Pub Date : 2025-05-07DOI: 10.1088/1361-6633/add0de
Lukas Pausch, Edoardo G Carnio, Andreas Buchleitner and Alberto Rodríguez
We demonstrate how the initial state of ultracold atoms in an optical lattice controls the emergence of ergodic dynamics as the underlying spectral structure is tuned into the quantum chaotic regime. Distinct initial states’ chaos threshold values in terms of tunneling as compared to interaction strength are identified, as well as dynamical signatures of the chaos transition, on the level of experimentally accessible observables and time scales.
{"title":"How to seed ergodic dynamics of interacting bosons under conditions of many-body quantum chaos","authors":"Lukas Pausch, Edoardo G Carnio, Andreas Buchleitner and Alberto Rodríguez","doi":"10.1088/1361-6633/add0de","DOIUrl":"https://doi.org/10.1088/1361-6633/add0de","url":null,"abstract":"We demonstrate how the initial state of ultracold atoms in an optical lattice controls the emergence of ergodic dynamics as the underlying spectral structure is tuned into the quantum chaotic regime. Distinct initial states’ chaos threshold values in terms of tunneling as compared to interaction strength are identified, as well as dynamical signatures of the chaos transition, on the level of experimentally accessible observables and time scales.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"96 1","pages":"057602"},"PeriodicalIF":18.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143920384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-testing provides a device-independent framework for certifying quantum properties based solely on input-output statistics while treating quantum devices as black boxes. It has evolved significantly from its origins in bipartite systems to applications in multipartite entanglement and, more recently, genuinely entangled subspaces. Notably, It has been revealed that the logical subspaces of numerous stabilizer quantum error correction codes are exclusively composed of genuinely multipartite entangled states, opening new avenues for developing device-independent tools to characterize these subspaces. In this work, we leverage the self-testing technique to certify genuinely entangled logical subspaces within the five-qubit code using both photonic and superconducting platforms. This is achieved by preparing informationally complete logical states, simulating Pauli errors on a physical qubit, and testing several stabilizer-formalized Bell inequalities. Our certification is supported by an extractability measure of at least $0.828pm0.006$ and $0.621pm0.007$ for the photonic and superconducting systems, respectively. Our results demonstrate the feasibility of device-independent certification of general entangled quantum structures in experimental settings, extending beyond quantum states and quantum measurements.
{"title":"Certification of genuinely entangled subspaces of the five qubit code via robust self-testing.","authors":"Yu Guo,Hao Tang,Jiaxuan Zhang,Jiale Miao,Xiao-Min Hu,Wu Yu-Chun,GuoPing Guo,Yun-Feng Huang,Chuan-Feng Li,Guang-Can Guo,Bi-Heng Liu","doi":"10.1088/1361-6633/add560","DOIUrl":"https://doi.org/10.1088/1361-6633/add560","url":null,"abstract":"Self-testing provides a device-independent framework for certifying quantum properties based solely on input-output statistics while treating quantum devices as black boxes. It has evolved significantly from its origins in bipartite systems to applications in multipartite entanglement and, more recently, genuinely entangled subspaces. Notably, It has been revealed that the logical subspaces of numerous stabilizer quantum error correction codes are exclusively composed of genuinely multipartite entangled states, opening new avenues for developing device-independent tools to characterize these subspaces. In this work, we leverage the self-testing technique to certify genuinely entangled logical subspaces within the five-qubit code using both photonic and superconducting platforms. This is achieved by preparing informationally complete logical states, simulating Pauli errors on a physical qubit, and testing several stabilizer-formalized Bell inequalities. Our certification is supported by an extractability measure of at least $0.828pm0.006$ and $0.621pm0.007$ for the photonic and superconducting systems, respectively. Our results demonstrate the feasibility of device-independent certification of general entangled quantum structures in experimental settings, extending beyond quantum states and quantum measurements.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"48 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143920977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-06DOI: 10.1088/1361-6633/add0c5
Yoshinori Tokura, Yukitoshi Motome and Kentaro Ueda
Pyrochlore oxides with chemical formula of O7 exhibit a diverse range of electronic properties as a representative family of quantum materials. These properties mostly stem from strong electron correlations at the transition metal B site and typical geometrical frustration effects on the pyrochlore lattice. Furthermore, the coupling between the magnetic moments of the rare-earth A site and the conduction electrons at the B site, along with the relativistic spin–orbit coupling particularly affecting the 4d/5d electrons at the B site, gives rise to the topological characteristics of the correlated electrons. This review paper focuses on the metal–insulator transitions in pyrochlore oxides as evidence of the strong electron correlation, which is highlighted as a rich source of intriguing charge dynamics coupled with frustrated spin-orbital entangled magnetism.
