AhR knockout mice are not completely infertile; however, they do experience decreased litter sizes after repeated pregnancies. This study revealed that the decrease in the number of live births is partly due to fetal deaths leading to miscarriages. Interestingly, fetal mortality was found to be linked only to maternal AhR gene defects and not the fetal genotype. Furthermore, we observed no significant changes in litter sizes in allogenic pregnancy, where AhR-KO female mice were crossed with ICR male mice. The results indicated that the absence of AhR in the dams affected the expression of immune tolerance-related genes in both the placenta and fetus. Specifically, FoxP3 and indoleamine 2,3-dioxygenase-1 (IDO1) mRNA levels were lower in the placentas of AhR-KO dams than in those of wild-type dams. Moreover, there were elevated levels of IL-1β and IFN-γ mRNA in the placentas of the AhR-KO dams, which indicated increased inflammation. However, the mRNA expression levels of IL-6 and IDO1 were low despite the elevated mRNA levels of IL-1β and IFN-γ, which may be because AhR is directly involved in IL-6 and IDO1 transcription. These findings imply that in AhR-KO mice, fetal death may be attributed to the disturbance of fetal-maternal immune tolerance as a result of increased inflammation and reduced IDO1 and FoxP3 mRNA levels.
Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)−200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.
Epithelial-mesenchymal transition (EMT) is known to play a crucial role in the development of endometriosis (EMs). However, the exact mechanisms involved in EMT regulation in EMs are not well understood. In this study, we performed comprehensive research using clinical samples, single-cell sequencing, and in vivo/in vitro models to investigate the effects of advanced oxidation protein products (AOPPs) on EMT and the underlying mechanisms in EMs. Combining bioinformatics analysis with experimental validation, our results show that AOPPs accumulate in EMs tissues, and their levels positively correlate with the expression of EMT markers in fibrotic lesions of EMs patients. Stimulation with AOPPs leads to a concentration- and time-dependent alteration of EMT markers expression in both in vitro and in vivo models. These effects are mainly mediated by the generation of reactive oxygen species and nitrite, along with the activation of the ERK and P38 signaling pathways. In chronic administration studies using normal rats, AOPPs induce EMT and enhance collagen deposition. These findings significantly contribute to our understanding of the molecular mechanisms of EMs and provide a foundation for future research and therapeutic development in this field.
The gonadotropin treatment of infertile men may improve spermatogenesis and lead to sperm cell production, however, only a small fraction of treated patients positively responds to such therapy. To identify individual treatment prognostic biomarkers associated with responsiveness to gonadotropins, we compared the gene expression profiles of testicular oligobiopsies from 3 patients with non-obstructive azoospermia (NOA) who positively responded to therapy with a combination of human chorionic gonadotropin and recombinant follicle-stimulating hormone (hCG/rFSH) to those of 3 non-responders. We used Affymetrix Human Gene 1.0 ST microarrays. The results of the microarray evaluation were validated by the qPCR technique while gene variants of the HLA-DQB1 (major histocompatibility complex, class II, DQ beta 1) were subsequently sequenced. In our microarrays, we have identified most significantly 5 transcripts with different expression levels in responders versus non-responders groups. Our interest has been primarily focused on the transcript associated with the HLA-DQB1 gene. Because the expression of this gene was up-regulated in the non-responding patients and only patients with heterozygotic alleles of HLA-DQB1 turned out to be positive to gonadotropin therapy, we suggest that this gene may be a biomarker of potential significance for the gonadotropin treatment of male infertility. We also compared the testicular gene expression profile in one individual before and after gonadotropin treatment. In the re-biopsied sample, we have identified over 600 genes that showed differences in testicular expression; some of these genes are critical for spermiogenesis. Thus, we documented that the applied gonadotropins successfully stimulated the spermatogenetic wave in patients with NOA.
