首页 > 最新文献

Protoplasma最新文献

英文 中文
Transcriptome and metabolism study reveals impact of nitrogen fertilizer on triticale. 转录组和代谢研究揭示氮肥对三叶草的影响。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-20 DOI: 10.1007/s00709-024-01986-3
Xiaojuan Zhang, Hongxiu Ma, Peng Jiang, Yongwei Chen, Wenli Ma, Ping Chen, Hongcai Ma, Xuexue Li, Jiale Ma, Quan Sun

Autumn-sown forage triticale can effectively leverage the optimal light and heat conditions in Ningxia, a region that boasts an abundance of light and heat resources sufficient for a single seasonal crop, but limited for two seasons. This not only fully utilizes the limited growing season but also significantly improves grass yield and economic efficiency per unit area. To enhance triticale yield in low-light and low-temperature environments, we investigated the impact of applying different concentrations of nitrogen fertilizer on triticale forage yield. Our findings revealed that nitrogen fertilizer application significantly increased triticale biomass, with the N4 treatment group exhibiting the most profound effect. To further explore the mechanisms behind nitrogen fertilizer's regulation of triticale growth and development, we conducted transcriptomic and metabolomic studies. These studies revealed that nitrogen fertilizer application significantly heightened transcription activity and protein synthesis in triticale, fostering the development of its seeds. Additionally, appropriate concentrations of nitrogen fertilizer significantly promoted photosynthesis. Metabolomic analysis revealed that nitrogen fertilizer application increased the levels of proline and O-phosphoethanolamine, enhancing triticale's stress resistance and supporting its growth and development under adverse conditions.

宁夏光热资源丰富,足以种植一季作物,但两季作物的光热资源有限,秋播饲用三尖杉可有效利用宁夏的最佳光热条件。这不仅充分利用了有限的生长期,还显著提高了单位面积的产草量和经济效益。为了在弱光低温环境下提高三棱草的产量,我们研究了施用不同浓度的氮肥对三棱草牧草产量的影响。我们的研究结果表明,施用氮肥能显著提高三棱草的生物量,其中氮4处理组的影响最大。为了进一步探索氮肥对三棱草生长发育的调控机制,我们进行了转录组学和代谢组学研究。这些研究表明,施用氮肥能显著提高三棱草的转录活性和蛋白质合成,促进其种子的发育。此外,适当浓度的氮肥还能明显促进光合作用。代谢组分析表明,施用氮肥可提高脯氨酸和 O-磷酸乙醇胺的水平,增强三尖杉的抗逆性,支持其在不利条件下的生长发育。
{"title":"Transcriptome and metabolism study reveals impact of nitrogen fertilizer on triticale.","authors":"Xiaojuan Zhang, Hongxiu Ma, Peng Jiang, Yongwei Chen, Wenli Ma, Ping Chen, Hongcai Ma, Xuexue Li, Jiale Ma, Quan Sun","doi":"10.1007/s00709-024-01986-3","DOIUrl":"10.1007/s00709-024-01986-3","url":null,"abstract":"<p><p>Autumn-sown forage triticale can effectively leverage the optimal light and heat conditions in Ningxia, a region that boasts an abundance of light and heat resources sufficient for a single seasonal crop, but limited for two seasons. This not only fully utilizes the limited growing season but also significantly improves grass yield and economic efficiency per unit area. To enhance triticale yield in low-light and low-temperature environments, we investigated the impact of applying different concentrations of nitrogen fertilizer on triticale forage yield. Our findings revealed that nitrogen fertilizer application significantly increased triticale biomass, with the N4 treatment group exhibiting the most profound effect. To further explore the mechanisms behind nitrogen fertilizer's regulation of triticale growth and development, we conducted transcriptomic and metabolomic studies. These studies revealed that nitrogen fertilizer application significantly heightened transcription activity and protein synthesis in triticale, fostering the development of its seeds. Additionally, appropriate concentrations of nitrogen fertilizer significantly promoted photosynthesis. Metabolomic analysis revealed that nitrogen fertilizer application increased the levels of proline and O-phosphoethanolamine, enhancing triticale's stress resistance and supporting its growth and development under adverse conditions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"179-190"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prepare to persist. 准备坚持下去。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.1007/s00709-024-02016-y
Peter Nick
{"title":"Prepare to persist.","authors":"Peter Nick","doi":"10.1007/s00709-024-02016-y","DOIUrl":"10.1007/s00709-024-02016-y","url":null,"abstract":"","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"1-2"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells. Eugenia uniflora 叶片上的 Clinodiplosis profusa 阳瘿和阴瘿的发育差异以及瘿细胞的细胞学抗氧化机制。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-07-30 DOI: 10.1007/s00709-024-01973-8
Rayssa Rosa Marquesine, Yve Canaveze, Bruno Garcia Ferreira

