Pub Date : 2024-07-15DOI: 10.1016/j.repbio.2024.100924
Ling He, Xiaoli Wang, Xiangyi Chen
Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.
{"title":"Unveiling the role of microRNAs in metabolic dysregulation of Gestational Diabetes Mellitus","authors":"Ling He, Xiaoli Wang, Xiangyi Chen","doi":"10.1016/j.repbio.2024.100924","DOIUrl":"10.1016/j.repbio.2024.100924","url":null,"abstract":"<div><p>Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.repbio.2024.100923
Romualdo Sciorio , Pier Francesco Greco , Mohammed Adel , Lucia Maresca , Ermanno Greco , Steven Fleming
In the last decades, to enhance success rates in assisted reproductive technology (ART) cycles, scientists have continually tried to optimize embryo culture and selection to increase clinical outcomes. In this scenario, the application of laser technology has increased considerably worldwide and is currently applied across ART in several ways: for assisted hatching (AH) or thinning of the zona pellucida (ZP), embryo biopsy, to immobilize and select the sperm during intracytoplasmic sperm injection, as well as to induce artificial blastocyst shrinkage before cryopreservation. Laser-AH has been suggested as a procedure to improve embryo implantation: the concept is that drilling holes through or thinning of the ZP could improve the hatching process and implantation. The artificial disruption of the ZP can be performed by different approaches: mechanically, chemically and with the laser, which is one of the most favourable and easy methods to remove part of the ZP and to augment the possibilities of implantation in patients defined as having a poor prognosis of success, or when the ZP is too thick. However, in the current literature, there is not sufficient evidence about the potential risk or impairment that laser utilization might induce on embryo development; therefore, the main aim of the current review is to provide an overview of the existing knowledge on the ZP and the mechanisms of manipulating it to improve the effectiveness of ART. Also, it emphasizes the positive aspect of laser application as a powerful tool that might increase the chance of pregnancy for infertile couples undergoing ART cycles.
{"title":"Exploring the benefit of different methods to perform assisted hatching in the ART laboratory: A narrative review","authors":"Romualdo Sciorio , Pier Francesco Greco , Mohammed Adel , Lucia Maresca , Ermanno Greco , Steven Fleming","doi":"10.1016/j.repbio.2024.100923","DOIUrl":"10.1016/j.repbio.2024.100923","url":null,"abstract":"<div><p>In the last decades, to enhance success rates in assisted reproductive technology (ART) cycles, scientists have continually tried to optimize embryo culture and selection to increase clinical outcomes. In this scenario, the application of laser technology has increased considerably worldwide and is currently applied across ART in several ways: for assisted hatching (AH) or thinning of the <em>zona pellucida</em> (ZP), embryo biopsy, to immobilize and select the sperm during intracytoplasmic sperm injection, as well as to induce artificial blastocyst shrinkage before cryopreservation. Laser-AH has been suggested as a procedure to improve embryo implantation: the concept is that drilling holes through or thinning of the ZP could improve the hatching process and implantation. The artificial disruption of the ZP can be performed by different approaches: mechanically, chemically and with the laser, which is one of the most favourable and easy methods to remove part of the ZP and to augment the possibilities of implantation in patients defined as having a poor prognosis of success, or when the ZP is too thick. However, in the current literature, there is not sufficient evidence about the potential risk or impairment that laser utilization might induce on embryo development; therefore, the main aim of the current review is to provide an overview of the existing knowledge on the ZP and the mechanisms of manipulating it to improve the effectiveness of ART. Also, it emphasizes the positive aspect of laser application as a powerful tool that might increase the chance of pregnancy for infertile couples undergoing ART cycles.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1642431X2400069X/pdfft?md5=3c91b763050b2ff71ca18ba1fd3dda8e&pid=1-s2.0-S1642431X2400069X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1016/j.repbio.2024.100920
Joedson Dantas Gonçalves , Jenniffer Hauschildt Dias , Mariana Machado-Neves , Gabriel Brun Vergani , Bahareh Ahmadi , Ribrio Ivan Tavares Pereira Batista , Joanna Maria Gonçalves Souza-Fabjan , Maria Emilia Franco Oliveira , Pawel Mieczyslaw Bartlewski , Jeferson Ferreira da Fonseca
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90–95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
{"title":"Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas)","authors":"Joedson Dantas Gonçalves , Jenniffer Hauschildt Dias , Mariana Machado-Neves , Gabriel Brun Vergani , Bahareh Ahmadi , Ribrio Ivan Tavares Pereira Batista , Joanna Maria Gonçalves Souza-Fabjan , Maria Emilia Franco Oliveira , Pawel Mieczyslaw Bartlewski , Jeferson Ferreira da Fonseca","doi":"10.1016/j.repbio.2024.100920","DOIUrl":"https://doi.org/10.1016/j.repbio.2024.100920","url":null,"abstract":"<div><p>At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90–95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.