{"title":"Metal-insulator transitions in pyrochlore oxides","authors":"Yoshinori Tokura, Yukitoshi Motome and Kentaro Ueda","doi":"10.1088/1361-6633/add0c5","DOIUrl":"https://doi.org/10.1088/1361-6633/add0c5","url":null,"abstract":"Pyrochlore oxides with chemical formula of O7 exhibit a diverse range of electronic properties as a representative family of quantum materials. These properties mostly stem from strong electron correlations at the transition metal B site and typical geometrical frustration effects on the pyrochlore lattice. Furthermore, the coupling between the magnetic moments of the rare-earth A site and the conduction electrons at the B site, along with the relativistic spin–orbit coupling particularly affecting the 4d/5d electrons at the B site, gives rise to the topological characteristics of the correlated electrons. This review paper focuses on the metal–insulator transitions in pyrochlore oxides as evidence of the strong electron correlation, which is highlighted as a rich source of intriguing charge dynamics coupled with frustrated spin-orbital entangled magnetism.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"26 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143915431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-05-02DOI: 10.1088/1361-6633/adc82e
Mikko Partanen, Jukka Tulkki
The Standard Model of particle physics describes electromagnetic, weak, and strong interactions, which are three of the four known fundamental forces of nature. The unification of the fourth interaction, gravity, with the Standard Model has been challenging due to incompatibilities of the underlying theories—general relativity and quantum field theory. While quantum field theory utilizes compact, finite-dimensional symmetries associated with the internal degrees of freedom of quantum fields, general relativity is based on noncompact, infinite-dimensional external space-time symmetries. The present work aims at deriving the gauge theory of gravity using compact, finite-dimensional symmetries in a way that resembles the formulation of the fundamental interactions of the Standard Model. For our eight-spinor representation of the Lagrangian, we define a quantity, called the space-time dimension field, which enables extracting four-dimensional space-time quantities from the eight-dimensional spinors. Four U(1) symmetries of the components of the space-time dimension field are used to derive a gauge theory, called unified gravity. The stress-energy-momentum tensor source term of gravity follows directly from these symmetries. The metric tensor enters in unified gravity through geometric conditions. We show how the teleparallel equivalent of general relativity in the Weitzenböck gauge is obtained from unified gravity by a gravity-gauge-field-dependent geometric condition. Unified gravity also enables a gravity-gauge-field-independent geometric condition that leads to an exact description of gravity in the Minkowski metric. This differs from the use of metric in general relativity, where the metric depends on the gravitational field by definition. Based on the Minkowski metric, unified gravity allows us to describe gravity within a single coherent mathematical framework together with the quantum fields of all fundamental interactions of the Standard Model. We present the Feynman rules for unified gravity and study the renormalizability and radiative corrections of the theory at one-loop order. The equivalence principle is formulated by requiring that the renormalized values of the inertial and gravitational masses are equal. In contrast to previous gauge theories of gravity, all infinities that are encountered in the calculations of loop diagrams can be absorbed by the redefinition of the small number of parameters of the theory in the same way as in the gauge theories of the Standard Model. This result and our observation that unified gravity fulfills the Becchi–Rouet–Stora–Tyutin (BRST) symmetry and its coupling constant is dimensionless suggest that unified gravity can provide the basis for a complete, renormalizable theory of quantum gravity.