The gall-host Eugenia uniflora (Myrtaceae) is adaptable to different light conditions, enabling leaf production and survival in both sun and shade. Leaves of E. uniflora in shaded environments have more mesophyll layers, and galls of Clinodiplosis profusa (Cecidomyiidae) are larger and wider. Based on these previous observations, this study investigated the morphogenesis of galls induced by C. profusa on leaves of E. uniflora in different light conditions, revealing if the galls have a potential for acclimation, as observed with leaves. For this purpose, we compared the anatomical, histometric, and histochemical development of leaves and galls at different stages of development in sun and shade environments. Additionally, we analyzed the cytological features of the tissues composing the mature gall walls. Cells of shade galls expanded more toward the end of the developmental phase, which may explain the larger volume found for shade galls in a previous study. However, during the mature phase, these galls showed no significant differences in tissue thickness and final cell elongation in the contrasting light conditions. In the ultrastructural analyses, mature galls showed a gradient distinguishing the outer and inner parenchyma cells. The inner parenchyma had nutritive cells, with dense cytoplasm and abundant organelles. A higher accumulation of starch grains in nutritive cells, with evidence of hydrolysis of starch grains detected in the innermost layers leads to the accumulation of reducing sugars, which, with the presence of plastoglobules and protein bodies, are important mechanisms of oxidative stress dissipation in the cells in contact with the gall inducer.

虫瘿寄主 Eugenia uniflora(桃金娘科)能适应不同的光照条件,在阳光和阴凉处都能生叶和存活。荫蔽环境中的 E. uniflora 叶片具有更多中叶层,Clinodiplosis profusa(Cecidomyiidae)的虫瘿更大更宽。基于之前的观察结果,本研究调查了不同光照条件下一枝黄花叶片上由 C. profusa 诱导的虫瘿的形态发生,以揭示虫瘿是否具有与叶片一样的适应潜力。为此,我们比较了叶片和虫瘿在阳光和阴凉环境下不同发育阶段的解剖学、组织计量学和组织化学发育情况。此外,我们还分析了构成成熟虫瘿壁的组织的细胞学特征。荫生虫瘿的细胞在发育阶段末期膨大得更多,这可能解释了之前研究中发现的荫生虫瘿体积更大的原因。不过,在成熟阶段,这些虫瘿的组织厚度和最终细胞伸长率在光照对比条件下没有明显差异。在超微结构分析中,成熟的虫瘿显示出区分外层和内层实质细胞的梯度。内部实质细胞具有营养细胞,细胞质致密,细胞器丰富。营养细胞中的淀粉粒积累较多,最内层有淀粉粒水解的迹象,导致还原糖积累,再加上质粒和蛋白体的存在,是与虫瘿诱导体接触的细胞消除氧化应激的重要机制。
{"title":"Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells.","authors":"Rayssa Rosa Marquesine, Yve Canaveze, Bruno Garcia Ferreira","doi":"10.1007/s00709-024-01973-8","DOIUrl":"10.1007/s00709-024-01973-8","url":null,"abstract":"<p><p>The gall-host Eugenia uniflora (Myrtaceae) is adaptable to different light conditions, enabling leaf production and survival in both sun and shade. Leaves of E. uniflora in shaded environments have more mesophyll layers, and galls of Clinodiplosis profusa (Cecidomyiidae) are larger and wider. Based on these previous observations, this study investigated the morphogenesis of galls induced by C. profusa on leaves of E. uniflora in different light conditions, revealing if the galls have a potential for acclimation, as observed with leaves. For this purpose, we compared the anatomical, histometric, and histochemical development of leaves and galls at different stages of development in sun and shade environments. Additionally, we analyzed the cytological features of the tissues composing the mature gall walls. Cells of shade galls expanded more toward the end of the developmental phase, which may explain the larger volume found for shade galls in a previous study. However, during the mature phase, these galls showed no significant differences in tissue thickness and final cell elongation in the contrasting light conditions. In the ultrastructural analyses, mature galls showed a gradient distinguishing the outer and inner parenchyma cells. The inner parenchyma had nutritive cells, with dense cytoplasm and abundant organelles. A higher accumulation of starch grains in nutritive cells, with evidence of hydrolysis of starch grains detected in the innermost layers leads to the accumulation of reducing sugars, which, with the presence of plastoglobules and protein bodies, are important mechanisms of oxidative stress dissipation in the cells in contact with the gall inducer.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"15-34"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution to the knowledge of the anatomy, histochemistry, and phenolic composition of leaf and stems of bilberry (Vaccinium myrtillus L.) cultivated in Tucumán, Argentina. 对阿根廷图库曼地区栽培的山桑子(Vaccinium myrtillus L.)叶和茎的解剖学、组织化学和酚类成分的认识的贡献。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1007/s00709-024-01981-8
María Inés Mercado, Emilio Lizarraga, Roxana Alejandra Rubis, Susana Beatriz Genta, Natalia Cecilia Habib