{"title":"Low androgen/progesterone or high oestrogen/androgen receptors ratio in serous ovarian cancer predicts longer survival","authors":"Justyna Gogola-Mruk , Miłosz Pietrus , Maryla Piechowicz , Katarzyna Milian-Ciesielska , Paulina Głód , Agnieszka Wolnicka-Glubisz , Joanna Szpor , Anna Ptak","doi":"10.1016/j.repbio.2024.100917","DOIUrl":"https://doi.org/10.1016/j.repbio.2024.100917","url":null,"abstract":"<div><p>The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1642431X24000639/pdfft?md5=732e5472dfe8d015b52e9fa84e3942c5&pid=1-s2.0-S1642431X24000639-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.repbio.2024.100921
Jie Bai , Xia Yun , Xuguang Xu , Shanshan Liu , Sidegeer Zhang , Taodi Liu , Yan Zhang
This study explores the effects of Trib3 gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the Trib3 gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, Trib3 gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.
{"title":"The proliferation and differentiation of spermatogonial stem cells in the frist wave of spermatogenesis in rats with Trib3 gene knockout","authors":"Jie Bai , Xia Yun , Xuguang Xu , Shanshan Liu , Sidegeer Zhang , Taodi Liu , Yan Zhang","doi":"10.1016/j.repbio.2024.100921","DOIUrl":"10.1016/j.repbio.2024.100921","url":null,"abstract":"<div><p>This study explores the effects of <em>Trib3</em> gene knockout on adult male rat spermatogenesis. Using CRISPR/Cas9, we knocked out the <em>Trib3</em> gene in Wistar rats. Results indicate altered expression of PLZF, ID4, and c-KIT in knockout rats, suggesting impaired spermatogonial stem cell proliferation and differentiation. Histological analysis reveals reduced seminiferous tubule area and decreased spermatocyte numbers. Mating experiments demonstrate reduced offspring rates after the second self-mating in knockout rats. SYCP3, a meiosis marker, shows elevated expression in knockout rat testes at 14 days postpartum, suggesting an impact on reproductive processes. ELISA results indicate decreased testosterone, FSH, and FGF9 levels in knockout rat testicular tissues. In conclusion, <em>Trib3</em> gene deletion may impede spermatogonial self-renewal and promote differentiation through the FSH-FGF9- c-KIT interaction and p38MAPK pathway, affecting reproductive capacity. These findings contribute to understanding the molecular mechanisms regulating spermatogenesis.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1016/j.repbio.2024.100919
Zhao Liu
Mesenchymal cells within theplacental villi play a crucial role in shaping the morphology of branching structures and driving the development of blood vessels. However, the markers and functions of placental villous pericytes (PVPs) as distinct subgroups of placental villous mesenchymal cells, remain unclear. Therefore, in this study, the markers and functions of PVPs were investigated. Single-cell sequencing data from the first-trimester placental villi was obtained and the Seurat tool was used to identify PVP markers. Gene Ontology (GO) analysis of specific genes was performed using the DAVID database. The Cellchat tool was employed to investigate the interaction signals between the PVPs and other cells. Expression of the PVP markers was confirmed using immunofluorescence. Presence of extracellular vesicles in the placental villous mesenchyme and PVPs was examined by transmission electron microscopy. Our findings revealed that renin (REN) and amphiregulin (AREG)-positive fibroblasts in the placental villi specifically expressed several classic pericyte markers. In the first trimester, certain conserved functions of pericytes were observed and they displayed tissue-specific functions such as in the integrin-mediated signaling pathway and extracellular exosomes. Moreover, the placental villous mesenchyme was found to be rich in extracellular vesicles. AREG is specifically transcribed in the first trimester PVPs, however, its protein was located in syncytiotrophoblasts. These insights contribute to a comprehensive understanding of early placental development and offer new therapeutic targets for placenta-derived pregnancy complications.