The lack of reliable methods for preeclampsia (PE) early diagnosis limits the opportunities for timely prevention, diagnosis and treatment. This study aims to identify the alterations of biochemical parameters and the immune system activity to build a panel of markers that can support preeclampsia diagnosis. For this study, we recruited 30 pregnant women: 10 healthy pregnant women (CTR); 10 pregnant women with early preeclampsia (EP); 10 pregnant women with late preeclampsia (LP). We evaluated lipid profile and, by gene expression, we assessed PCSK9, IL-2, IL-6, IL-8, IL-10, TNF-α and TGF-β. Moreover, we evaluated both the serum and gene levels of the defensins HBD-1, HBD-2, HBD-4 and HNP-1. Our results showed an increase in gene expression levels of IL-6 and IL-8 in EP compared to LP (IL-6: median 11.7 vs 3.3, p = 0.005; IL-8: median 634.1 vs 214.1, p = 0.013) and to CTR (IL-6: median 11.7 vs 0.5, p < 0.001; IL-8: median 634.1 vs 225.6, p = 0.012), highlighting a massive activation of immune system in case of more severe preeclampsia. Furthermore, higher serum levels of HBD1 in LP compared to CTR (median: 278.8 vs 67.8, p = 0.005) and to EP (median: 278.8 vs 68.6, p = 0.001) might indicate that the same immune system puts in action protective actions to prevent adverse outcome in these cases. Finally, gene expression levels of PCSK9 decreased significantly in women with EP compared to controls and to LP (median: 0.2 vs 0.9, p = 0.010; median: 0.2 vs 1.2, p = 0.012), causing a decrease in circulating LDL-c necessary for the synthesis of placental hormones.
Zearalenone (ZEA) is an estrogen-like mycotoxin and is considered a secondary metabolite produced by Fusarium fungi, which are widely found in the surrounding environment. ZEA has been found to cause reproductive dysfunction in female and male animals, but the underlying mechanism remains unclear. Therefore, this study examined cell proliferation, cell apoptosis, autophagy protein expression, and some inflammatory cytokines such as IL-1β and IL-8 of goat endometrial stromal cells (ESCs) induced by different concentrations (0, 15, 30, 60, and 90 µM) of ZEA. The apoptosis rate was detected by flow cytometry. Western Blot and ELISA assay were used to identify the ER stress signaling pathway and some inflammatory cytokines. Our results revealed that ZEA induced cell proliferation and inhibited cell apoptosis at low and middle concentrations, while at high concentrations of ZEA, cell apoptosis was induced in ESCs. Additionally, ZEA induced the ER stress protein markers such as ATF6, IRE1α, EIF2α, and ATF4. LC3 as a marker of autophagy was up-regulated at all concentrations of ZEA. Moreover, IL-1β and IL-8 showed down-regulation at a low concentration of ZEA, but middle and high concentrations showed up-regulation. In the present study, Knockdown ERN1 can inhibit autophagy and the main markers of ER stress. These results suggest that the IRE1 pathway can reduce apoptosis protein markers, down activate IRE1, and unfolded protein response branches such as ATF6 and LC3 in ESCs. Additionally, IL-1β and IL-8 achieve up-regulation under knockdown IRE1, which can block ER stress markers.
Cyclophosphamide, a chemotherapy drug, increases oxidative stress in sperm and testicular tissue. This study evaluated the effect of silymarin, a potent antioxidant, on the quality of sperm and testicular tissue in mice treated with cyclophosphamide. NMRI adult male mice were divided into four groups: control; cyclophosphamide (intraperitoneal injection, 100 mg/kg, once a week); cyclophosphamide + silymarin; and silymarin (intraperitoneal injection, 200 mg/kg, every other day). After a 35-day treatment period, the caudal region of the epididymis was examined for sperm parameters, the right testis was used for stereological studies, and the left testis was used to assess biochemical factors. The data were statistically analyzed using SPSS software, one-way ANOVA and Tukey's test. In the cyclophosphamide group, there was a significant reduction in the mean total volume of testicular tissue, the average volume of seminiferous tubules and their components, and the average volume of interstitial tissue. Additionally, there was a notable decrease (p < 0.001) in the average number of Leydig cells, Sertoli cells, and sperm parameters. The mean concentration of testosterone hormone (p < 0.05) and total antioxidant capacity (TAC) level (p < 0.01) also significantly decreased, while the malondialdehyde (MDA) level increased significantly (p < 0.05). However, these adverse changes were mitigated in the cyclophosphamide + silymarin group compared to the cyclophosphamide group. Our results showed that silymarin as an antioxidant can mitigate the adverse effects of cyclophosphamide on testicular tissue and sperm parameters.