The Vaccinium genus, with over 200 species, is prized for its fruits and traditional medicinal uses. Introduced to South America in the 1980s, it has become a significant crop, particularly in Tucumán, Argentina. Southern highbush blueberries are the most cultivated. Recent research suggests that the leaves and stems of these species contain higher levels of beneficial compounds compared to fruits. This study explores the potential of V. myrtillus L. leaves and stems, typically discarded as agricultural waste, as sources of bioactive compounds. It provides the first detailed analysis of their anatomy and chemical composition, revealing high levels of phenolic compounds with antioxidant properties. Leaf extracts show stronger antioxidant activity compared to stems. Toxicity tests on Artemia salina indicate their safety for further exploration. These findings suggest that V. myrtillus L. waste by-products could be valuable as sources of bioactive compounds, promoting their application in pharmaceuticals, food, or cosmetics industries.

越橘属有 200 多个品种,因其果实和传统药用价值而备受青睐。蓝莓于 20 世纪 80 年代引入南美洲,现已成为一种重要的农作物,尤其是在阿根廷的图库曼。南方高丛蓝莓的种植面积最大。最近的研究表明,与果实相比,这些品种的叶子和茎含有更高水平的有益化合物。本研究探讨了通常作为农业废弃物丢弃的 V. myrtillus L. 的叶和茎作为生物活性化合物来源的潜力。研究首次对其解剖结构和化学成分进行了详细分析,发现了大量具有抗氧化特性的酚类化合物。与茎相比,叶提取物显示出更强的抗氧化活性。对鳀鱼进行的毒性测试表明其安全性值得进一步研究。这些研究结果表明,V. myrtillus L. 废弃物副产品可以作为生物活性化合物的宝贵来源,促进其在制药、食品或化妆品行业的应用。
{"title":"Contribution to the knowledge of the anatomy, histochemistry, and phenolic composition of leaf and stems of bilberry (Vaccinium myrtillus L.) cultivated in Tucumán, Argentina.","authors":"María Inés Mercado, Emilio Lizarraga, Roxana Alejandra Rubis, Susana Beatriz Genta, Natalia Cecilia Habib","doi":"10.1007/s00709-024-01981-8","DOIUrl":"10.1007/s00709-024-01981-8","url":null,"abstract":"<p><p>The Vaccinium genus, with over 200 species, is prized for its fruits and traditional medicinal uses. Introduced to South America in the 1980s, it has become a significant crop, particularly in Tucumán, Argentina. Southern highbush blueberries are the most cultivated. Recent research suggests that the leaves and stems of these species contain higher levels of beneficial compounds compared to fruits. This study explores the potential of V. myrtillus L. leaves and stems, typically discarded as agricultural waste, as sources of bioactive compounds. It provides the first detailed analysis of their anatomy and chemical composition, revealing high levels of phenolic compounds with antioxidant properties. Leaf extracts show stronger antioxidant activity compared to stems. Toxicity tests on Artemia salina indicate their safety for further exploration. These findings suggest that V. myrtillus L. waste by-products could be valuable as sources of bioactive compounds, promoting their application in pharmaceuticals, food, or cosmetics industries.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"117-131"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplasts with clefts and holes: a reassessment of the chloroplast shape using 3D FE-SEM cellular reconstruction of two species of Chlamydomonas. 带有裂缝和孔洞的叶绿体:利用两种衣藻的三维 FE-SEM 细胞重建技术重新评估叶绿体的形状。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-09-23 DOI: 10.1007/s00709-024-01990-7
Naoki Sato, Mayuko Sato, Mayumi Wakazaki, Takashi Moriyama, Takashi Hirashima, Kiminori Toyooka