{"title":"Gene expression profile of human placental villous pericytes in the first trimester – An analysis by single-cell RNA sequencing","authors":"Zhao Liu","doi":"10.1016/j.repbio.2024.100919","DOIUrl":"10.1016/j.repbio.2024.100919","url":null,"abstract":"<div><p>Mesenchymal cells within theplacental villi play a crucial role in shaping the morphology of branching structures and driving the development of blood vessels. However, the markers and functions of placental villous pericytes (PVPs) as distinct subgroups of placental villous mesenchymal cells, remain unclear. Therefore, in this study, the markers and functions of PVPs were investigated. Single-cell sequencing data from the first-trimester placental villi was obtained and the Seurat tool was used to identify PVP markers. Gene Ontology (GO) analysis of specific genes was performed using the DAVID database. The Cellchat tool was employed to investigate the interaction signals between the PVPs and other cells. Expression of the PVP markers was confirmed using immunofluorescence. Presence of extracellular vesicles in the placental villous mesenchyme and PVPs was examined by transmission electron microscopy. Our findings revealed that renin (REN) and amphiregulin (AREG)-positive fibroblasts in the placental villi specifically expressed several classic pericyte markers. In the first trimester, certain conserved functions of pericytes were observed and they displayed tissue-specific functions such as in the integrin-mediated signaling pathway and extracellular exosomes. Moreover, the placental villous mesenchyme was found to be rich in extracellular vesicles. AREG is specifically transcribed in the first trimester PVPs, however, its protein was located in syncytiotrophoblasts. These insights contribute to a comprehensive understanding of early placental development and offer new therapeutic targets for placenta-derived pregnancy complications.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.repbio.2024.100915
Jaelyn Z. Current, Heather L. Chaney, Mingxiang Zhang, Emily M. Dugan, Gianna L. Chimino, Jianbo Yao
In mammals, early embryogenesis relies heavily on the regulation of maternal transcripts including protein-coding and non-coding RNAs stored in oocytes. In this study, the expression of three bovine oocyte expressed long non-coding RNAs (lncRNAs), OOSNCR1, OOSNCR2, and OOSNCR3, was characterized in somatic tissues, the ovarian follicle, and throughout early embryonic development. Moreover, the functional requirement of each transcript during oocyte maturation and early embryonic development was investigated using a siRNA-mediated knockdown approach. Tissue distribution analysis revealed that OOSNCR1, OOSNCR2 and OOSNCR3 are predominantly expressed in fetal ovaries. Follicular cell expression analysis revealed that these lncRNAs are highly expressed in the oocytes, with minor expression detected in the cumulus cells (CCs) and mural granulosa cells (mGCs). The expression for all three genes was highest during oocyte maturation, decreased at fertilization, and ceased altogether by the 16-cell stage. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes was achieved by microinjection of the cumulus-enclosed germinal vesicle (GV) oocytes with siRNAs targeting these lncRNAs. Knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 did not affect cumulus expansion, but oocyte survival at 12 h post-insemination was significantly reduced. In addition, knockdown of OOSNCR1, OOSNCR2 and OOSNCR3 in immature oocytes resulted in a decreased rate of blastocyst development, and reduced expression of genes associated with oocyte competency such as nucleoplasmin 2 (NPM2), growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and JY-1 in MII oocytes. The data herein suggest a functional requirement of OOSNCR1, OOSNCR2, and OOSNCR3 during bovine oocyte maturation and early embryogenesis.
