00709-024-02024-y","url":null,"abstract":"<p><p>Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp. strain B44. Amoeboid cells of this algae are able to transform into flagellates, and this transition can be triggered by prolonged mechanical disturbance. Thin branching pseudopodia of the neighboring rhizochromuline cells fuse to form a meroplasmodium. The pseudopodia contain microtubules, but do not contain actin microfilaments; actin forms the cytoplasmic cytoskeleton and extends only to the bases of the pseudopodia. Microtubule-driven pseudopodia are characteristic to a plethora of eukaryotes, but the role of microtubular and actin cytoskeleton in locomotion of these organisms remains poorly understood. We conducted a series of experiments where amoeboid cells of Rhizochromulina sp. B44 were treated with either 10 µM nocodazole, 10 µM latrunculin B, or both drugs simultaneously. Cellular locomotion was captured on camera, tracked, and then analyzed with the help of the generalized additive mixed model. The obtained results indicate that both drugs, when applied separately, decrease the motility of the studied cells. Unexpectedly, the combined treatment had the opposite effect, as the cells became more motile. The analysis also revealed a non-linear pattern of relationship between motility of amoeboid cells of rhizochromulines and density of their population.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1007/s00709-024-02020-2
Hong-Yan Chen, Zhong-Guang Li
Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance. In this work, using maize seedlings as materials, the interplay between SUC and G protein signaling in maize thermotolerance was investigated. The results indicate that heat stress-decreased survival percentage and tissue viability of the seedlings was mitigated by SUC. Similarly, heat stress-increased malondialdehyde content and electrolyte leakage also was reduced by SUC. These findings show that SUC can potentially enhance thermotolerance in maize seedlings. Also, SUC-enhanced thermotolerance was abolished by suramin (G protein inhibitor) and N-ethylmaleimide (SUC transport inhibitor), but enhanced by 3-O-methyl-D-glucose (G protein activator), indicating the interplay of SUC and G protein signaling in maize thermotolerance. To investigate the possible mechanism behind SUC-G protein interaction in enhancing maize thermotolerance, osmoregulation in mesocotyls of seedlings were evaluated before and after heat stress. The results suggest that osmolytes (SUC, glucose, fructose, total soluble sugar, proline, and glycine betaine) contents in mesocotyls under non-heat and heat stress were increased by SUC in varying degrees. Likewise, the osmolyte-metabolizing enzymes (sucrose-phosphate synthase, sucrose synthase, pyrroline-5-carboxylate synthase, ornithine aminotransferase, betaine-aldehyde dehydrogenase, and trehalase) activities were enhanced by SUC. Analogously, ZmSPS1, ZmSUS6, ZmP5CS, ZmOAT, ZmBADH, and ZmTRE1 expression in mesocotyls was up-regulated by SUC to different extent. These findings illustrate that the functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system.