Chloroplasts are usually considered spheroid organelles, but this is not the only shape of chloroplasts. The chloroplast of Chlamydomonas has been typically described as cup-shaped. However, in old studies, it was also modeled as a complex shape with "perforations" or windows. Here, we reconstructed the cellular architecture of Chlamydomonas reinhardtii and C. applanata using an array tomography system installed on a field emission scanning electron microscope. C. reinhardtii chloroplasts resembled a baseball glove or a cup without a side, featuring numerous large and small holes that may facilitate the transport of metabolites and proteins produced in the Golgi apparatus fitted in the holes. In a lipid-accumulating, high-light condition, the chloroplast volume increased by filling the side cleft with an entire wall. Many accumulated large lipid droplets were accommodated within the chloroplast holes, which could have been considered as "chloroplast lipid droplets." Mitochondrial meshworks surrounded the chloroplast. C. applanata chloroplasts appeared like a folded starfish or a cup with many side clefts and a few holes. There was a single mitochondrion or two that branched in a complex form. Tight contacts of various organelles were also found in C. applanata. These reconstructions illustrate the complexity of chloroplast shape, which necessitates a revised understanding of the localization of lipid droplets and the evolution of chloroplasts: The prevailing image of the spheroid chloroplasts that reminds us of the similarity between chloroplasts and cyanobacteria is no longer tenable.

叶绿体通常被认为是球形细胞器,但这并不是叶绿体的唯一形状。衣藻的叶绿体通常被描述为杯状。然而,在以前的研究中,它也被模拟为具有 "穿孔 "或窗口的复杂形状。在这里,我们利用安装在场强扫描电子显微镜上的阵列断层成像系统重建了莱茵衣藻和苹果衣藻的细胞结构。莱茵叶绿体类似于棒球手套或无边的杯子,具有许多大大小小的孔,这些孔可能有助于将高尔基体中产生的代谢物和蛋白质运输到孔中。在脂质积累、高光照的条件下,叶绿体的体积增大,整个壁填满了侧裂。叶绿体孔内容纳了许多累积的大脂滴,这些脂滴可被视为 "叶绿体脂滴"。线粒体网状结构包围着叶绿体。C. applanata叶绿体看起来像一个折叠的海星或杯子,有许多侧裂和几个孔。有一个或两个线粒体以复杂的形式分枝。在 C. applanata 中还发现了各种细胞器的紧密接触。这些重建说明了叶绿体形状的复杂性,因此有必要重新认识脂滴的定位和叶绿体的进化:球形叶绿体的普遍形象提醒我们,叶绿体与蓝藻之间存在相似性,但这一形象已不再站得住脚。
{"title":"Chloroplasts with clefts and holes: a reassessment of the chloroplast shape using 3D FE-SEM cellular reconstruction of two species of Chlamydomonas.","authors":"Naoki Sato, Mayuko Sato, Mayumi Wakazaki, Takashi Moriyama, Takashi Hirashima, Kiminori Toyooka","doi":"10.1007/s00709-024-01990-7","DOIUrl":"10.1007/s00709-024-01990-7","url":null,"abstract":"<p><p>Chloroplasts are usually considered spheroid organelles, but this is not the only shape of chloroplasts. The chloroplast of Chlamydomonas has been typically described as cup-shaped. However, in old studies, it was also modeled as a complex shape with \"perforations\" or windows. Here, we reconstructed the cellular architecture of Chlamydomonas reinhardtii and C. applanata using an array tomography system installed on a field emission scanning electron microscope. C. reinhardtii chloroplasts resembled a baseball glove or a cup without a side, featuring numerous large and small holes that may facilitate the transport of metabolites and proteins produced in the Golgi apparatus fitted in the holes. In a lipid-accumulating, high-light condition, the chloroplast volume increased by filling the side cleft with an entire wall. Many accumulated large lipid droplets were accommodated within the chloroplast holes, which could have been considered as \"chloroplast lipid droplets.\" Mitochondrial meshworks surrounded the chloroplast. C. applanata chloroplasts appeared like a folded starfish or a cup with many side clefts and a few holes. There was a single mitochondrion or two that branched in a complex form. Tight contacts of various organelles were also found in C. applanata. These reconstructions illustrate the complexity of chloroplast shape, which necessitates a revised understanding of the localization of lipid droplets and the evolution of chloroplasts: The prevailing image of the spheroid chloroplasts that reminds us of the similarity between chloroplasts and cyanobacteria is no longer tenable.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"207-218"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of drought acclimation on sugar metabolism in millet. 干旱对小米糖代谢的影响
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-05 DOI: 10.1007/s00709-024-01976-5
Joseph N Amoah, Monica Ode Adu-Gyamfi