{"title":"Characterization of bovine long non-coding RNAs, OOSNCR1, OOSNCR2 and OOSNCR3, and their roles in oocyte maturation and early embryonic development","authors":"Jaelyn Z. Current, Heather L. Chaney, Mingxiang Zhang, Emily M. Dugan, Gianna L. Chimino, Jianbo Yao","doi":"10.1016/j.repbio.2024.100915","DOIUrl":"10.1016/j.repbio.2024.100915","url":null,"abstract":"<div><p>In mammals, early embryogenesis relies heavily on the regulation of maternal transcripts including protein-coding and non-coding RNAs stored in oocytes. In this study, the expression of three bovine oocyte expressed long non-coding RNAs (lncRNAs), <em>OOSNCR1, OOSNCR2,</em> and <em>OOSNCR3,</em> was characterized in somatic tissues, the ovarian follicle, and throughout early embryonic development. Moreover, the functional requirement of each transcript during oocyte maturation and early embryonic development was investigated using a siRNA-mediated knockdown approach. Tissue distribution analysis revealed that <em>OOSNCR1, OOSNCR2</em> and <em>OOSNCR3</em> are predominantly expressed in fetal ovaries. Follicular cell expression analysis revealed that these lncRNAs are highly expressed in the oocytes, with minor expression detected in the cumulus cells (CCs) and mural granulosa cells (mGCs). The expression for all three genes was highest during oocyte maturation, decreased at fertilization, and ceased altogether by the 16-cell stage. Knockdown of <em>OOSNCR1</em>, <em>OOSNCR2</em> and <em>OOSNCR3</em> in immature oocytes was achieved by microinjection of the cumulus-enclosed germinal vesicle (GV) oocytes with siRNAs targeting these lncRNAs. Knockdown of <em>OOSNCR1</em>, <em>OOSNCR2</em> and <em>OOSNCR3</em> did not affect cumulus expansion, but oocyte survival at 12 h post-insemination was significantly reduced. In addition, knockdown of <em>OOSNCR1</em>, <em>OOSNCR2</em> and <em>OOSNCR3</em> in immature oocytes resulted in a decreased rate of blastocyst development, and reduced expression of genes associated with oocyte competency such as nucleoplasmin 2 (<em>NPM2</em>), growth differentiation factor 9 (<em>GDF9</em>), bone morphogenetic protein 15 (<em>BMP15</em>), and <em>JY-1</em> in MII oocytes. The data herein suggest a functional requirement of <em>OOSNCR1, OOSNCR2,</em> and <em>OOSNCR3</em> during bovine oocyte maturation and early embryogenesis.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.repbio.2024.100918
Borgohain Anima, Guruswami Gurusubramanian, Vikas Kumar Roy
Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 μg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.