{"title":"Functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system.","authors":"Hong-Yan Chen, Zhong-Guang Li","doi":"10.1007/s00709-024-02020-2","DOIUrl":"https://doi.org/10.1007/s00709-024-02020-2","url":null,"abstract":"<p><p>Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance. In this work, using maize seedlings as materials, the interplay between SUC and G protein signaling in maize thermotolerance was investigated. The results indicate that heat stress-decreased survival percentage and tissue viability of the seedlings was mitigated by SUC. Similarly, heat stress-increased malondialdehyde content and electrolyte leakage also was reduced by SUC. These findings show that SUC can potentially enhance thermotolerance in maize seedlings. Also, SUC-enhanced thermotolerance was abolished by suramin (G protein inhibitor) and N-ethylmaleimide (SUC transport inhibitor), but enhanced by 3-O-methyl-D-glucose (G protein activator), indicating the interplay of SUC and G protein signaling in maize thermotolerance. To investigate the possible mechanism behind SUC-G protein interaction in enhancing maize thermotolerance, osmoregulation in mesocotyls of seedlings were evaluated before and after heat stress. The results suggest that osmolytes (SUC, glucose, fructose, total soluble sugar, proline, and glycine betaine) contents in mesocotyls under non-heat and heat stress were increased by SUC in varying degrees. Likewise, the osmolyte-metabolizing enzymes (sucrose-phosphate synthase, sucrose synthase, pyrroline-5-carboxylate synthase, ornithine aminotransferase, betaine-aldehyde dehydrogenase, and trehalase) activities were enhanced by SUC. Analogously, ZmSPS1, ZmSUS6, ZmP5CS, ZmOAT, ZmBADH, and ZmTRE1 expression in mesocotyls was up-regulated by SUC to different extent. These findings illustrate that the functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1007/s00709-024-02008-y
Shobhon Paul, Pallabi Saha, Adinpunya Mitra
Plant anatomical and histochemical studies are concerned with the structural organization of tissues as well as localization of various metabolites and enzyme activity inside cells and tissues. Traditionally, rotary microtomes are used for paraffin and resin-embedded samples which provide excellent preservation of tissue morphology but removes enzymes, lipid components, and various specialized metabolites. Freeze sectioning apparently remained unexplored in plant histology because of the presence of rigid cell walls and highly vacuolated cytoplasm in plant tissues. In this study, we have described a simple cryostat-based sectioning technique using polyethylene glycol (PEG) as embedding medium after glycerol infiltration that protects the plant tissues from freezing and thawing damage. We have also compared the suitability of inexpensive aqueous PEG solution as compared to commercially available optimal cutting temperature (OCT) medium and obtained identical microscopic images. Diverse plant organs from different genera were sectioned to check the application of this method in plant anatomical studies. In all the cases, cross sections were shown to be well preserved similar to paraffin-embedded plant tissues. In addition, histochemical analyses showed retention of metabolites and even enzymes in the tissues, which can make this method an alternate choice in cryo-microtomy replacing the expensive OCT medium.
{"title":"Use of polyethylene glycol as an alternative to optimal cutting temperature medium in freeze sectioning for plant histochemical studies.","authors":"Shobhon Paul, Pallabi Saha, Adinpunya Mitra","doi":"10.1007/s00709-024-02008-y","DOIUrl":"https://doi.org/10.1007/s00709-024-02008-y","url":null,"abstract":"<p><p>Plant anatomical and histochemical studies are concerned with the structural organization of tissues as well as localization of various metabolites and enzyme activity inside cells and tissues. Traditionally, rotary microtomes are used for paraffin and resin-embedded samples which provide excellent preservation of tissue morphology but removes enzymes, lipid components, and various specialized metabolites. Freeze sectioning apparently remained unexplored in plant histology because of the presence of rigid cell walls and highly vacuolated cytoplasm in plant tissues. In this study, we have described a simple cryostat-based sectioning technique using polyethylene glycol (PEG) as embedding medium after glycerol infiltration that protects the plant tissues from freezing and thawing damage. We have also compared the suitability of inexpensive aqueous PEG solution as compared to commercially available optimal cutting temperature (OCT) medium and obtained identical microscopic images. Diverse plant organs from different genera were sectioned to check the application of this method in plant anatomical studies. In all the cases, cross sections were shown to be well preserved similar to paraffin-embedded plant tissues. In addition, histochemical analyses showed retention of metabolites and even enzymes in the tissues, which can make this method an alternate choice in cryo-microtomy replacing the expensive OCT medium.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal microscopic images of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely Arabidopsis thaliana guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.
{"title":"Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density.","authors":"Ryota Horiuchi, Asuka Kamimura, Yuga Hanaki, Hikari Matsumoto, Minako Ueda, Takumi Higaki","doi":"10.1007/s00709-024-02019-9","DOIUrl":"https://doi.org/10.1007/s00709-024-02019-9","url":null,"abstract":"<p><p>Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal microscopic images of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely Arabidopsis thaliana guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}