Drought stress triggers sugar accumulation in plants, providing energy and aiding in protection against oxidative damage. Plant hardening under mild stress conditions has been shown to enhance plant resistance to severe stress conditions. While sugar accumulation and metabolism under drought stress have been well-documented in crop plants, the effect of drought acclimation treatment on sugar accumulation and metabolism has not yet been explored. In this study, we investigated the impact of drought stress acclimation on sugar accumulation and metabolism in the leaves and root tissues of two commonly cultivated foxtail millet (Setaria italica L.) genotypes, 'PI 689680' and 'PI 662292'. Quantification of total sugars (soluble sugar, fructose, glucose, and sucrose), their related enzymes (SPS, SuSy, NI, and AI), and the regulation of their related transcripts (SiSPS1, SiSuSy1, SiSWEET6, SiA-INV, and SiC-INV) revealed that drought-acclimated (DA) plants exhibited levels of these indicators comparable to those of control plants. However, under subsequent drought stress conditions, both the leaves and roots of non-acclimated plants accumulated higher levels of total sugars, displayed increased activity of sugar metabolism enzymes, and showed elevated expression of sugar metabolism-related transcripts compared to drought-acclimated plants. Thus, acclimation-induced restriction of sugar accumulation, transport, and metabolism could be one of the metabolic processes contributing to enhanced drought tolerance in millet. This study advocates for the use of acclimation as an effective strategy to mitigate the negative impacts of drought-induced metabolic disturbances in millet, thereby enhancing global food security and promoting sustainable agricultural systems.

干旱胁迫会引发植物体内的糖分积累,从而提供能量并帮助植物抵御氧化损伤。事实证明,植物在轻度胁迫条件下变硬可增强植物对严重胁迫条件的抵抗力。虽然作物在干旱胁迫下的糖分积累和新陈代谢已被充分记录,但干旱适应处理对糖分积累和新陈代谢的影响尚未被探索。在本研究中,我们研究了干旱胁迫适应对两种常见栽培狐尾黍(Setaria italica L.)基因型 "PI 689680 "和 "PI 662292 "叶片和根组织中糖积累和代谢的影响。对总糖(可溶性糖、果糖、葡萄糖和蔗糖)、其相关酶(SPS、SuSy、NI 和 AI)以及其相关转录本(SiSPS1、SiSuSy1、SiSWEET6、SiA-INV 和 SiC-INV)的调控进行定量分析后发现,干旱适应(DA)植株的这些指标水平与对照植株相当。然而,在随后的干旱胁迫条件下,与干旱适应植株相比,非干旱适应植株的叶片和根部都积累了更高水平的总糖,糖代谢酶的活性增加,糖代谢相关转录本的表达量升高。因此,适应性诱导的糖积累、运输和代谢限制可能是导致小米耐旱性增强的代谢过程之一。本研究主张将适应作为一种有效的策略,以减轻干旱引起的代谢紊乱对小米的负面影响,从而提高全球粮食安全,促进可持续农业系统的发展。
{"title":"Effect of drought acclimation on sugar metabolism in millet.","authors":"Joseph N Amoah, Monica Ode Adu-Gyamfi","doi":"10.1007/s00709-024-01976-5","DOIUrl":"10.1007/s00709-024-01976-5","url":null,"abstract":"<p><p>Drought stress triggers sugar accumulation in plants, providing energy and aiding in protection against oxidative damage. Plant hardening under mild stress conditions has been shown to enhance plant resistance to severe stress conditions. While sugar accumulation and metabolism under drought stress have been well-documented in crop plants, the effect of drought acclimation treatment on sugar accumulation and metabolism has not yet been explored. In this study, we investigated the impact of drought stress acclimation on sugar accumulation and metabolism in the leaves and root tissues of two commonly cultivated foxtail millet (Setaria italica L.) genotypes, 'PI 689680' and 'PI 662292'. Quantification of total sugars (soluble sugar, fructose, glucose, and sucrose), their related enzymes (SPS, SuSy, NI, and AI), and the regulation of their related transcripts (SiSPS1, SiSuSy1, SiSWEET6, SiA-INV, and SiC-INV) revealed that drought-acclimated (DA) plants exhibited levels of these indicators comparable to those of control plants. However, under subsequent drought stress conditions, both the leaves and roots of non-acclimated plants accumulated higher levels of total sugars, displayed increased activity of sugar metabolism enzymes, and showed elevated expression of sugar metabolism-related transcripts compared to drought-acclimated plants. Thus, acclimation-induced restriction of sugar accumulation, transport, and metabolism could be one of the metabolic processes contributing to enhanced drought tolerance in millet. This study advocates for the use of acclimation as an effective strategy to mitigate the negative impacts of drought-induced metabolic disturbances in millet, thereby enhancing global food security and promoting sustainable agricultural systems.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"35-49"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards. 鳞蜥类、蟒蜥类和侏儒蜥类极度重叠鳞片的显微结构和免疫标记。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-30 DOI: 10.1007/s00709-024-01982-7
Lorenzo Alibardi

Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.

石龙子蜥、鳞蜥和侏儒蜥的皮肤非常平整,因此身体紧凑坚实,表面光亮,有利于它们的滑行和/或爬行运动。本形态学研究利用免疫组织化学和电子显微镜分析了不同蜥蜴身上极度重叠的鳞片的显微形态,包括肢体减少(鳞蜥,如 Lerista bougainvilli、Scincella lateralis、Lampropholis delicata)或无腿(侏儒蜥,如 Lialis burtonis 和 Delma molleri,以及无腿蜥 Anguis fragilis)的物种。表皮的外表面显示出不同的奥伯豪森层微结构,其中含有角质β蛋白(CBPs),这些蛋白的免疫活性各不相同。在这些物种中,β层大多相对较厚,这可能与鳞片在恶劣底质上运动时抵抗强大机械力有关。鳞蜥和巨蜥也拥有并再生骨膜,以加强鳞片的平整度和这些爬行动物在蛇形或窝状运动时的机械阻力。侏儒龙没有骨膜。在 Lerista 和 Lampropholis 石龙子的鳞片深铰链区发现了颗粒状的圆形细胞。这些细胞是否会分泌促进鳞片抗摩擦和决定皮肤表面光泽的物质,还有待进一步研究。
{"title":"Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards.","authors":"Lorenzo Alibardi","doi":"10.1007/s00709-024-01982-7","DOIUrl":"10.1007/s00709-024-01982-7","url":null,"abstract":"<p><p>Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"99-115"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.). 小麦(Triticum aestivum L.)紫色酸性磷酸酶基因家族的分析和剖析。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-29 DOI: 10.1007/s00709-024-01983-6
Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang

Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.