{"title":"Hormonal dependent expression of apelin and apelin receptor in the ovary and uterus of mice","authors":"Borgohain Anima, Guruswami Gurusubramanian, Vikas Kumar Roy","doi":"10.1016/j.repbio.2024.100918","DOIUrl":"10.1016/j.repbio.2024.100918","url":null,"abstract":"<div><p>Apelin and APJ have been shown to regulate female reproductive functions. However, its uterine expression during the oestrous cycle and its regulation by ovarian steroids, along with gonadotropin regulation in the ovary, has not been investigated. This study aimed to analyze the steroid-dependent uterine expression of apelin/APJ in the uterus along with the oestrous cycle. Furthermore, it also aimed to investigate gonadotropin-dependent ovarian expression of apelin and APJ. To investigate the uterine expression of apelin and APJ during estrous cycle in mice, uterus at different estrous stage were collected. To explore the ovarian steroids dependent expression of apelin system in the uterus, ovariectomized mice were treated with only estrogen at dose of 30 ng/g, only progesterone at dose of 150 μg/g and combined doses. To study the effect of gonadotropin on ovarian expression of apelin system, immature mice were injected with 2.5 IU of pregnant mare serum gonadotropin (PMSG) alone and both PMSG plus 2.5 IU of chorionic gonadotropin (hCG). Apelin and APJ protein expression are modulated by estrous phases in the uterus. The uterine apelin and APJ expression are up-regulated by estrogen and down-regulated by progesterone. The expression and localization of APJ showed increased abundance in the follicles of PMSG treated mice, however, the PMSG plus HCG treatment showed formation of corpus luteum with increased abundance of APJ and progesterone secretion. The expression of apelin and APJ are regulated by pituitary gonadotropin in the ovary and uterine apelin system by ovarian steroid hormone.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endometritis and the failure of decidualization of the endometrium are important factors contributing to the increased incidence of abortion. USP22 is associated with various inflammatory diseases and has been shown to be involved in endometrial decidualization in mice. This study aims to investigate whether USP22 is involved in the regulation of inflammatory response and decidualization in human endometrial stromal cells (hESCs). In this study, lipopolysaccharide (LPS) was used to induce inflammation in hESCs, and MPA combined with cAMP was used to induce decidualization of hESCs. USP22 overexpression vector was constructed to study the role of USP22 in endometritis. The results showed that the USP22 protein and mRNA levels were decreased in LPS-induced hESCs. LPS induction increased the levels of TNF-α, IL-1β, and IL-6, as well as the expression of iNOS and COX2 proteins in hESCs. In the LPS group, the levels of F-actin, PRL, IGFBP1, SLC7A11, and GPX4 proteins decreased, while the levels of lipid peroxidation and total iron content increased. Additionally, the levels of ACSL4 and TFR1 proteins were up-regulated. Overexpression of USP22 reversed LPS-induced cellular inflammation, attenuated decidualization, and inhibited ferroptosis. However, the use of ferroptosis inducers diminished the regulatory effects of USP22 on inflammatory responses and decidualization. In summary, these suggested that USP22 reduces the LPS-induced inflammatory response and regulates the decidualization of hESCs, and possibly involving ferroptosis.
{"title":"Overexpression of USP22 ameliorates LPS-induced endometrial stromal cells inflammation and modulates cells decidualization by inhibiting ferroptosis","authors":"Xiuye Xing , Guoli Zhang , Fangjie Yi , Xinghua Xu","doi":"10.1016/j.repbio.2024.100913","DOIUrl":"https://doi.org/10.1016/j.repbio.2024.100913","url":null,"abstract":"<div><p>Endometritis and the failure of decidualization of the endometrium are important factors contributing to the increased incidence of abortion. <em>USP22</em> is associated with various inflammatory diseases and has been shown to be involved in endometrial decidualization in mice. This study aims to investigate whether USP22 is involved in the regulation of inflammatory response and decidualization in human endometrial stromal cells (hESCs). In this study, lipopolysaccharide (LPS) was used to induce inflammation in hESCs, and MPA combined with cAMP was used to induce decidualization of hESCs. USP22 overexpression vector was constructed to study the role of USP22 in endometritis. The results showed that the USP22 protein and mRNA levels were decreased