{"title":"Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model","authors":"Mikko Partanen, Jukka Tulkki","doi":"10.1088/1361-6633/adc82e","DOIUrl":"https://doi.org/10.1088/1361-6633/adc82e","url":null,"abstract":"The Standard Model of particle physics describes electromagnetic, weak, and strong interactions, which are three of the four known fundamental forces of nature. The unification of the fourth interaction, gravity, with the Standard Model has been challenging due to incompatibilities of the underlying theories—general relativity and quantum field theory. While quantum field theory utilizes compact, finite-dimensional symmetries associated with the internal degrees of freedom of quantum fields, general relativity is based on noncompact, infinite-dimensional external space-time symmetries. The present work aims at deriving the gauge theory of gravity using compact, finite-dimensional symmetries in a way that resembles the formulation of the fundamental interactions of the Standard Model. For our eight-spinor representation of the Lagrangian, we define a quantity, called the space-time dimension field, which enables extracting four-dimensional space-time quantities from the eight-dimensional spinors. Four U(1) symmetries of the components of the space-time dimension field are used to derive a gauge theory, called unified gravity. The stress-energy-momentum tensor source term of gravity follows directly from these symmetries. The metric tensor enters in unified gravity through geometric conditions. We show how the teleparallel equivalent of general relativity in the Weitzenböck gauge is obtained from unified gravity by a gravity-gauge-field-dependent geometric condition. Unified gravity also enables a gravity-gauge-field-independent geometric condition that leads to an exact description of gravity in the Minkowski metric. This differs from the use of metric in general relativity, where the metric depends on the gravitational field by definition. Based on the Minkowski metric, unified gravity allows us to describe gravity within a single coherent mathematical framework together with the quantum fields of all fundamental interactions of the Standard Model. We present the Feynman rules for unified gravity and study the renormalizability and radiative corrections of the theory at one-loop order. The equivalence principle is formulated by requiring that the renormalized values of the inertial and gravitational masses are equal. In contrast to previous gauge theories of gravity, all infinities that are encountered in the calculations of loop diagrams can be absorbed by the redefinition of the small number of parameters of the theory in the same way as in the gauge theories of the Standard Model. This result and our observation that unified gravity fulfills the Becchi–Rouet–Stora–Tyutin (BRST) symmetry and its coupling constant is dimensionless suggest that unified gravity can provide the basis for a complete, renormalizable theory of quantum gravity.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"8 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143898279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large optical anisotropy is paramount for advancing light manipulation in modern optic. Therefore, there has been an intensive search for materials exhibiting giant optical anisotropy. However, the reported in-plane birefringence of most materials remains relatively low, posing substantial limitations for applications in integrated optics and polarization-sensitive technologies. Here we present a systematic investigation of the in-plane anisotropic properties of the quasi -one-dimensional van der Waals crystal-Ta2NiSe5, employing spectroscopic ellipsometry, angle-resolved polarization Raman spectroscopy, azimuth-dependent reflectance difference microscopy and angle-dependent electronic and optoelectronic techniques. Notably, our study reveals a record-breaking giant in-plane birefringence of up to 2.0 across the visible to infrared spectral region, representing the highest value reported among van der Waals materials to date. Meanwhile, the physical origin of this extraordinary optical anisotropy is elucidated through first-principles calculations, attributing it to the synergistic effects of significant polarizability contrast and the quasi-one-dimensional crystal arrangement. Furthermore, photodetectors based on Ta2NiSe5flakes exhibit remarkable performance, including a broad photoresponse spanning 520-2000 nm, ultrafast response time of 75 μs, a pronounced dichroic ratio of up to 1.89 and high-resolution polarized light imaging capabilities. Our work not only highlights the immense potential of Ta2NiSe5for next-generation polarization-sensitive optoelectronic devices but also inspire innovative approaches for next-generation ultracompact integrated photonics based on quasi-one-dimensional van der Waals materials.
{"title":"Giant In-plane Anisotropy in Novel Quasi-one-dimensional Van der Waals crystal.","authors":"Hong Zhou,Jiao Qi,Shaojun Fang,Jiajun Ma,Hongyu Tang,Chuanxiang Sheng,Yu-Xiang Zheng,Hao Zhang,Weibo Duan,Shaojuan Li,Rong-Jun Zhang","doi":"10.1088/1361-6633/add209","DOIUrl":"https://doi.org/10.1088/1361-6633/add209","url":null,"abstract":"Large optical anisotropy is paramount for advancing light manipulation in modern optic. Therefore, there has been an intensive search for materials exhibiting giant optical anisotropy. However, the reported in-plane birefringence of most materials remains relatively low, posing substantial limitations for applications in integrated optics and polarization-sensitive technologies. Here we present a systematic investigation of the in-plane anisotropic properties of the quasi -one-dimensional van der Waals crystal-Ta2NiSe5, employing spectroscopic ellipsometry, angle-resolved polarization Raman spectroscopy, azimuth-dependent reflectance difference microscopy and angle-dependent electronic and optoelectronic techniques. Notably, our study reveals a record-breaking giant in-plane birefringence of up to 2.0 across the visible to infrared spectral region, representing the highest value reported among van der Waals materials to date. Meanwhile, the physical origin of this extraordinary optical anisotropy is elucidated through first-principles calculations, attributing it to the synergistic effects of significant polarizability contrast and the quasi-one-dimensional crystal arrangement. Furthermore, photodetectors based on Ta2NiSe5flakes exhibit remarkable performance, including a broad photoresponse spanning 520-2000 nm, ultrafast response time of 75 μs, a pronounced dichroic ratio of up to 1.89 and high-resolution polarized light imaging capabilities. Our work not only highlights the immense potential of Ta2NiSe5for next-generation polarization-sensitive optoelectronic devices but also inspire innovative approaches for next-generation ultracompact integrated photonics based on quasi-one-dimensional van der Waals materials.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"91 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143893170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.