紫酸磷酸酶(PAPs)在植物磷营养中发挥着重要作用,是金属磷酯酶的一个重要家族。本研究旨在鉴定小麦 A/B/D 基因组中的 PAP 基因,以阐明该基因家族在植物中的进化机制,并为后续小麦作物磷利用效率的研究提供基因组信息。通过使用拟南芥和大麦的 PAP 蛋白序列作为 BLASTP 对小麦蛋白数据库的查询,从 A/B/D 基因组中共鉴定出 105 个 PAP 基因(TaPAPs)。根据基因结构的相似性和存在的保守蛋白基序,将 TaPAPs 分成六个亚家族:Ia(17 个)、Ib(26 个)、IIa(11 个)、IIb(30 个)、IIIa(12 个)和 IIIb(9 个)。大多数 TaPAPs 来自串联重复(20 个)或节段重复(87 个),其中同源染色体 5A/B/D 上的重复 PAP 基因最多。进一步的分析表明,TaPAPs 负责调节种子、根和叶的发育、激素合成和信号转导,以及植物对非生物胁迫(包括低温、干旱和厌氧条件)的反应。9个TaPAP(TaPAP9-4A/4B/4D、TaPAP24-6A/6B/6D和TaPAP28-7A/7B/7D)在根、芽、叶、穗和种子等不同组织中呈组成型表达,其余基因则表现出组织特异性表达模式。关于对磷酸盐(Pi)剥夺的响应,57 个 TaPAPs 在 Pi 胁迫下在根中高表达,其中包括来自 IIIb 亚家族的 TaPAP31-4A、4B 和 4D 同源物。TaPAP31-4A转基因通过增强磷酸酶的分泌,促进了植物的生长和发育,同时增强了植物对Pi-缺失胁迫的抵抗力。这些发现为理解 TaPAPs 的作用奠定了科学基础,为确定更多候选基因和培育对低磷条件耐受性更强的小麦新品种提供了宝贵的见解。
{"title":"Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.).","authors":"Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang","doi":"10.1007/s00709-024-01983-6","DOIUrl":"10.1007/s00709-024-01983-6","url":null,"abstract":"<p><p>Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"73-86"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae). 气生根和陆生根的习性影响香草(兰科)细胞壁的组成。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-29 DOI: 10.1007/s00709-024-01980-9
Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira

In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.

为了应对附生习性所带来的限制,兰花发展出了能够提高吸水和用水效率的结构特征,例如带有绒毛的复杂不定根系统。这种特化表皮的细胞壁成分可根据其固定的基质而改变,从而影响根中细胞壁的渗透性、吸水能力和储水能力。目前的研究旨在评估兰科植物香草(Vanilla phaeantha)附着在叶片上、固定在土壤中或自由悬挂的不定根的细胞壁成分。免疫细胞化学分析用于确定气生根和陆生根细胞壁的蛋白质、半纤维素和果胶成分。我们观察到,果胶存在于气生根的不同组织中,而在陆生根中,果胶主要集中在皮层实质中。木聚糖、延展聚糖和阿拉伯半乳聚糖在附着于叶绿体的根的游离侧表皮中沉积较多。气生根中果胶的强标记可能与水和养分的流入有关,而水和养分在这种环境中通常是稀缺的。半纤维素和蛋白质与果胶的排列可能与细胞刚性和可持续性增强有关,这也是气生根的一个重要特征。总之,根的习性可能会干扰V. phaeantha细胞壁的非纤维素成分,这可能与细胞功能的变化有关。
{"title":"Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae).","authors":"Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira","doi":"10.1007/s00709-024-01980-9","DOIUrl":"10.1007/s00709-024-01980-9","url":null,"abstract":"<p><p>In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"87-98"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica. Capnodium alfenasii 与 Azadirachta indica 花外蜜腺的相互作用。
IF 2.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-08-07 DOI: 10.1007/s00709-024-01977-4
Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos

Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.

煤烟霉是一种吸附性附生真菌,主要生长在昆虫的分泌物上,但也可能与植物的分泌物有关。在这项研究中,我们旨在描述 Capnodium alfenasii 煤烟霉与 Azadirachta indica 的花外芽蜜腺之间的相互作用。我们对未受 C. alfenasii 侵染和受 C. alfenasii 侵染的 A. indica 花外茎蜜腺的连续切片进行了解剖学和组织化学研究。测定了分泌的花蜜中可溶性糖的总含量,并评估了真菌在蒸馏水、葡萄糖和花蜜溶液中的分生孢子萌发情况。籼稻的嫩枝蜜腺是拉长的结构,成对出现在叶柄基部附近。渗出的花蜜平均每微升含有 534.8 微克的总可溶性糖,为分生孢子的发芽和真菌的生长提供了理想的条件。C. alfenasii菌丝在花蜜上生长,从角质层的破损处穿入,在角质层下移动,并通过细胞间和细胞内途径穿入分泌组织。本报告首次描述了 C. alfenasii 与籼稻蜜腺的相互作用,包括菌丝穿透蜜腺组织和植物防御机制。
{"title":"Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.","authors":"Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos","doi":"10.1007/s00709-024-01977-4","DOIUrl":"10.1007/s00709-024-01977-4","url":null,"abstract":"<p><p>Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"51-59"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Protoplasma
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1