in LPS-induced hESCs. LPS induction increased the levels of TNF-α, IL-1β, and IL-6, as well as the expression of iNOS and COX2 proteins in hESCs. In the LPS group, the levels of F-actin, PRL, IGFBP1, SLC7A11, and GPX4 proteins decreased, while the levels of lipid peroxidation and total iron content increased. Additionally, the levels of ACSL4 and TFR1 proteins were up-regulated. Overexpression of USP22 reversed LPS-induced cellular inflammation, attenuated decidualization, and inhibited ferroptosis. However, the use of ferroptosis inducers diminished the regulatory effects of USP22 on inflammatory responses and decidualization. In summary, these suggested that USP22 reduces the LPS-induced inflammatory response and regulates the decidualization of hESCs, and possibly involving ferroptosis.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1016/j.repbio.2024.100898
Chang Zhao , BenZheng Jiang , Weizhe Yan , Xichun Wang , Hongyan Ding , Cheng Xia
In dairy cows, the occurrence of subclinical ketosis (SCK) is particularly high during early lactation. Previously, we documented alterations in the abundance of adiponectin (ADPN) in anestrus cows with SCK in comparison to cows in estrus. In the present study, 60 cows were divided into two groups: control (C, n = 30) and SCK (n = 30). Based on cow’s estrus situation in two group at 55–60 days postpartum, 15 anestrus SCK cows and estrus cows were designated the SCK-A group and C-E group, respectively. The SCK-A group had downregulated serum and follicular fluid ADPN levels compared with the C-E group. The serum ADPN level was positively correlated with the insulin level and follicle growth rate, and there was a positive correlation between ADPN and glucose in the follicular fluid. Primary culture of dairy cow granulosa cells (GCs) was established to observe the effect of low glucose (Glu) and/or ADPN on GCs cyclins and proteins important for steroid synthesis. The results showed that the addition of 1 µg/mL ADPN alleviated the negative effects of low Glu treatment on the proliferation of GCs and the expression of steroid secretion related protein proteins. Treatment with LY294002 (PI3K inhibitor) four experimental GCs groups: control (0 µg/mL ADPN), 1 µg/mL ADPN, LY294002 inhibitor, and 1 µg/mL ADPN+LY294002. The results showed that ADPN promotes the secretion of steroid hormones by GCs through the PI3K–AKT. In summary, ADPN plays a crucial role in ameliorating postpartum anestrus in dairy cows with SCK.
{"title":"Changes in adiponectin levels of subclinical ketosis cows and their effects on steroid hormone secretion and proliferation in follicular granulosa cells","authors":"Chang Zhao , BenZheng Jiang , Weizhe Yan , Xichun Wang , Hongyan Ding , Cheng Xia","doi":"10.1016/j.repbio.2024.100898","DOIUrl":"10.1016/j.repbio.2024.100898","url":null,"abstract":"<div><p>In dairy cows, the occurrence of subclinical ketosis (SCK) is particularly high during early lactation. Previously, we documented alterations in the abundance of adiponectin (ADPN) in anestrus cows with SCK in comparison to cows in estrus. In the present study, 60 cows were divided into two groups: control (C, <em>n</em> = 30) and SCK (<em>n</em> = 30). Based on cow’s estrus situation in two group at 55–60 days postpartum, 15 anestrus SCK cows and estrus cows were designated the SCK-A group and C-E group, respectively. The SCK-A group had downregulated serum and follicular fluid ADPN levels compared with the C-E group. The serum ADPN level was positively correlated with the insulin level and follicle growth rate, and there was a positive correlation between ADPN and glucose in the follicular fluid. Primary culture of dairy cow granulosa cells (GCs) was established to observe the effect of low glucose (Glu) and/or ADPN on GCs cyclins and proteins important for steroid synthesis. The results showed that the addition of 1 µg/mL ADPN alleviated the negative effects of low Glu treatment on the proliferation of GCs and the expression of steroid secretion related protein proteins. Treatment with LY294002 (PI3K inhibitor) four experimental GCs groups: control (0 µg/mL ADPN), 1 µg/mL ADPN, LY294002 inhibitor, and 1 µg/mL ADPN+LY294002. The results showed that ADPN promotes the secretion of steroid hormones by GCs through the PI3K–AKT. In summary, ADPN plays a crucial role in ameliorating postpartum anestrus in dairy cows with SCK.</p></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1642431X24000445/pdfft?md5=94306094f100ae1249ac9ae7a8863aae&pid=1-s2.0-S1642431X24000445-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}