{"title":"Simultaneous Resonant and Broadband Detection of Ultralight Dark Matter and High-Frequency Gravitational Waves via Cavities and Circuits.","authors":"Yifan Chen,Chunlong Li,Yuxin Liu,Jing Shu,Yuting Yang,Yanjie Zeng","doi":"10.1088/1361-6633/add050","DOIUrl":"https://doi.org/10.1088/1361-6633/add050","url":null,"abstract":"Electromagnetic resonant systems, such as cavities and LC circuits, are widely used to detect ultralight boson dark matter and high-frequency gravitational waves. However, the narrow bandwidth of single-mode resonators necessitates multiple scan steps to cover broad frequency ranges. By incorporating a network of auxiliary modes via beam-splitter-type and non-degenerate parametric couplings, we enable broadband detection with an effective bandwidth of each scan matching the order of the resonant frequency, while maintaining a strong signal response. In heterodyne upconversion detection, where a background cavity mode transitions into another due to a potential background source, multiple orders of the source frequency can be probed with high sensitivity without tuning the cavity frequency. Consequently, our method allows for significantly deeper exploration of the parameter space within the same integration time compared to single-mode detection.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"35 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143876466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-11DOI: 10.1088/1361-6633/adcbbf
David Simeone,Olivier Tissot,Laurence Luneville
The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field approach, which erases the discrete nature of the diffusion process.
Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of phase field approaches such as phase field crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography (APT), have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both.
This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn-Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.
{"title":"Diffusive first-order phase transition: nucleation, growth and coarsening in solids.","authors":"David Simeone,Olivier Tissot,Laurence Luneville","doi":"10.1088/1361-6633/adcbbf","DOIUrl":"https://doi.org/10.1088/1361-6633/adcbbf","url":null,"abstract":"The phenomena of nucleation and growth, which fall into the category of first-order phase transitions, are of great importance. They are present everywhere in our daily lives. They enable us to understand and model a vast number of phenomena, from the formation of raindrops, to the gelling of polymers, the evolution of a virus population and the formation of galaxies. Surprisingly, this whole range of phenomena can be described by two seemingly antagonistic approaches: classical nucleation theory, which highlights the atomistic approach of the diffusion process, and the phase-field approach, which erases the discrete nature of the diffusion process. 
Although there is an huge quantity of articles and review papers dealing with the problem of first-order phase transition, the subject is so important and vast that it is very difficult to provide nowadays exhaustive syntheses on the subject. The revival over the past 20 years in the condensed matter world of phase field approaches such as phase field crystal, or the recent development of optimization methods such as gentle ascend dynamics, as well as the emergence of atom probe tomography (APT), have enabled us to better understand the links between these antagonistic approaches, and above all to provide new experimental results to test the limits of both. 
This renewal has motivated the writing of this review, both to take stock of current knowledge on these two approaches. This review has two distinct objectives: summarizing generic previous models applies to discuss the nucleation, the growth and the coarsening processes. Despite some reviews already exist on these different subject, few of them present the different logical links between these models and their limitations, unifying them within the framework of the theory of macroscopic fluctuations, which has been developed over the last 20 years. In particular, we present the extension of the Cahn-Hilliard formalism to model the nucleation and growth process and we discuss the relevance of the notion of pseudo-spinodal and discuss. Such an extension allows interpreting experiments performed fat from the solubility limit and the spinodal line. Finally, this work proposes some clues to make this unified approach more predictive.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"21 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1088/1361-6633/ada637
Xianglin Hao, Ke Yin, Shiqing Cai, Jianlong Zou, Ruibin Wang, Xikui Ma, Chi Kong Tse and Tianyu Dong
Parity-time (PT) symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer (WPT) even in the presence of disturbances, through the incorporation of nonlinearity. However, the current PT-symmetric scheme falls short of achieving the theoretical maximum efficiency of WPT and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of WPT beyond the limits of symmetric approaches. By leveraging the gain spectrum interleaving resulting from dispersion, we observe a mode switching phenomenon in asymmetric systems similar to the symmetry-breaking effect. This phenomenon reshapes the distribution of resonance energy and enables more efficient WPT compared to conventional methods. Our findings open up new possibilities for harnessing dispersion effects in various domains such as electronics, microwaves, and optics. This work represents a significant step towards exploiting dispersion as a means to optimize WPT and lays the foundation for future advancements in these fields.
{"title":"Dispersive gains enhance wireless power transfer with asymmetric resonance","authors":"Xianglin Hao, Ke Yin, Shiqing Cai, Jianlong Zou, Ruibin Wang, Xikui Ma, Chi Kong Tse and Tianyu Dong","doi":"10.1088/1361-6633/ada637","DOIUrl":"https://doi.org/10.1088/1361-6633/ada637","url":null,"abstract":"Parity-time (PT) symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer (WPT) even in the presence of disturbances, through the incorporation of nonlinearity. However, the current PT-symmetric scheme falls short of achieving the theoretical maximum efficiency of WPT and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of WPT beyond the limits of symmetric approaches. By leveraging the gain spectrum interleaving resulting from dispersion, we observe a mode switching phenomenon in asymmetric systems similar to the symmetry-breaking effect. This phenomenon reshapes the distribution of resonance energy and enables more efficient WPT compared to conventional methods. Our findings open up new possibilities for harnessing dispersion effects in various domains such as electronics, microwaves, and optics. This work represents a significant step towards exploiting dispersion as a means to optimize WPT and lays the foundation for future advancements in these fields.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"49 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1088/1361-6633/ad8803
José Antonio Marín Guzmán,Paul Erker,Simone Gasparinetti,Marcus Huber,Nicole Yunger Halpern
Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum computers; and an autonomous quantum refrigerator recently reset superconducting qubits to near their ground states, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, computers, clocks, etc.) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc.). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.
{"title":"Key Issues Review: Useful autonomous quantum machines.","authors":"José Antonio Marín Guzmán,Paul Erker,Simone Gasparinetti,Marcus Huber,Nicole Yunger Halpern","doi":"10.1088/1361-6633/ad8803","DOIUrl":"https://doi.org/10.1088/1361-6633/ad8803","url":null,"abstract":"Controlled quantum machines have matured significantly. A natural next step is to increasingly grant them autonomy, freeing them from time-dependent external control. For example, autonomy could pare down the classical control wires that heat and decohere quantum computers; and an autonomous quantum refrigerator recently reset superconducting qubits to near their ground states, as is necessary before a computation. Which fundamental conditions are necessary for realizing useful autonomous quantum machines? Inspired by recent quantum thermodynamics and chemistry, we posit conditions analogous to DiVincenzo's criteria for quantum computing. Furthermore, we illustrate the criteria with multiple autonomous quantum machines (refrigerators, computers, clocks, etc.) and multiple candidate platforms (neutral atoms, molecules, superconducting qubits, etc.). Our criteria are intended to foment and guide the development of useful autonomous quantum machines.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"31 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1088/1361-6633/ad7f6a
Richard Rotunno,Howard Bruce Bluestein
This article critically reviews research on tornado theory and observations over the last decade. From the theoretical standpoint, the major advances have come through improved numerical-simulation models of supercell convective storms, the tornado's parent circulation. These simulations are carried out on a large domain (to capture the supercell's circulation system), but with high grid resolution and improved representations of sub-grid physics (to capture the tornado). These simulations offer new insights into how and why tornadoes form in some supercells, but not others. Observational advances have come through technological improvements of mobile Doppler radars capable of rapid scanning and dual-polarization measurements, which offer a much more accurate view of tornado formation, tornado structure, and the tornado's place within its parent supercell.
{"title":"Recent developments in tornado theory and observations.","authors":"Richard Rotunno,Howard Bruce Bluestein","doi":"10.1088/1361-6633/ad7f6a","DOIUrl":"https://doi.org/10.1088/1361-6633/ad7f6a","url":null,"abstract":"This article critically reviews research on tornado theory and observations over the last decade. From the theoretical standpoint, the major advances have come through improved numerical-simulation models of supercell convective storms, the tornado's parent circulation. These simulations are carried out on a large domain (to capture the supercell's circulation system), but with high grid resolution and improved representations of sub-grid physics (to capture the tornado). These simulations offer new insights into how and why tornadoes form in some supercells, but not others. Observational advances have come through technological improvements of mobile Doppler radars capable of rapid scanning and dual-polarization measurements, which offer a much more accurate view of tornado formation, tornado structure, and the tornado's place within its parent supercell.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"57 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}